Package ‘rlme’

Type Package
Title Rank-Based Estimation and Prediction in Random Effects Nested Models
Version 0.5
Date 2018-01-08
Author Yusuf Bilgic, Herb Susmann and Joseph McKean
Maintainer Yusuf Bilgic <bilgic@geneseo.edu>
License GPL (>= 2)
Imports MASS, quantreg, nlme, mgcv, stringr, magic, robustbase, Rcpp, stats, utils, graphics
Suggests testthat
NeedsCompilation yes
LinkingTo Rcpp
Repository CRAN
RoxygenNote 6.0.1
LazyData true
Date/Publication 2018-01-09 17:35:55 UTC

R topics documented:

 rlme-package .. 2
 beta_var .. 3
 compare.fits ... 4
 dispvar .. 5
 fitdvcov .. 6
 GEER_est ... 7
 getgrstplot ... 8
rlme-package

Description

An R package for rank-based robust estimation and prediction in random effects nested models

Details

Package: rlme
Type: Package
Version: 0.2
Date: 2013-07-07
License: GPL (>= 2)

Author(s)

Yusuf Bilgic <bilgic@geneseo.edu>, Herb Susmann <hps1@geneseo.edu> and Joseph McKean <joemckean@yahoo.com>

Maintainer: Yusuf Bilgic <bilgic@geneseo.edu> or <yusuf.k.bilgic@gmail.com>
See Also

rlme

Examples

```r
library(rlme)
data(schools)
formula = y ~ 1 + sex + age + (1 | region) + (1 | region:school)
rlme.fit = rlme(formula, schools)
summary(rlme.fit)
```

beta_var

Estimate fixed-effect variance for Joint Rank Method (JR) in three-level nested design.

Description

Fixed effect variance estimation for Joint Rank Method (JR). It assumes Compound Symmetric (CS) structure of error terms. For k-level design, there are k-1 intra/inter-class parameters to place in a correlation matrix of errors.

Usage

`beta_var(x, school, tauhat, v1, v2, v3, section, mat)`

Arguments

- `x`: Data frame of covariates.
- `school`: A vector of cluster.
- `tauhat`: This is obtained from Rank-based fitting. `tauhat` here~~
- `v1`: This is 1, main diagonal element for correlation matrix of observations. Correlation of an observation with itself is 1.
- `v2`: Intra-cluster correlation coefficient.
- `v3`: Intra-subcluster correlation coefficient.
- `section`: A vector of subclusters, nx1.
- `mat`: A matrix of numbers of observations in subclusters. Dimension is Ixmax(number of subclusters). Each row indicates one cluster.

Details

Correlation coefficients are obtained using Moment Estimates. See Klole et al (2009), Bilgic (2012) and HM (2012)
Value

var
The variance of fixed estimated.

Author(s)

Yusuf Bilgic

References

compare.fits
Compare Fits

Description

Comparer two model fits. It returns tdbeta value and cfits values of two fits. The function uses the fixed effects estimates from fit 1 and fit 2 along with the covariance of the rank-based fit.

Usage

```r
compare.fits(x, fit1, fit2)
```

Arguments

- **x**
 Matrix of covariates
- **fit1**
 A class of type rlme.
- **fit2**
 A class of type rlme.

Value

Returns tdbeta and cfits values.

See Also

`fitdvcov`
dispvar

Examples

data(schools)
model = y ~ 1 + sex + age + (1 | region) + (1 | region:school)

Extract covariants into matrix
cov = as.matrix(data.frame(schools[,"sex"], schools[,"age"]))

Fit the models using each method
reml.fit = rlme(model, schools, method="reml")
gr.fit = rlme(model, schools, method="gr")

compare.fits(cov, reml.fit, gr.fit)

dispvar

Rank-based dispersion estimate.

Description

This is an unbiased estimator with a correction factor for standard deviation when normal errors.

Usage

dispvar(x, score = 1)

Arguments

x vector
score score type - 1 or 2

References

Description
Obtains measurement for the fits based on estimates beta1, beta2 and covariance matrix from a rank based methods.

Usage
fitdvcov(x1, beta1, beta2, vcw)

Arguments
x1 data
beta1 model 1 beta estimate
beta2 model 2 beta estimate
vcw variance matrix

See Also
compare.fits

Examples

Compare GR and JR methods
data(schools)
model = y ~ 1 + sex + age + (1 | region) + (1 | region:school)
Extract covariants into matrix
cov = as.matrix(data.frame(schools[,"sex"], schools[,"age"]))
Fit the models using each method
jr.fit = rlme(model, schools, method="jr")
gr.fit = rlme(model, schools, method="gr")
Extract beta estimates, ignoring the intercept
jr.beta = jr.fit$fixed.effects$Estimate[c(2, 3)]
gr.beta = gr.fit$fixed.effects$Estimate[c(2, 3)]
Extract beta variance matrix
var.b = jr.fit$var.b
fitdvcov(cov, jr.beta, gr.beta, var.b)
GEER_est

GEER: General Estimating Equation Rank-Based Estimation Method

Description

The package rlme calls this function for gee method, one of the methods proposed in Bilgic’s study (2012). Also see Kloke et al. (2013). concise (1-5 lines) description of what the function does. ~

Usage

GEER_est(x, y, I, sec, mat, school, section, weight = "wil", rprpair = "hl-disp", verbose = FALSE)

Arguments

x Design matrix, pxn, without intercept.
y Response vector of nx1.
I Number of clusters.
sec A vector of subcluster numbers in clusters.
mat A matrix of numbers of observations in subclusters. Dimension is lmxmax(number ofsubclusters). Each row indicates one cluster.
school A vector of clusters, nx1.
section A vector of subclusters, nx1.
weight When weight="hbr", it uses hbr weights in GEE weights. By default, ="wil", it uses Wilcoxon weights. See the theory in the references.
rprpair By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.
verbose Boolean indicating whether to print out diagnostic messages.

Value

theta Fixed effect estimates.
ses Standard error for the fixed estimates.
sigma Variances of cluster, subcluster, and residual.
ehat Raw error.
ehats Independence error from last weighted step.
effect_sch Cluster random error.
effect_sec Subcluster random error.
effect_err Epsilon error.

Author(s)

Yusuf K. Bilgic, yekabe@hotmail.com
References

See Also

rlme, GR_est, JR_est, rprmeddisp

Examples

See the rlme function.

getgrstplot

Q-Q Plot and Standardized Residual Plot for the GR fit.

Description

It gets Q-Q Plot and Standardized Residual Plot of residuals.

Usage

getgrstplot(rlme.fit)

Arguments

rlme.fit RLME fit object

Details

The fit is obtained from rlme()

See Also

rlme

getlmestplot

Q-Q Plot and Standardized Residual Plot for the REML or ML fit.

Description

It gets Q-Q Plot and Standardized Residual Plot of residuals. concise (1-5 lines) description of what the function does.

Usage

getlmestplot(rlme.fit)

Arguments

rlme.fit The fit is obtained from rlme()

See Also

rlme

GR_est

GR Method

Description

Fits a model using the GR method

Usage

GR_est(x, y, I, sec, mat, school, section, rprpair = "hl-disp", verbose = FALSE)

Arguments

x Covariate matrix or data frame.
y Response matrix or data frame.
I Number of clusters
sec A vector of subcluster numbers in clusters.
mat A matrix of numbers of observations in subclusters. Dimension is Ixmax(number of subclusters). Each row indicates one cluster.
school A vector of clusters, nx1.
section A vector of subclusters, nx1.
rprpair By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.
verbose Boolean indicating whether to print out messages from the algorithm.
Value

- **theta**: Fixed effect estimates.
- **ses**: Standard error for the fixed estimates.
- **sigma**: Variances of cluster, subcluster, and residual.
- **ehat**: Raw error.
- **ehats**: Independence error from last weighted step.
- **effect_sch**: Cluster random error.
- **effect_sec**: Subcluster random error.
- **effect_err**: Epsilon error.

Author(s)

Yusuf Bilgic

Examples

See rlme function

```
hbrwts_gr
```

Description

Calculates hbr weights for the GEER method. This turns a vector of weights for a vector of errors. Used to make factor space more robust, up to 50% breakdown. See HM (2012) and Terpstra and McKean (2005) for details. The ww package produces this weights as well.

Usage

```
hbrwts_gr(xmat, y, percent = 0.95, intest = ltsreg(xmat, y)$coef)
```

Arguments

- **xmat**: Design matrix, pxn, without intercept.
- **y**: Response vector in nx1.
- **percent**: This is 0.95.
- **intest**: This is obtained from myltsreg(xmat, y)$coef

Details

The ww package explains how it is obtained.
Instruction

Author(s)

J. W. McKean

References

See Also

GEER_est

Description

A data frame on school instruction results.

Format

A data frame with 1190 observations on the following 13 variables.

- **X** a numeric vector
- **girl** a numeric vector
- **minority** a numeric vector
- **mathkind** a numeric vector
- **mathgain** a numeric vector
- **ses** a numeric vector
- **yearstea** a numeric vector
- **mathknow** a numeric vector
- **housepov** a numeric vector
- **mathprep** a numeric vector
- **classid** a numeric vector identifying the class within school
- **schoolid** a numeric vector identifying the school
- **childid** a numeric vector

Source

Examples

The following code takes a few minutes to run.
In the interest of saving CRAN's example testing time,
it has been commented out. If you want to use it,
just uncomment and run.

data(instruction)
attach(instruction)

data = data.frame(
y = mathgain,
mathkind = mathkind,
girl = girl,
minority = minority,
ses = ses,
school = factor(schoolid),
section = factor(classid))

fit.rlme = rlme(y ~ 1 + mathkind + girl + minority + ses + (1 | school) + (1 | school:section),
data = data,
method = "gr")

summary(fit.rlme)

JR_est

JR Method

Description

Fit a model using the JR method

Usage

JR_est(x, y, I, sec, mat, school, section, rprpair = "hl-disp",
 verbose = FALSE)

Arguments

x Covariate matrix or data frame
y Response matrix or data frame
I Number of clusters.
sec A vector of subcluster numbers in clusters.
mat A matrix of numbers of observations in subclusters. Dimension is Ix\(\text{max}\)(number
 of subclusters). Each row indicates one cluster. mat here--
school A vector of clusters, nx1.
section A vector of subclusters, nx1.

rprpair By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.

verbose Boolean indicating whether to print out diagnostic messages.

Value

theta Fixed effect estimates.

ses Standard error for the fixed estimates.

sigma Covariate variance estimates using RPP (Groggel and Dubnicka’s procedure).

ehat Raw error.

effect_sch Cluster random error.

effect_sec Subcluster random error.

effect_err Epsilon error.

Author(s)

Yusuf Bilgic

See Also

rlme

lmr (Rank Based Fixed Effect Regression)

Description

Computes rank based regression estimates for fixed effect models.

Usage

lmr(f, data, se = FALSE, method = "L-BFGS-B")

Arguments

f A model formula

data Data to use for model fitting

se Boolean indicating whether or not to calculate standard errors for intercept and slope estimates

method Optimization method to use. Will accept any method usable by optim, e.g. one of c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"). "BFGS" or "L-BFGS-B" are recommended. "L-BFGS-B" should be used for large datasets to conserve memory.
Value

<table>
<thead>
<tr>
<th>fixed.effects</th>
<th>Fixed effect estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ehat</td>
<td>Residuals from model</td>
</tr>
</tbody>
</table>

Author(s)

Herb Susmann

See Also

rlme, optim

Examples

```
# load schools data
data(schools)

# Fit fixed effects model with lmr
lmr.fit = lmr(y ~ age + sex, data=schools)
summary(lmr.fit)

# Fit with lmr and calculate standard errors
lmr.fit = lmr(y ~ age + sex, data=schools, se=TRUE)
summary(lmr.fit)
```

LM_est
Linear Model Estimation using the nlme package.

Description

This gets the REML or ML estimates and predictions of random effects from the nlme package.

Usage

```
LM_est(x, y, dat, method = "REML")
```

Arguments

- **x**: Design matrix, (p+1)xn, with intercept.
- **y**: Response vector of nx1.
- **dat**: Data frame
- **method**: Character string indicating method to use, either "ML" or "REML" (defaults to REML).
Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>Fixed effects estimates.</td>
</tr>
<tr>
<td>ses</td>
<td>Standard error for fixed effects.</td>
</tr>
<tr>
<td>varb</td>
<td>Variances.</td>
</tr>
<tr>
<td>sigma</td>
<td>Error.</td>
</tr>
<tr>
<td>ehat</td>
<td>Raw residuals</td>
</tr>
<tr>
<td>standr.lme</td>
<td>Standardized residual</td>
</tr>
<tr>
<td>effect_sch</td>
<td>Cluster random error.</td>
</tr>
<tr>
<td>effect_sec</td>
<td>Subcluster random error.</td>
</tr>
<tr>
<td>effect_err</td>
<td>Epsilon error.</td>
</tr>
</tbody>
</table>

Author(s)

Yusuf Bilgic

References

See Also

rlme

Description

Uses optim to find regression estimates which minimize dispersion function on X and Y input matrices

Usage

minimize_dispersion(X, Y, method = "BFGS", init.guess = "quantreg", verbose = FALSE, se = TRUE)
plot.rlme

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Input matrix</td>
</tr>
<tr>
<td>Y</td>
<td>Response vector</td>
</tr>
<tr>
<td>method</td>
<td>Method optim should use - one of "Nelder-Mead", "BFGS", "CG", "L-BFGSB", "SANN", or "Brent".</td>
</tr>
<tr>
<td>init.guess</td>
<td>How to calculate the first regression estimate. Defaults to using quantile regression.</td>
</tr>
<tr>
<td>verbose</td>
<td>Whether to print out verbose messages.</td>
</tr>
<tr>
<td>se</td>
<td>Whether or not to calculate standard errors of regression estimates.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>theta</td>
<td>Regression parameter estimates</td>
</tr>
<tr>
<td>ehat</td>
<td>Regression residuals</td>
</tr>
</tbody>
</table>

Author(s)

Herb Susmann

plot.rlme

Plot rlme Fit

Description

Generates Normal Q-Q plot of residuals from rlme fit

Usage

```r
## S3 method for class 'rlme'
plot(x, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>A list of class rlme. Store as fit.rlme.</td>
</tr>
<tr>
<td>...</td>
<td>not used</td>
</tr>
</tbody>
</table>

Examples

```r
data(schools)
rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school), schools, method="gr")
plot(rlme.fit)
```
rhosch

Cluster Correlation Coefficient Estimate

Description

Moment estimate version of correlation coefficient in a cluster in a three-level nested design.

Usage

rhosch(ahat, school, section)

Arguments

ahat A vector of scores. Wilcoxon scores are used in the package.
school A vector of clusters.
section A vector of subclusters.

References

rhosect

Subcluster Correlation Coefficient Estimate

Description

Moment estimate version of correlation coefficient in a subcluster in a three-level nested design.

Usage

rhosect(ahat, school, section)

Arguments

ahat A vector of scores. Wilcoxon scores are used in the package.
school A vector of clusters.
section A vector of subclusters.

References

Description

This function estimates fixed effects and predicts random effects in two- and three-level random effects nested models using three rank-based fittings (GR, GEER, JR) via the prediction method algorithm RPP.

Usage

```r
rlme(f, data, method = "gr", print = FALSE, na.omit = TRUE, weight = "wil", rprpair = "hl-disp", verbose = FALSE)
```

Arguments

- `f` : An object of class formula describing the mixed effects model. The syntax is same as in the lme4 package. Example: `y ~ 1 + sex + age + (1 | region) + (1 | region:school)` - sex and age are the fixed effects, region and school are the nested random effects, school is nested within region.
- `data` : The dataframe to analyze. Data should be cleaned prior to analysis: cluster and subcluster columns are expected to be integers and in order (e.g. all clusters and subclusters).
- `method` : string indicating the method to use (one of "gr", "jr", "reml", and "geer"). defaults to "gr".
- `print` : Whether or not to print a summary of results. Defaults to false.
- `na.omit` : Whether or not to omit rows containing NA values. Defaults to true.
- `weight` : When weight="bbr", it uses bbr weights in GEE weights. By default, ="wil", it uses Wilcoxon weights. See the theory in the references.
- `rprpair` : By default, it uses "hl-disp" in the random prediction procedure (RPP). Also, "med-mad" would be an alternative.
- `verbose` : Boolean indicating whether to print out diagnostic messages.

Details

The iterative methods GR and GEER can be quite slow for large datasets; try JR for faster analysis. If you want to use the GR method, try using rprpair='med-mad'. This method avoids building a NxN covariance matrix which can quickly become unwieldy with large data.

Value

The function returns a list of class "rlme". Use summary.rlme to see a summary of the fit.

- `formula` : The model formula.
- `method` : The method used.
fixed.effects Estimate of fixed effects.
random.effects Estimate of random effects.
standard.residual Residuals.
intra.class.correlations Intra/inter-class correlation estimates obtained from RPP.
t.value t-values.
p.value p-values.
location Location.
scale Scale.
y The response variable y.
num.obs Number of observations in provided dataset.
num.clusters The number of clusters.
num.subclusters The number of subclusters.
effect.err Effect from error.
effect.cluster Effect from cluster.
effect.subcluster Effect from subcluster.
var.b Variances of fixed effects estimate (Beta estimates).
xstar Weighted design matrix with error covariance matrix.
ystar Weighted response vector with its covariance matrix.
ehat The raw residual.
ehats The raw residual after weighted step. Scaled residual.

Author(s)
Yusuf Bilgic <yekabe@hotmail.com> and Herb Susmann <hps1@geneseo.edu>

References

See Also
summary.rlme, plot.rlme, compare.fits
Examples

 data(schools)
 rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school), schools, method="gr")
 summary(rlme.fit)

 # Try method="geer", "reml", "ml" and "jr" along with
 # rprpair="hl-disp" (not robust), and "med-mad" (robust),
 # weight="hbr" is for the gee method.

rpr Cluster and Subcluster effects

Description

 Partitions model residuals into cluster and subcluster effects using RPP algorithm.

Usage

 rpr(f, resid, data, rprpair = "hl-disp")

Arguments

 f A model formula which specifies the random effects (see example)
 resid The residuals from the fitted model
 data The data the model was fitted on
 rprpair Character string indicating the location and scale parameters to use. Default to
 "hl-disp", but may also be "med-mad". See Bilgic (2012).

Value

 siga2 Variance from cluster
 sigw2 Variance from subcluster
 sigmain2 Remaining variance not accounted for by variance of cluster and subcluster

Author(s)

 J. W. McKean and Y. K. Bilgic

References

 Y. K. Bilgic. Rank-based estimation and prediction for mixed effects models in nested designs.
See Also
rprmeddis, dispvar

Examples

Load school data
data(schools)

Fit fixed effects model with lmr
lmr.fit = lmr(y ~ age + sex, data=schools)

Three level design
Partition residuals into school and region effects with rpp algorithm
rpr(y ~ age + sex + (1 | school) + (1 | school:region), lmr.fit$ehat, schools)

Two level design
Estimate variance in residuals from school
rpr(y ~ age + sex + (1 | school), lmr.fit$ehat, schools)

rprmeddis

Rprmeddis

Description

Robust rank-based prediction algorithm that gets predictions for random errors in three-level nested design. It needs one location and scale estimators. Hodges-Lehmann location estimate and dispersion functional estimate pair is called with rprpair="hl-disp" -by default- ; median and MAD pair is called with rprpair="med-mad" in rlme().

Usage

rprmeddis(I, sec, mat, ehat, location, scale, rprpair = "hl-disp")

Arguments

I
sec
mat
ehat
location
scale
rprpair

Number of clusters.
A vector of subcluster numbers in clusters.
A matrix of numbers of observations in subclusters. Dimension is Ixmax(number ofsubclusters). Each row indicates one cluster.
The residuals that inherits random effects and error effect to be predicted.
If location = scale = 1 then use Median and MAD in RPP If location = scale = 2 then use HL & Dispvar in RPP Note: this is deprecated. You should specify the location & scale parameters by using the rprpair parameter.
1 means mad, 2 means disp as scale estimators
Character string indicating the location and scale parameters to use. Default to "hl-disp", but may also be "med-mad". See Bilgic (2012).
Details

The rprmeddisp() function yields predictions of random effects and errors vectors along with scale estimates in each level. This function was designed for three-level nested design. See rprmeddisp2() in the package, this is for two-level nested design.

Author(s)

Yusuf Bilgic <yekabe@hotmail.com>

References

See Also

rpr dispvar

schools

PISA Literacy Data

Description

The data in Program for International Assessment (PISA) on academic proficiency in schools around the world.

Format

A data frame with 334 observations on the following 6 variables.

y a numeric vector indicating student literacy
socio a numeric vector
sex a numeric vector
age a numeric vector
region a numeric vector indicating four regions
school a numeric vector indicating the schools within region

References

Examples

The example takes a few seconds to run, so in order to
save CRAN's testing time it has been commented out.
To run, simply uncomment and execute.
#
data(schools)
rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school),
schools, method="gr")
summary(rlme.fit)

stanresidgr

Calculate Standard Residuals

Description

Standardizes the residuals obtained from the GR fitting.

Usage

stanresidgr(x, y, resid, delta = 0.8, param = 2, conf = 0.95)

Arguments

- **x**: Design matrix.
- **y**: Response vector.
- **resid**: Residuals obtained from the rank-based fitting.
- **delta**: See HM (2012).
- **param**: See HM (2012).
- **conf**: See HM (2012).

Author(s)

J. W. McKean

References

summary.rlme

rlme Summary

Description

Summarizes a model fit from the rmle function

Usage

```r
## S3 method for class 'rlme'
summary(object, ...)
```

Arguments

- `object`: A list of class rlme
- `...`: not used

Author(s)

Herb Susmann <hps1@geneseo.edu>

See Also

- `rlme`
- `plot.rlme`

wilonestep

Wilcoxon estimate for independent linear models

Description

This function gets weighted rank based fittings.

Usage

```r
wilonestep(y, x)
```

Arguments

- `y`: Response vector of nx1.
- `x`: Design matrix, pxn, without intercept.

References

wilstep

Wilcoxon One Step Rank-based Estimate in GR Method

Description

Gets weighted rank based fittings for nested designs.

Usage

wilstep(I, sec, mat, init = F, y, x, sigmaa2 = 1, sigmaw2 = 1,
 sigmae2 = 1, thetaold = c(0), eps = 1e-04, iflag2 = 0,
 rprpair = "hl-disp")

Arguments

I
Number of clusters.
sec
A vector of subcluster numbers in clusters.
mat
A matrix of numbers of observations in subclusters. Dimension is Ixmax(number of subclusters). Each row indicates one cluster.
init
boolean
y
Response vector of nx1.
x
Design matrix, pxn, without intercept.
sigmaa2
Initial sigma for cluster in three-level design.
sigmaw2
Initial sigma for subcluster in three-level design.
sigmae2
Initial sigma for error in three-level design.
thetaold
Initial input.
eps
Epsilon value
iflag2
y or n
rprpair
Either ‘hl-disp’ or ‘med-mad’

Details

Initial inputs are from the independent model.

Author(s)

J. W. McKean and Y. K. Bilgic

References

Index

* datasets
 instruction, 11
 schools, 22
* models
 compare.fits, 4
 GEER_est, 7
 GR_est, 9
 LM_est, 14
 rlme, 18
 rlme-package, 2
* package
 rlme-package, 2
beta_var, 3
compare.fits, 4, 6
dispvar, 5, 22
fitdvcov, 4, 6
GEER_est, 7
getgrstplot, 8
getlmestplot, 9
GR_est, 9
hhbrwts_gr, 10
instruction, 11
JR_est, 12
LM_est, 14
lmr, 13
minimize_dispersion, 15
plot.rlme, 16, 24
rhosch, 17
rhosect, 17
rlme, 3, 13, 18, 24
rlme-package, 2
rpr, 20, 22
rprmeddis, 21
schools, 22
stanresidgr, 23
summary.rlme, 24
wilonestep, 24
wilstep, 25

26