Package ‘rmcorr’

October 14, 2022

Title Repeated Measures Correlation
Version 0.5.2
Description Compute the repeated measures correlation, a statistical technique for determining the overall within-individual relationship among paired measures assessed on two or more occasions, first introduced by Bland and Altman (1995). Includes functions for diagnostics, p-value, effect size with confidence interval including optional bootstrapping, as well as graphing. Also includes several example datasets. For more details, see the web documentation <https://lmarusich.github.io/rmcorr/index.html> and the original paper: Bakdash and Marusich (2017) <doi:10.3389/fpsyg.2017.00456>.
Depends R (>= 4.1.0)
License GPL-2
LazyData true
Imports stats, grDevices, graphics, psych, RColorBrewer
RoxygenNote 7.2.1
Encoding UTF-8
Suggests knitr, rmarkdown, plotrix, ggplot2, lme4, merTools, pwr, AICcmodavg, pals, testthat (>= 3.0.0), corrplot, cocor
VignetteBuilder knitr
Config/testthat/edition 3
URL https://github.com/lmarusich/rmcorr,
 https://lmarusich.github.io/rmcorr/
BugReports https://github.com/lmarusich/rmcorr/issues
NeedsCompilation no
Author Jonathan Z. Bakdash [aut] (<https://orcid.org/0000-0002-1409-4779>), Laura R. Marusich [aut, cre] (<https://orcid.org/0000-0002-3524-6110>)
Maintainer Laura R. Marusich <lmarusich@gmail.com>
Repository CRAN
Date/Publication 2022-08-25 14:50:02 UTC
R topics documented:

- rmcorr-package
- bland1995
- gilden2010
- marusich2016_exp2
- plot.rmc
- print.rmc
- print.rmcmat
- raz2005
- rmcorr
- rmcorr_mat
- twedt_dist_measures

Index

rmcorr-package

A package for computing the repeated measures correlation coefficient

Description

Compute the repeated measures correlation, a statistical technique for determining the overall within-individual relationship among paired measures assessed on two or more occasions, first introduced by Bland and Altman (1995). Includes functions for diagnostics, p-value, effect size with confidence interval including optional bootstrapping, as well as graphing. Also includes several example datasets. For more details, see the web documentation https://lmarusich.github.io/rmcorr/index.html and the original paper: Bakdash and Marusich (2017) [doi:10.3389/fpsyg.2017.00456].

References

bland1995

Repeated measurements of intramural pH and PaCO2

Description

Usage

bland1995
Format

A data frame with 47 rows and 3 variables

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Subject</td>
<td>Unique identifier</td>
</tr>
<tr>
<td>[2]</td>
<td>pH</td>
<td>Potential of hydrogen, acidity to base</td>
</tr>
<tr>
<td>[3]</td>
<td>PaCO2</td>
<td>Partial pressure of carbon dioxide</td>
</tr>
</tbody>
</table>

Source

gilden2010

Repeated measurements of reaction time and accuracy

Description

A dataset containing four repeated measurements of reaction time (RT) and accuracy from eleven subjects in a visual search experiment. Each measurement is the mean RT and accuracy from a block of 288 search trials. blocks of visual search, for eleven subjects.

Usage

gilden2010

Format

A data frame with 44 rows and 4 variables

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>sub</td>
<td>Subject ID</td>
<td></td>
</tr>
<tr>
<td>[2]</td>
<td>block</td>
<td>Block ID</td>
<td></td>
</tr>
<tr>
<td>[3]</td>
<td>rt</td>
<td>Mean reaction time</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>acc</td>
<td>Mean accuracy</td>
<td></td>
</tr>
</tbody>
</table>

Source

marusich2016_exp2

Repeated measurements of dyads performance and subjective situation awareness
Description
A dataset containing three repeated measures of dyads (paired participants) working together to capture High Value Targets (lower task time is better performance) and their averaged Mission Awareness Rating Scale (MARS) score for each block, repeated three times. MARS evaluates subjective situation awareness ("knowing what is going on"), higher values indicate better situation awareness.

Usage
marusich2016_exp2

Format
A data frame with 84 rows (28 dyads/pairs) and 4 variables

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>,1</td>
<td>Pair</td>
<td>Unique identifier for each dyad</td>
<td></td>
</tr>
<tr>
<td>,2</td>
<td>HVT_capture</td>
<td>Capture time</td>
<td></td>
</tr>
<tr>
<td>,3</td>
<td>MARS</td>
<td>subjective situation awareness</td>
<td></td>
</tr>
<tr>
<td>,4</td>
<td>Source Reliability</td>
<td>1 = none, 2 = accurate, and 3 = inaccurate</td>
<td></td>
</tr>
</tbody>
</table>

Source

plot.rmc

Plot the repeated measures correlation coefficient.

Description
plot.rmc produces a scatterplot of measure1 on the x-axis and measure2 on the y-axis, with a different color used for each subject. Parallel lines are fitted to each subject’s data.

Usage
```r
## S3 method for class 'rmc'
plot(
x,
    dataset = NULL,
    overall = F,
    palette = NULL,
    xlab = NULL,
    ylab = NULL,
    overall.col = "gray60",
    overall.lwd = 3,
```

```r
```
Arguments

x an object of class "rmc" generated from the \texttt{rmcorr} function.
dataset Deprecated: This argument is no longer required
overall logical: if TRUE, plots the regression line between measure1 and measure2, ignoring the participant variable.
palette the palette to be used. Defaults to the RColorBrewer "Paired" palette
xlab label for the \text{} axis, defaults to the variable name for measure1.
ylab label for the \text{} axis, defaults to the variable name for measure2.
overall.col the color of the overall regression line
overall.lwd the line thickness of the overall regression line
overall.lty the line type of the overall regression line
... additional arguments to \texttt{plot}.

See Also

\texttt{rmcorr}

Examples

Bland Altman 1995 data
my.rmc <- \texttt{rmcorr(participant = Subject, measure1 = PaCO2, measure2 = pH, dataset = bland1995)}
plot(my.rmc)

#using ggplot instead
if (\texttt{requireNamespace("ggplot2", quietly = TRUE))}{
\texttt{ggplot2::ggplot(bland1995, ggplot2::aes(x = PaCO2, y = pH, group = factor(Subject), color = factor(Subject))) + ggplot2::geom_point(ggplot2::aes(colour = factor(Subject))) + ggplot2::geom_line(ggplot2::aes(y = my.rmc$model$fitted.values), linetype = 1) }
}

Raz et al. 2005 data
my.rmc <- \texttt{rmcorr(participant = Participant, measure1 = Age, measure2 = Volume, dataset = raz2005)}
library(RColorBrewer)
blueset <- \texttt{brewer.pal(8, 'Blues')}
pal <- \texttt{colorRampPalette(blueset)}
plot(my.rmc, overall = TRUE, palette = pal, overall.col = 'black')
Gilden et al. 2010 data

```r
my.rmc <- rmcorr(participant = sub, measure1 = rt, measure2 = acc, dataset = gilden2010)
plot(my.rmc, overall = FALSE, lty = 2, xlab = "Reaction Time", ylab = "Accuracy")
```

print.rmc

Print the results of a repeated measures correlation

Description

Print the results of a repeated measures correlation

Usage

```r
## S3 method for class 'rmc'
print(x, ...)
```

Arguments

- `x` An object of class "rmc", a result of a call to rmcorr.
- `...` additional arguments to `print`.

See Also

`rmcorr`

Examples

```r
## Bland Altman 1995 data
blandrmc <- rmcorr(Subject, PaCO2, pH, bland1995)
blandrmc
```

print.rmcmat

Print the repeated measures correlation matrix

Description

Print the repeated measures correlation matrix

Usage

```r
## S3 method for class 'rmcmat'
print(x, ...)
```

Examples

```r
## Bland Altman 1995 data
blandrmc <- rmcorr(Subject, PaCO2, pH, bland1995)
blandrmc
```
Arguments

- **x**: An object of class "rmcmat", a result of a call to `rmcorr_mat`. Additional arguments to `print`.

See Also

`rmcorr_mat`, `rmcorr`

Examples

```r
## Bland Altman 1995 data
blandrmc <- rmcorr(Subject, PaCO2, pH, bland1995)
blandrmc
```

raz2005

Repeated measurements of age and cerebellar volume

Description

A dataset containing two repeated measures, on two occasions (Time), of age and adjusted volume of cerebellar hemispheres from 72 participants. Data were captured from Figure 8, Cerebellar Hemispheres (lower right) of Raz et al. (2005).

Usage

`raz2005`

Format

A data frame with 144 rows and 4 variables

<table>
<thead>
<tr>
<th>[,1] Participant</th>
<th>Participant ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>[,2] Time</td>
<td>Measurement time</td>
</tr>
<tr>
<td>[,3] Age</td>
<td>Participant’s age (years)</td>
</tr>
<tr>
<td>[,4] Volume</td>
<td>Adjusted volume of cerebellar hemispheres (cm^3)</td>
</tr>
</tbody>
</table>

Source


```r
rmcorr
```

Calculate the repeated measures correlation coefficient.
Description

Calculate the repeated measures correlation coefficient.

Usage

```r
rmcorr(
    participant,
    measure1,
    measure2,
    dataset,
    CI.level = 0.95,
    CIs = c("analytic", "bootstrap"),
    nreps = 100,
    bstrap.out = F
)
```

Arguments

- `participant`: A variable giving the subject name/id for each observation.
- `measure1`: A numeric variable giving the observations for one measure.
- `measure2`: A numeric variable giving the observations for the second measure.
- `dataset`: The data frame containing the variables.
- `CI.level`: The confidence level of the interval.
- `CIs`: The method of calculating confidence intervals.
- `nreps`: The number of resamples to take if bootstrapping.
- `bstrap.out`: Determines if the output include the bootstrap resamples.

Value

A list with class "rmc" containing the following components.

- `r`: the value of the repeated measures correlation coefficient.
- `df`: the degrees of freedom.
- `p`: the p-value for the repeated measures correlation coefficient.
- `CI`: the 95% confidence interval for the repeated measures correlation coefficient.
- `model`: the multiple regression model used to calculate the correlation coefficient.
- `resamples`: the bootstrap resampled correlation values.

References

rmcorr_mat

Create a repeated measures correlation matrix.

Description
Create a repeated measures correlation matrix.

Usage

```r  
rmcorr_mat(participant, variables, dataset, CI.level = 0.95)  
```

Arguments

- `participant`: A variable giving the subject name/id for each observation.
- `variables`: A character vector indicating the columns of variables to include in the correlation matrix.
- `dataset`: The data frame containing the variables.
- `CI.level`: The level of confidence intervals to use in the rmcorr models.

Value
A list with class "rmcmat" containing the following components.

- `matrix`: the repeated measures correlation matrix
- `summary`: a dataframe showing rmcorr stats for each pair of variables
- `models`: a list of the full rmcorr model for each pair of variables

References

See Also
`rmcorr, plot.rmc`
Examples

```r
dist_rmc_mat <- rmcorr_mat(participant = Subject, 
    variables = c("Blindwalk Away", 
        "Blindwalk Toward", 
        "Triangulated BW", 
        "Verbal", 
        "Visual matching"), 
    dataset = twedt_dist_measures, 
    CI.level = 0.95)
pplot(dist_rmc_mat$models[[2]])
```

Description

A dataset of repeated measures of distance perception at physical distances of 7, 8, 9, 10, and 11 meters. The data are also multivariate, with five dependent measures of distance perception. This is a 5 (physical distance) x 5 (dependent measure) within-participants design with a sample size of 46. Note data is missing for 15 trials due participant and experimenter errors.

Usage

twedt_dist_measures

Format

A data frame with 230 rows and 7 columns

[,1] Subject	Unique identifier for each participant
[,2] Physical Distance	Physical distance from the participant to the target cone, in meters
[,3] Blindwalk Away	Participants put on the blindfold after viewing the target. Next, participants took one step to the left and turned 180 degrees to walk straight away from the target. Participants were instructed to walk forward until they had walked the original distance to the target cone
[,4] Blindwalk Toward	Participants put on the blindfold after viewing the target. Next, participants walked forward until they thought they had reached the target cone
[,5] Triangulated BW	Participants put on the blindfold after viewing the target. Next, participants turned right 90 degrees and walked forward while facing the same direction. Participants were instructed to walk forward until they had walked the original distance to the target cone
[,6] Verbal	Participants stated the distance between the target cone and themselves, in feet and inches
[,7] Visual Matching	An experimenter stood next to the target cone and walked away from the cone in a straight line

Source

Index

bland1995, 2

gilden2010, 3

marusich2016_exp2, 3

plot, 5
plot.rmc, 4, 9
print, 6, 7
print.rmc, 6
print.rmcmat, 6

raz2005, 7
rmcorr, 5–7, 7, 9
rmcorr-package, 2
rmcorr_mat, 7, 9

twedt_dist_measures, 10