Package ‘rnetcarto’

August 29, 2016

Type Package
Title Fast Network Modularity and Roles Computation by Simulated Annealing (Rgraph C Library Wrapper for R)
Version 0.2.4
Date 2015-11-11
Maintainer Guilhem Doulcier <guilhem.doulcier@ens.fr>
Description It provides functions to compute the modularity and modularity-related roles in networks. It is a wrapper around the rgraph library (Guimera & Amaral, 2005, doi:10.1038/nature03288).
License GPL (>= 2)
LazyLoad no
SystemRequirements GNU GSL
NeedsCompilation yes
Suggests testthat, knitr, rmarkdown, igraph
VignetteBuilder knitr
Author Guilhem Doulcier [aut, cre] (R bindings, current implementation of the simulated annealing algorithm), Roger Guimera [ctb] (Author of the original rgraph library), Daniel B. Stouffer [aut, ths]
Repository CRAN
Date/Publication 2015-11-12 12:58:34

R topics documented:

rnetcarto .. 2

Index 3
rnetcarto
Computes modularity and modularity roles from a network.

Description

Compute modularity and modularity roles for graphs using simulated annealing

Usage

netcarto(web, seed = as.integer(floor(runif(1, 1, 100000001))), iterfac = 1, coolingfac = 0.995, bipartite = FALSE)

Arguments

- **web**: network either as a square adjacency matrix or a list describing E interactions
 a->b: the first (resp. second) element is the vector of the labels of a (resp. b),
 the third (optional) is the vector of interaction weights.
- **seed**: Seed for the random number generator: Must be a positive integer.
- **iterfac**: At each temperature of the simulated annealing (SA), the program performs
 fN^2 individual-node updates (involving the movement of a single node from
 one module to another) and fN collective updates (involving the merging of two
 modules and the split of a module). The number "f" is the iteration factor.
- **coolingfac**: Temperature cooling factor.
- **bipartite**: If True use the bipartite definition of modularity.

Value

A list. The first element is a dataframe with the name, module, z-score, and participation coefficient
for each row of the input matrix. The second element is the modularity of this partition.

Examples

```r
# Generate a simple random network
a = matrix(as.integer(runif(100)<.3), ncol=10)
a[lower.tri(a)] = 0
# Find an optimal partition for modularity using netcarto.
netcarto(a)
```
Index

netcarto (rnetcarto), 2

rnetcarto, 2

rnetcarto-package (rnetcarto), 2