Package ‘rnrfa’

February 15, 2024

Title UK National River Flow Archive Data from R
Version 2.1.0.5
URL https://ilapros.github.io/rnrfa/
BugReports https://github.com/ilapros/rnrfa/issues

Depends R (>= 3.5)
Imports curl, jsonlite, lubridate, graphics, stats, httr, zoo, ggmap
 (>= 4.0.0), ggplot2, sf, parallel, tibble
Suggests testthat, knitr, covr, lintr, rmarkdown, DT, leaflet,
 devtools, dygraphs, V8
Encoding UTF-8
License GPL-3
Repository CRAN
RoxygenNote 7.2.3
VignetteBuilder knitr
NeedsCompilation no
Author Ilaria Prosdocimi [ctb, cre] (<https://orcid.org/0000-0001-8565-094X>), Claudia Vitolo [aut] (<https://orcid.org/0000-0002-4252-1176>), Claudia is the original creator of the package), Matthew Fry [ctb] (Matthew supervised the unofficial API integration.), Wouter Buytaert [ctb] (This package is part of Claudia Vitolo’s PhD work and Wouter is the supervisor.), Michael Spencer [ctb] (Michael updated the function osg_parse to work with grid references of different lengths),
Tobias Gauster [ctb] (Tobias improved the function osg_parse introducing vectorisation)

Maintainer Ilaria Prosdocimi <prosdocimi.ilaria@gmail.com>

Date/Publication 2024-02-15 01:20:02 UTC

R topics documented:

- rnrfa-package ... 2
- catalogue .. 2
- cmr .. 4
- convert_flow ... 5
- gdf ... 5
- get_ts .. 6
- osg_parse .. 8
- plot_rain_flow .. 9
- plot_trend .. 9
- seasonal_averages ... 10
- station_ids ... 11

Index 12

rnrfa-package UK National River Flow Archive data from R

Description

rnrfa: UK National River Flow Archive Data from R.

Details

Utility functions to retrieve data from the UK National River Flow Archive (http://nrfa.ceh.ac.uk/). The package contains R wrappers to the UK NRFA data temporary-API. There are functions to retrieve stations falling in a bounding box, to generate a map and extracting time series and general information.

catalogue List of stations from UK NRFA

Description

This function pulls the list of stations (and related metadata), falling within a given bounding box, from the CEH National River Flow Archive website.
Usage

catalogue(
 bbox = NULL,
 column_name = NULL,
 column_value = NULL,
 min_rec = NULL,
 all = TRUE
)

Arguments

bbox this is a geographical bounding box (e.g. list(lon_min = -3.82, lon_max = -3.63, lat_min = 52.43, lat_max = 52.52))
column_name name of column to filter
column_value string to search in column_name
min_rec minimum number of recording years
all if TRUE it returns all the available metadata. If FALSE, it returns only the following columns: id, name, river, hydrometricArea, catchmentArea, lat, lon, selected feh catchment descriptors.

Details

coordinates of bounding box are required in WGS84 (EPSG: 4326). If BB coordinates are missing, the function returns the list corresponding to the maximum extent of the network.

Value

tibble table containing the list of stations and related metadata

Author(s)

Claudia Vitolo

Examples

Not run:
Retrieve all the stations in the network
x <- catalogue()

Define a bounding box:
bbox <- list(lon_min=-3.82, lon_max=-3.63, lat_min=52.43, lat_max=52.52)
Get stations within the bounding box
x <- catalogue(bbox)

Get stations based on minimum catchment area
x <- catalogue(column_name = "catchment-area", column_value = 2000)

Get stations based on minimum number of recording years
x <- catalogue(min_rec=30)
This function retrieves Catchment Mean Rainfall (cmr).

Description

Given the station ID number(s), this function retrieves data (time series in zoo format with accompanying metadata) from the WaterML2 service on the NRFA database. Catchment Mean Rainfall is measured in mm/month.

Usage

cmr(id, metadata = FALSE, cl = NULL, verbose = FALSE)

Arguments

- **id**: station ID number(s), each number should be in the range [3002, 236051].
- **metadata**: Logical, FALSE by default. If metadata = TRUE means that the result for a single station is a list with two elements: data (the time series) and meta (metadata).
- **cl**: (optional) This is a cluster object, created by the parallel package. This is set to NULL by default, which sends sequential calls to the server.
- **verbose**: (FALSE by default). If set to TRUE prints GET request on the console.

Value

list composed of as many objects as in the list of station ID numbers. Each object can be accessed using their names or index (e.g. x[[1]], x[[2]], and so forth). Each object contains a zoo time series.

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
cmr(18019)
cmr(c(54022, 54090, 54091))
## End(Not run)
```
convert_flow

Convert flow from cumecs to mm/d

Description

This function converts flow time series from cumecs (m3/s) to mm/d by dividing the flow by the catchment area and converting it to mm/day.

Usage

```r
convert_flow(flow_cumecs, catchment_area)
```

Arguments

- `flow_cumecs` This is the flow time series in cumecs (m3/s)
- `catchment_area` This is the catchment area in Km2.

Value

Flow time series in mm/d

Examples

```r
## Not run:
convert_flow(30, 2)
## End(Not run)
```

gdf

This function retrieves Gauged Daily Flow (gdf).

Description

Given the station ID number(s), this function retrieves data (time series in zoo format with accompanying metadata) from the WaterML2 service on the NRFA database. Gauged Daily Flow is measured in m³/s.

Usage

```r
gdf(id, metadata = FALSE, cl = NULL)
```
get_ts

Arguments

id station ID number(s), each number should be in the range [3002,236051].
metadata Logical, FALSE by default. If metadata = TRUE means that the result for a
single station is a list with two elements: data (the time series) and meta (meta-
data).
cl (optional) This is a cluster object, created by the parallel package. This is set to
NULL by default, which sends sequential calls to the server.

Value

list composed of as many objects as in the list of station ID numbers. Each object can be accessed
using their names or index (e.g. x[[1]], x[[2]], and so forth). Each object contains a zoo time series.

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
gdf(18019)
gdf(c(54022,54090,54091))
## End(Not run)
```

get_ts This function retrieves time series data.

Description

Given the station identification number(s), this function retrieves data (time series in zoo format
with accompanying metadata) from the WaterML2 service on the NRFA database. The time series
can be of two types: cmr (catchment mean rainfall, monthly) or gdf (gauged daily flows, daily).

Usage

get_ts(id, type, metadata = FALSE, cl = NULL, full_info = FALSE)

Arguments

id station identification number(s), each number should be in the range [3002,236051].
type The following data-types are available:
 • gdf = Gauged daily flows
 • gmf = Gauged monthly flows
 • ndf = Naturalised daily flows
get_ts

- nmf = Naturalised monthly flows
- cdr = Catchment daily rainfall
- cdr-d = Catchment daily rainfall distance to rain gauge
- crm = Catchment monthly rainfall
- pot-stage = Peaks over threshold stage
- pot-flow = Peaks over threshold flow
- gauging-stage = Gauging stage
- gauging-flow = Gauging flow
- amax-stage = Annual maxima stage
- amax-flow = Annual maxima flow

metadata Logical, FALSE by default. When metadata = TRUE the result for a single station is a list with two elements: data (the time series) and meta (metadata).

c1 (optional) This is a cluster object, created by the parallel package. This is set to NULL by default, which sends sequential calls to the server.

full_info Logical, FALSE by default. If full_info = TRUE, the function will retrieve information on rejected periods.

Value

list composed of as many objects as in the list of station identification numbers. Each object can be accessed using their names or indexes (e.g. x[1], x[2], and so forth). Each object contains a time series of class zoo/xts.

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
get_ts(18019, type = "cmr")
get_ts(c(54022,54090,54091), type = "cmr")
get_ts(18019, type = "gdf")
get_ts(c(54022,54090,54091), type = "gdf")
plot(get_ts(id = 23001, type = "ndf"))
plot(get_ts(id = 23001, type = "nmf"))

## End(Not run)
```
Description

This function converts an Ordnance Survey (OS) grid reference to easting/northing or latitude/longitude coordinates.

Usage

```r
osg_parse(grid_refs, coord_system = c("BNG", "WGS84"))
```

Arguments

- `grid_refs`: This is a string (or a character vector) that contains the OS grid Reference.
- `coord_system`: By default, this is "BNG" which stands for British National Grids. The other option is to set `coord_system = "WGS84"`, which returns latitude/longitude coordinates (more info can be found here https://www.epsg-registry.org/).

Value

vector made of two elements: the easting and northing (by default) or latitude and longitude coordinates.

Author(s)

Claudia Vitolo (Ilaria Prosdocimi ported to sf)

Examples

```r
## Not run:
# single entry
osg_parse(grid_refs = "TQ722213")

# multiple entries
osg_parse(grid_refs = c("SN831869","SN829838"))

# multiple entries with missing values, NA will be returned
osg_parse(grid_refs = c("SN831869",NA,"SN829838", NA))

## End(Not run)
```
plot_rain_flow
Plot rainfall and flow for a given station

Description

This function retrieves rainfall and flow time series for a given catchment, divides the flow by the catchment area and converts it to mm/day to that it can be comparable with the rainfall (mm/month). Finally it generates a plots combining rainfall and flow information.

Usage

```r
plot_rain_flow(id = NULL, rain = NULL, flow = NULL, area = NULL, title = "")
```

Arguments

- **id**: Station identification number
- **rain**: Rainfall time series, measured in mm/month
- **flow**: Flow time series, measured in m3/s
- **area**: Catchment area in Km2
- **title**: (optional) Plot title

Value

Plot rainfall and flow for a given station

Examples

```r
## Not run:
plot_rain_flow(id = 54090)
## End(Not run)
```

plot_trend
Plot trend

Description

This function plots a previously calculated trend.

Usage

```r
plot_trend(df, column_name, maptype = "stamen_toner_lite", showmap = TRUE)
```
seasonal_averages

Arguments

- **df**: Data frame containing at least 4 columns: lat (latitude), lon (longitude), slope, and an additional user-defined column `column_name`.
- **column_name**: Name of the column to use for grouping the results.
- **maptype**: Map type, was needed to choose the stamenmap type, now useless since stamenmap are no longer reachable.
- **showmap**: Set to FALSE to avoid plotting the map when running the function.

Details

The function relies on the `ggmap` package for the map, and this package has in time gone through many changes due to changes in API of map providers. Currently to be able to create the map one needs to register to the stadiamaps service. More information at `?ggmap::register_stadiamaps()`.

Value

Two plots, the first showing the distribution of the trend over a map, based on the slope of the linear model that describes the trend. The second plot shows a boxplot of the slope grouped based on the column `column_name` and slope can be user-defined (notice that in the plot the very extreme slope values are not displayed to avoid skewed visualisations).

Examples

```r
## Not run:
# some fake data around London
df <- data.frame(lat = 51.5+runif(40,-0.3,0.3),
                 lon = 0+runif(40, -0.3,0.3),
                 slope = rnorm(40, c(rep(-0.4,20),rep(0.4,20))),
                 g = factor(c(rep("a",20), rep("b",20))))
theplots <- plot_trend(df, "g", maptype = "terrain-background")
theplots$A # map
theplots$B + labs(subtitle = "Use ggplot usual commands to modify the plots") # boxplots

## End(Not run)
```

seasonal_averages

Calculate seasonal averages

Description

This calculates the seasonal averages from a time series.

Usage

```
seasonal_averages(timeseries, season = "Spring")
```
Arguments

timeseries Time series (zoo class).
season Name of the season, which corresponds to a quarter: Winter (Q1), Spring (Q2), Summer (Q3), Autumn (Q4)

Value

A vector containing the seasonal average and significance level (p-value) for each time series.

Examples

```r
## Not run:
seasonal_averages(timeseries = cmr(18019), season = "Spring")
seasonal_averages(list(cmr(18019), cmr(18019)), season = "Spring")

## End(Not run)
```

`station_ids`

List of stations identification numbers from UK NRFA

Description

This function pulls the list of station identification numbers.

Usage

```r
station_ids()
```

Value

vector integer identification numbers (one for each station)

Author(s)

Claudia Vitolo

Examples

```r
## Not run:
# Retrieve all the stations ids
x <- station_ids()

## End(Not run)
```
Index

catalogue, 2

convert_flow, 5

gdf, 5

get_ts, 6

osg_parse, 8

plot_rain_flow, 9

plot_trend, 9

rnrfa-package, 2

seasonal_averages, 10

station_ids, 11