Package ‘rmweather’

November 12, 2018

Type Package

Title Tools to Conduct Meteorological Normalisation on Air Quality Data

Version 0.1.3

Date 2018-11-08

Maintainer Stuart K. Grange <stuart.grange@york.ac.uk>

Description An integrated set of tools to allow data users to conduct meteorological normalisation on air quality data. This meteorological normalisation technique uses predictive random forest models to remove variation of pollutant concentrations so trends and interventions can be explored in a robust way. For examples, see Grange et al. (2018) <doi:10.5194/acp-18-6223-2018> and Grange and Carslaw (2019) <doi:10.1016/j.scitotenv.2018.10.344>.

URL https://github.com/skgrange/rmweather

BugReports https://github.com/skgrange/rmweather/issues

License GPL-3 | file LICENSE

ByteCompile true

Depends R (>= 3.2.0)

Imports dplyr, ggplot2, lubridate, magrittr, pdp, purrr, ranger, stringr, strucchange, tibble, viridis

Suggests testthat, openair

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Author Stuart K. Grange [cre, aut] (<https://orcid.org/0000-0003-4093-3596>)

Repository CRAN

Date/Publication 2018-11-12 10:00:14 UTC
data_london

Example observational data for the rmweather package.

Description

These example data are daily means of NO2 and NOx observations at London Marylebone Road. The accompanying surface meteorological data are from London Heathrow, a major airport located 23 km west of Central London.

Usage

```r
data_london
```

Format

Tibble with 7473 observations and 11 variables. The variables are: date, date_end, site, site_name, no2, nox, air_temp, atmospheric_pressure, rh, wd, and ws. The dates are in POSIXct format, the site variables are characters and all other variables are numeric.
Details

The NO2 and NOx observations are sourced from the European Commission Air Quality e-Reporting repository which can be freely shared with acknowledgement of the source. The meteorological data are sourced from the Integrated Surface Data (ISD) database which cannot be redistributed for commercial purposes and are bound to the WMO Resolution 40 Policy.

Author(s)

Stuart K. Grange

Examples

```r
# Load rmweather's example data and check
head(data_london)
```

data_london_normalised

These example data are derived from the observational data included in rmweather and represent meteorologically normalised NO2 concentrations at London Marylebone Road, aggregated to monthly resolution.

Usage

data_london_normalised

Format

Tibble with 246 observations and 5 variables. The variables are: date, date_end, site, site_name, and value_predict. The dates are in POSIXct format, the site variables are characters and value_predict is numeric.

Author(s)

Stuart K. Grange

See Also

data_london
Examples

Load rmweather's meteorologically normalised example data and check
head(data_london_normalised)

model_london

Example **ranger** random forest model for the **rmweather** package.

Description

This example object was created from the observational data included in **rmweather** and is a random forest model returned by **rmw_train_model**. This forest is only made from one tree to keep the file size small and is only used for the package’s examples.

Usage

model_london

Format

A ranger object, a named list with 14 elements.

Author(s)

Stuart K. Grange

See Also

data_london, rmw_train_model

Examples

Load rmweather's ranger model example data and see what elements it contains
names(model_london)

Print ranger object
print(model_london)
Function to “clip” the edges of a normalised time series after being produced with `rmw_normalise`.

Description

`rmw_clip` helps if the random forest model behaves strangely at the beginning and end of the time series during prediction.

Usage

```r
rmw_clip(df, seconds = 31536000/2)
```

Arguments

- `df`: Data frame from `rmw_normalise`.
- `seconds`: Number of seconds to clip from start and end of time-series. The default is half a year.

Value

Data frame.

Author(s)

Stuart K. Grange

See Also

`rmw_normalise, rmw_plot_normalised`

Examples

```r
# Clip the edges of a normalised time series, default is half a year
data_normalised_clipped <- rmw_clip(data_london_normalised)
```
Function to train a random forest model to predict (usually) pollutant concentrations using meteorological and time variables and then immediately normalise a variable for "average" meteorological conditions.

Description

rmw_do_all is a user-level function to conduct the meteorological normalisation process in one step.

Usage

rmw_do_all(df, variables, variables_sample = NA, n_trees = 300,
min_node_size = 5, mtry = NULL, keep_inbag = TRUE,
n_samples = 300, replace = TRUE, se = FALSE, aggregate = TRUE,
n_cores = NA, verbose = FALSE)

Arguments

df Input data frame after preparation with rmw_prepare_data. df has a number of constraints which will be checked for before modelling.
variables Independent/explanatory variables used to predict "value".
variables_sample Variables to use for the normalisation step. If not used, the default of all variables used for training the model with the exception of date_unix, the trend term (see rmw_normalise).
n_trees Number of trees to grow to make up the forest.
min_node_size Minimal node size.
mtry Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number variables.
keep_inbag Should in-bag data be kept in the ranger model object? This needs to be TRUE if standard errors are to be calculated when predicting with the model.
n_samples Number of times to sample df and then predict?
replace Should variables be sampled with replacement?
se Should the standard error of the predictions be calculated too? The standard error method is the "infinitesimal jackknife for bagging" and will slow down the predictions significantly.
aggregate Should all the n_samples predictions be aggregated?
n_cores Number of CPU cores to use for the model calculation. Default is system’s total minus one.
verbose Should the function give messages?
rmw_find_breakpoints

Value
Named list.

Author(s)
Stuart K. Grange

See Also
rmw_prepare_data, rmw_train_model, rmw_normalise

Examples

```r
# Keep things reproducible
set.seed(123)

# Prepare example data
data_london_prepared <- rmw_prepare_data(data_london, value = "no2")

# Use the example data to conduct the steps needed for meteorological
# normalisation
list_normalised <- rmw_do_all(
  df = data_london_prepared,
  variables = c("ws", "wd", "air_temp", "rh", "date_unix", "day_julian", "weekday", "hour"),
  n_trees = 300,
  n_samples = 300
)
```

rmw_find_breakpoints
Function to detect breakpoints in a data frame using a linear regression based approach.

Description

`rmw_find_breakpoints` will generally be applied to a data frame after `rmw_normalise`. `rmw_find_breakpoints` is rather slow.

Usage

```r
rmw_find_breakpoints(df, h = 0.15, n = NULL)
```
Arguments

- **df**
 - Tibble from `rmw_normalise` to detect breakpoints in.
- **h**
 - Minimal segment size either given as fraction relative to the sample size or as an integer giving the minimal number of observations in each segment.
- **n**
 - Number of breaks to detect. Default is maximum number allowed by h.

Value

Tibble with a date variable indicating where the breakpoints are.

Author(s)

Stuart K. Grange

Examples

```r
# Test for breakpoints in an example normalised time series
data_breakpoints <- rmw_find_breakpoints(data_london_normalised)
```

rmw_model_statistics

Functions to extract model statistics from a model calculated with `rmw_calculate_model`.

Description

Functions to extract model statistics from a model calculated with `rmw_calculate_model`.

Usage

```r
rmw_model_statistics(model)
```

```r
rmw_model_importance(model, date_unix = TRUE)
```

Arguments

- **model**
 - A ranger model object from `rmw_calculate_model`.
- **date_unix**
 - Should the `date_unix` variable be included in the return?

Details

The variable importances are defined as "the permutation importance differences of predictions errors". This measure is unit-less and the values are not useful when comparing among data sets.

Value

Tibble.
Author(s)
Stuart K. Grange

Examples

Extract statistics from the example random forest model
rmw_model_statistics(model_london)

Extract importances from a model object
rmw_model_importance(model_london)

rmw_normalise

Function to normalise a variable for "average" meteorological conditions.

Description

Function to normalise a variable for "average" meteorological conditions.

Usage

```
rmw_normalise(model, df, variables = NA, n_samples = 300, 
replace = TRUE, se = FALSE, aggregate = TRUE, n_cores = NA, 
verbose = FALSE)
```

Arguments

- `model`: A ranger model object from `rmw_train_model`.
- `df`: Input data used to calculate model using `rmw_prepare_data`.
- `variables`: Variables to randomly sample. Default is all variables used for training the model with the exception of date_unix, the trend term.
- `n_samples`: Number of times to sample df and then predict?
- `replace`: Should variables be sampled with replacement?
- `se`: Should the standard error of the predictions be calculated too? The standard error method is the "infinitesimal jackknife for bagging" and will slow down the predictions significantly.
- `aggregate`: Should all the n_samples predictions be aggregated?
- `n_cores`: Number of CPU cores to use for the model predictions. Default is system’s total minus one.
- `verbose`: Should the function give messages?

Value

Tibble.
rmw_partial_dependencies

Function to calculate partial dependencies after training with rmweather.

Description

rmw_plot_partial_dependencies is rather slow.

Usage

rmw_partial_dependencies(model, df, variable, n_cores = NA,
 verbose = FALSE)

Arguments

model A ranger model object from rmw_train_model.
df Input data frame after preparation with rmw_prepare_data.
variable Vector of variables to calculate partial dependencies for.
n_cores Number of CPU cores to use for the model calculation. Default is system’s total minus one.
verbose Should the function give messages?
Function to plot random forest variable importances after training by `rmw_train_model`.

Usage

```r
rmw_plot_importance(df, colour = "black")
```

Arguments

- `df`
 Data frame created by `rmw_model_importance`.
- `colour`
 Colour of point and segment geometries.
Value

ggplot2 plot with point and segment geometries.

Author(s)

Stuart K. Grange

See Also

rmw_train_model, rmw_model_importance

Description

If the input data contains a standard error variable named "se", this will be plotted as a ribbon (+ and -) around the mean.

Usage

rmw_plot_normalised(df, colour = "#6B186EFF")

Arguments

df Tibble created by rmw_normalise.

colour Colour for line geometry.

Value

ggplot2 plot with a line and ribbon geometries.

Author(s)

Stuart K. Grange

Examples

Plot normalised example data
rmw_plot_normalised(data_london_normalised)
rmw_plot_partial_dependencies

Function to plot partial dependencies after calculation by rmw_partial_dependencies.

Description

Function to plot partial dependencies after calculation by `rmw_partial_dependencies`.

Usage

```r
rmw_plot_partial_dependencies(df)
```

Arguments

- `df` Tibble created by `rmw_partial_dependencies`.

Value

`ggplot2` plot with a point geometry.

Author(s)

Stuart K. Grange

rmw_plot_test_prediction

Function to plot the test set and predicted set after rmw_predict_the_test_set.

Description

Function to plot the test set and predicted set after `rmw_predict_the_test_set`.

Usage

```r
rmw_plot_test_prediction(df, bins = 30)
```

Arguments

- `df` Tibble created by `rmw_predict_the_test_set`.
- `bins` Numeric vector giving number of bins in both vertical and horizontal directions.

Value

`ggplot2` plot with a hex geometry.
Author(s)

Stuart K. Grange

rmw_predict

Function to predict using a ranger random forest.

Description

Function to predict using a ranger random forest.

Usage

```
rmw_predict(model, df = NA, se = FALSE, n_cores = NULL,
             verbose = FALSE)
```

Arguments

- `model`: A ranger model object from rmw_train_model.
- `df`: Input data to be used for predictions.
- `se`: If `df` is supplied, should the standard error of the prediction be calculated too? The standard error method is the “infinitesimal jackknife for bagging” and will slow down the predictions significantly.
- `n_cores`: Number of CPU cores to use for the model predictions.
- `verbose`: Should the function give messages?

Value

Numeric vector or a named list containing two numeric vectors.

Author(s)

Stuart K. Grange

Examples

```r
# Make a prediction with the examples
vector_prediction <- rmw_predict(
    model_london,
    df = rmw_prepare_data(data_london, value = "no2")
)

# Make a prediction with standard errors too
list_prediction <- rmw_predict(
    model_london,
    df = rmw_prepare_data(data_london, value = "no2")
)
```
Description

`rmw_predict_the_test_set` uses data withheld from the training of the model and therefore can be used for investigating overfitting.

Usage

`rmw_predict_the_test_set(model, df)`

Arguments

- **model**: A ranger model object from `rmw_calculate_model`.
- **df**: Input data used to calculate model.

Value

Tibble.

Author(s)

Stuart K. Grange

Examples

```r
# Use the test set for prediction
rmw_predict_the_test_set(
  model_london,
  df = rmw_prepare_data(data_london, value = "no2")
)

# Predict, then produce a hex plot of the predictions
rmw_predict_the_test_set(
  model_london,
  df = rmw_prepare_data(data_london, value = "no2")
) %>%
  rmw_plot_test_prediction()
```
rmw_prepare_data
Function to prepare a data frame for modelling with rmweather.

Description

rmw_prepare_data will test and prepare a data frame for further use with rmweather.

Usage

```r
rmw_prepare_data(df, value = "value", na.rm = FALSE, replace = FALSE, fraction = 0.8)
```

Arguments

- `df`
 Input data frame. Generally a time series of air quality data with pollutant concentrations and meteorological variables.

- `value`
 Name of the dependent variable. Usually a pollutant, for example, "no2" or "pm10".

- `na.rm`
 Should missing values (NA) be removed from value?

- `replace`
 When adding the date variables to the set, should they replace the versions already contained in the data frame if they exist?

- `fraction`
 Fraction of the observations to make up the training set. Default is 0.8, 80%.

Details

rmw_prepare_data will check if a date variable is present and is of the correct data type, impute missing numeric and categorical values, randomly split the input into training and testing sets, and rename the dependent variable to "value". The date variable will also be used to calculate new variables such as date_unix, day_julian, weekday, and hour which can be used as independent variables. These attributes are needed for other rmweather functions to operate.

Use set.seed in an R session to keep results reproducible.

Value

Tibble, the input data transformed ready for modelling with rmweather.

Author(s)

Stuart K. Grange

See Also

set.seed, rmw_train_model, rmw_normalise
Examples

Keep things reproducible
set.seed(123)

Prepare example data for modelling
data_london_prepared <- rmw_prepare_data(data_london, value = "no2")

rmw_train_model

Function to train a random forest model to predict (usually) pollutant concentrations using meteorological and time variables.

Description

Function to train a random forest model to predict (usually) pollutant concentrations using meteorological and time variables.

Usage

rmw_train_model(df, variables, n_trees = 300, mtry = NULL, min_node_size = 5, keep_inbag = TRUE, n_cores = NA, verbose = FALSE)

Arguments

df Input tibble after preparation with rmw_prepare_data. df has a number of constraints which will be checked for before modelling.
variables Independent/explanatory variables used to predict "value".
n_trees Number of trees to grow to make up the forest.
mtry Number of variables to possibly split at in each node. Default is the (rounded down) square root of the number of variables.
min_node_size Minimal node size.
keep_inbag Should in-bag data be kept in the ranger model object? This needs to be TRUE if standard errors are to be calculated when predicting with the model.
n_cores Number of CPU cores to use for the model calculation. Default is system’s total minus one.
verbose Should the function give messages?

Value

A ranger model object, a named list.

Author(s)

Stuart K. Grange
system_cpu_core_count

Function to return the system’s number of CPU cores.

Description
Function to return the system’s number of CPU cores.

Usage
system_cpu_core_count(logical_cores = TRUE)

Arguments
logical_cores Should logical cores be included in the core count?

Author(s)
Stuart K. Grange

See Also
rmw_prepare_data, rmw_normalise

Examples

Keep things reproducible
set.seed(123)

Prepare example data
data_london_prepared <- rmw_prepare_data(data_london, value = "no2")

Calculate a model using common meteorological and time variables
model <- rmw_train_model(
 data_london_prepared,
 variables = c(
 "ws", "wd", "air_temp", "rh", "date_unix", "day_julian", "weekday", "hour"
),
 n_trees = 300
)
Function to get weekday number from a date where 1 is Monday and 7 is Sunday.

Usage

```r
wday_monday(x, as.factor = FALSE)
```

Arguments

- `x`: Date vector.
- `as.factor`: Should the return be a factor?

Value

Numeric vector.

Author(s)

Stuart K. Grange

Pseudo-function to re-export `magrittr`'s pipe.

Description

Pseudo-function to re-export `magrittr`'s pipe.
Index

*Topic **datasets**
 data_london, 2
 data_london_normalised, 3
 model_london, 4
%&%, 19

data_london, 2, 3, 4
data_london_normalised, 3

model_london, 4

rmw_clip, 5
rmw_do_all, 6
rmw_find_breakpoints, 7
rmw_model_importance, 11, 12
rmw_model_importance
 (rmw_model_statistics), 8
rmw_model_statistics, 8
rmw_normalise, 5–8, 9, 12, 16, 18
rmw_partial_dependencies, 10, 13
rmw_plot_importance, 11
rmw_plot_normalised, 5, 12
rmw_plot_partial_dependencies, 13
rmw_plot_test_prediction, 13
rmw_predict, 14
rmw_predict_the_test_set, 13, 15
rmw_prepare_data, 6, 7, 9, 10, 16, 17, 18
rmw_train_model, 4, 7, 9–12, 16, 17

set.seed, 16
system_cpu_core_count, 18

wday_monday, 19