Package ‘rnetcarto’

October 14, 2022

Type Package

Title Fast Network Modularity and Roles Computation by Simulated Annealing (Rgraph C Library Wrapper for R)

Version 0.2.5

Description Provides functions to compute the modularity and modularity-related roles in networks. It is a wrapper around the rgraph library (Guimera & Amaral, 2005, <doi:10.1038/nature03288>).

License GPL (>= 2)

Encoding UTF-8

LazyLoad no

SystemRequirements GNU GSL

NeedsCompilation yes

Suggests testthat, knitr, rmarkdown, igraph

VignetteBuilder knitr

RoxygenNote 7.1.2

Author Daniel B. Stouffer [cre, aut, ths] (Maintainer), Guilhem Doulcier [aut] (R bindings, current implementation of the simulated annealing algorithm), Roger Guimera [ctb] (Author of the original rgraph library)

Maintainer Daniel B. Stouffer <daniel.stouffer@canterbury.ac.nz>

Repository CRAN

Date/Publication 2022-05-11 09:30:02 UTC

R topics documented:

 rnetcarto .. 2

Index 3
rnetcarto

Computes modularity and modularity roles from a network.

Description

Compute modularity and modularity roles for graphs using simulated annealing

Usage

```r
netcarto(
  web,
  seed = as.integer(floor(runif(1, 1, 10000001))),
  iterfac = 1,
  coolingfac = 0.995,
  bipartite = FALSE
)
```

Arguments

- `web`: network either as a square adjacency matrix or a list describing E interactions a->b: the first (resp. second) element is the vector of the labels of a (resp. b), the third (optional) is the vector of interaction weights.
- `seed`: Seed for the random number generator: Must be a positive integer.
- `iterfac`: At each temperature of the simulated annealing (SA), the program performs fN^2 individual-node updates (involving the movement of a single node from one module to another) and fN collective updates (involving the merging of two modules and the split of a module). The number "f" is the iteration factor.
- `coolingfac`: Temperature cooling factor.
- `bipartite`: If True use the bipartite definition of modularity.

Value

A list. The first element is a dataframe with the name, module, z-score, and participation coefficient for each row of the input matrix. The second element is the modularity of this partition.

Examples

```r
# Generate a simple random network
a = matrix(as.integer(runif(100)<.3), ncol=10)
a[lower.tri(a)] = 0
# Find an optimal partition for modularity using netcarto.
netcarto(a)
```
Index

netcarto (rnetcarto), 2
rnetcarto, 2