Package ‘robCompositions’

August 25, 2023

Type Package

Title Compositional Data Analysis

Version 2.4.1

Date 2023-08-21

Depends R (>= 3.5.0), ggplot2, pls, data.table

LinkingTo Rcpp, RcppEigen

Imports cvTools, e1071, fda, rrcov, cluster, dplyr, magrittr, fpc, GGally, ggfortify, kernlab, MASS, mclust, tidyR, robustbase, robustHD, splines, VIM, zCompositions, reshape2, Rcpp

Suggests knitr, testthat

VignetteBuilder knitr

Maintainer Matthias Templ <matthias.templ@gmail.com>

License GPL (>= 2)
LazyLoad yes
LazyData true
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation yes

Author Matthias Templ [aut, cre] (<https://orcid.org/0000-0002-8638-5276>),
 Karel Hron [aut] (<https://orcid.org/0000-0002-1847-6598>),
 Peter Filzmoser [aut] (<https://orcid.org/0000-0002-8014-4682>),
 Kamila Facevicova [ctb],
 Petra Kynclova [ctb],
 Jan Walach [ctb],
 Veronika Pintar [ctb],
 Jiajia Chen [ctb],
 Dominika Miksova [ctb],
 Bernhard Meindl [ctb],
 Alessandra Menafoglio [ctb] (<https://orcid.org/0000-0003-0682-6412>),
 Alessia Di Blasi [ctb],
 Federico Pavone [ctb],
 Nikola Stefelova [ctb],
 Gianluca Zeni [ctb],
 Roman Wiederkehr [ctb]

Repository CRAN
Date/Publication 2023-08-25 15:30:06 UTC

R topics documented:

- robCompositions-package ... 5
- addLR ... 7
- addL.Rinv ... 8
- aDist ... 10
- adjust ... 11
- adtest ... 13
- adtestWrapper ... 14
- ageCatWorld ... 16
- alcohol ... 17
- alcoholreg .. 18
- arcticLake .. 18
- balances .. 19
- biomarker ... 21
- biplot.factanal .. 23
- biplot.pcaCoDa .. 24
- bootnComp .. 25
- bpc ... 26
- bpcPca ... 27
- bpcPcaTab .. 29
- bpcReg ... 32
R topics documented:

bpRegTab ... 34
bpTab ... 37
bpTabWrapper ... 39
cancer ... 41
cancerMN .. 42
ced ... 43
cenLR ... 44
cenLRinv ... 45
chorizonDL ... 46
clustCoDa .. 48
clustCoDa_qmode ... 51
coffee ... 52
compareMahal ... 53
compositionalSpline .. 54
constSum ... 57
coord ... 58
corCoDa .. 59
cubeCoord .. 60
daCoDa .. 64
daFisher .. 65
economy ... 68
educFM ... 69
efsa ... 70
election ... 71
electionATbp ... 72
employment .. 73
employment2 ... 73
employment_df .. 74
expenditures .. 75
expendituresEU ... 76
fcenLR ... 77
fcenLRinv .. 78
fcenLRp .. 79
fcenLRu .. 80
foodbalance ... 82
GDPsatis .. 82
gemas ... 83
gjovik ... 85
gm ... 88
gmean_sum ... 88
govexp ... 89
haplogroups .. 90
honey ... 91
ilr.2x2 ... 92
impAll ... 93
impCoda ... 94
impKNNa ... 96
impRZalr ... 98
R topics documented:

impRZlr ... 100
imputeBDLs .. 102
imputeUDLs ... 105
ind2x2 ... 107
indTab ... 108
instw ... 109
int2x2 ... 110
intArray ... 111
intTab ... 112
is.equivalent .. 113
isic32 ... 114
laborForce .. 114
landcover ... 115
lifeExpGdp .. 116
lmCoDaX ... 117
machineOperators .. 118
manu_abs ... 119
mcad ... 121
missPatterns .. 121
mortality .. 123
mortality_tab .. 124
norm1 ... 124
nutrients .. 125
nutrients_branded ... 127
orthbasis .. 128
outCoDa ... 129
payments .. 131
pcaCoDa ... 132
perturbation .. 134
pfa ... 135
phd ... 137
phd_totals .. 138
pivotCoord .. 139
plot.imp .. 141
plot.pcaCoDa ... 143
plot.smoothSpl .. 144
precipitation ... 145
print.imp ... 146
production ... 147
pTab ... 148
rcodes ... 149
rdcm ... 149
rSDev ... 150
rSDev.test ... 151
saffron .. 152
SDev ... 154
skyeLavas .. 155
smoothSplines ... 156
Description

The package contains methods for imputation of compositional data including robust methods, (robust) outlier detection for compositional data, (robust) principal component analysis for compositional data, (robust) factor analysis for compositional data, (robust) discriminant analysis (Fisher rule) and (robust) Anderson-Darling normality tests for compositional data as well as popular log-ratio transformations (alr, clr, ilr, and their inverse transformations).

Author(s)

Matthias Templ, Peter Filzmoser, Karel Hron,
Maintainer: Matthias Templ <templ@tuwien.ac.at>

References

Examples

```r
## k nearest neighbor imputation
data(expenditures)
expenditures[1,3] <- NA
impKNNa(expenditures)$xImp[1,3]

## iterative model based imputation
data(expenditures)
x <- expenditures
x[1,3] <- NA
xi <- impCoda(x)$xImp
xi[1,3]
s1 <- sum(x[1,-3])
impS <- sum(xi[1,-3])
xi[,3] * s1/impS
xi <- impKNNa(expenditures)
summary(xi)

## Not run: plot(xi, which=1)
plot(xi, which=2)
plot(xi, which=3)

## pca
data(expenditures)
p1 <- pcaCoDa(expenditures)
p1
plot(p1)

## outlier detection
data(expenditures)
oD <- outCoDa(expenditures)
oD
plot(oD)

## transformations
data(arcticLake)
x <- arcticLake
x.alr <- addLR(x, 2)
y <- addLRinv(x.alr)
```
addLRinv(addLR(x, 3))
data(expenditures)
x <- expenditures
y <- addLRinv(addLR(x, 5))
head(x)
head(y)
addLRinv(x.alr, ivar=2, useClassInfo=FALSE)

data(expenditures)
eclr <- cenLR(expenditures)
inveclr <- cenLRinv(eclr)
head(expenditures)
head(inveclr)
head(cenLRinv(eclr$x.clr))

require(MASS)
Sigma <- matrix(c(5.05,4.95,4.95,5.05), ncol=2, byrow=TRUE)
z <- pivotCoordInv(mvrnorm(100, mu=c(0,2), Sigma=Sigma))

addLR
Additive logratio coordinates

Description

The additive logratio coordinates map D-part compositional data from the simplex into a (D-1)-dimensional real space.

Usage

\[
\text{addLR}(x, \text{ivar} = \text{ncol}(x), \text{base} = \exp(1))
\]

Arguments

- `x`
 D-part compositional data
- `ivar`
 Rationing part
- `base`
 a positive or complex number: the base with respect to which logarithms are computed. Defaults to `exp(1)`.

Details

The compositional parts are divided by the rationing part before the logarithm is taken.

Value

A list of class “alr” which includes the following content:

- `x.alr`
 the resulting coordinates
varx the rationing variable

ivar the index of the rationing variable, indicating the column number of the rationing variable in the data matrix x

cnames the column names of x

The additional information such as cnames or ivar is useful when an inverse mapping is applied on the ‘same’ data set.

Author(s)

Matthias Templ

References

See Also

addLRinv, pivotCoord

Examples

data(arcticLake)
x <- arcticLake
x.alr <- addLR(x, 2)
y <- addLRinv(x.alr)
This exactly fulfills:
addLRinv(addLR(x, 3))
data(expenditures)
x <- expenditures
y <- addLRinv(addLR(x, 5))
head(x)
head(y)
--> absolute values are preserved as well.

preserve only the ratios:
addLRinv(x.alr, ivar=2, useClassInfo=FALSE)

addLRinv Inverse additive logratio mapping

Description

Inverse additive logratio mapping, often called additive logistic transformation.
Usage

```r
addLRinv(x, cnames = NULL, ivar = NULL, useClassInfo = TRUE)
```

Arguments

- `x`:
 - data set, object of class “alr”, “matrix” or “data.frame”

- `cnames`:
 - column names. If the object is of class “alr” the column names are chosen from therein.

- `ivar`:
 - index of the rationing part. If the object is of class “alr” the column names are chosen from therein. If not and `ivar` is not provided by the user, it is assumed that the rationing part was the last column of the data in the simplex.

- `useClassInfo`:
 - if FALSE, the class information of object `x` is not used.

Details

The function allows also to preserve absolute values when class info is provided. Otherwise only the relative information is preserved.

Value

the resulting compositional data matrix

Author(s)

Matthias Templ

References

See Also

`pivotCoordInv`, `cenLRinv`, `cenLR`, `addLR`

Examples

```r
data(arcticLake)
x <- arcticLake
x.alr <- addLR(x, 2)
y <- addLRinv(x.alr)
## This exactly fulfills:
addLRinv(addLR(x, 3))

data(expenditures)
x <- expenditures
y <- addLRinv(addLR(x, 5, 2))
head(x)
head(y)
## --> absolute values are preserved as well.
```
preserve only the ratios:
addLRinv(x.alr, ivar=2, useClassInfo=FALSE)

aDist

Aitchison distance

Description

Computes the Aitchison distance between two observations, between two data sets or within observations of one data set.

Usage

```r
aDist(x, y = NULL)

iprod(x, y)
```

Arguments

- `x`: a vector, matrix or data.frame
- `y`: a vector, matrix or data.frame with equal dimension as `x` or NULL.

Details

This distance measure accounts for the relative scale property of compositional data. It measures the distance between two compositions if `x` and `y` are vectors. It evaluates the sum of the distances between `x` and `y` for each row of `x` and `y` if `x` and `y` are matrices or data frames. It computes a \(n \times n \) distance matrix (with \(n \) the number of observations/compositions) if only `x` is provided.

The underlying code is partly written in C and allows a fast computation also for large data sets whenever `y` is supplied.

Value

The Aitchison distance between two compositions or between two data sets, or a distance matrix in case `codey` is not supplied.

Author(s)

Matthias Templ, Bernhard Meindl
References

See Also

pivotCoord

Examples

data(expenditures)
x <- xOrig <- expenditures
Aitchison distance between two 2 observations:
aDist(x[1,], x[2,])

Aitchison distance of x:
aDist(x)

Example of distances between matrices:
set some missing values:

impute the missing values:
xImp <- impCoda(x, method="ltsReg")$xImp

calculate the relative Aitchison distance between xOrig and xImp:
aDist(xOrig, xImp)

data("expenditures")
aDist(expenditures)
x <- expenditures[, 1]
y <- expenditures[, 2]
aDist(x, y)
aDist(expenditures, expenditures)

adjust

Adjusting for original scale

Description

Results from the model based iterative methods provides the results in another scale (but the ratios are still the same). This function rescale the output to the original scale.
Usage

`adjust(x)`

Arguments

x object from class ‘imp’

Details

It is self-explaining if you try the examples.

Value

The object of class ‘imp’ but with the adjusted imputed data.

Author(s)

Matthias Templ

References

See Also

`impCoda`

Examples

data(expenditures)
x <- expenditures
xi <- impCoda(x)
x
xi$xImp
adjust(xi)$xImp
Description

This function provides three kinds of Anderson-Darling Normality Tests (Anderson and Darling, 1952).

Usage

adtest(x, R = 1000, locscatt = "standard")

Arguments

x either a numeric vector, or a data.frame, or a matrix
R Number of Monte Carlo simulations to obtain p-values
locscatt standard for classical estimates of mean and (co)variance. robust for robust
estimates using ‘covMcd()’ from package robustbase

Details

Three version of the test are implemented (univariate, angle and radius test) and it depends on the
data which test is chosen.

If the data is univariate the univariate Anderson-Darling test for normality is applied.

If the data is bivariate the angle Anderson-Darling test for normality is performed out.

If the data is multivariate the radius Anderson-Darling test for normality is used.

If ‘locscatt’ is equal to “robust” then within the procedure, robust estimates of mean and covariance
are provided using ‘covMcd()’ from package robustbase.

To provide estimates for the corresponding p-values, i.e. to compute the probability of obtaining
a result at least as extreme as the one that was actually observed under the null hypothesis, we
use Monte Carlo techniques where we check how often the statistic of the underlying data is more
extreme than statistics obtained from simulated normal distributed data with the same (column-
wise-) mean(s) and (co)variance.

Value

statistic The result of the corresponding test statistic
method The chosen method (univariate, angle or radius)
p.value p-value

Note

These functions are use by adtestWrapper.
adtestWrapper

Author(s)
Karel Hron, Matthias Templ

References

See Also
adtestWrapper

Examples

```r
adtest(rnorm(100))
data(machineOperators)
x <- machineOperators
adtest(pivotCoord(x[,1:2]))
adtest(pivotCoord(x[,1:3]))
adtest(pivotCoord(x))
adtest(pivotCoord(x[,1:2]), locscatt="robust")
```

adtestWrapper Wrapper for Anderson-Darling tests

Description
A set of Anderson-Darling tests (Anderson and Darling, 1952) are applied as proposed by Aitchison (Aitchison, 1986).

Usage

```r
adtestWrapper(x, alpha = 0.05, R = 1000, robustEst = FALSE)
```

S3 method for class 'adtestWrapper'
print(x, ...)

S3 method for class 'adtestWrapper'
summary(object, ...)

Arguments

- **x** compositional data of class data.frame or matrix
- **alpha** significance level
- **R** Number of Monte Carlo simulations in order to provide p-values.
robustEst logical
... additional parameters for print and summary passed through
object an object of class adtestWrapper for the summary method

Details
First, the data is transformed using the ‘ilr’-transformation. After applying this transformation
- all (D-1)-dimensional marginal, univariate distributions are tested using the univariate Anderson-
Darling test for normality.
- all 0.5 (D-1)(D-2)-dimensional bivariate angle distributions are tested using the Anderson-Darling
angle test for normality.
- the (D-1)-dimensional radius distribution is tested using the Anderson-Darling radius test for nor-
mality.
A print and a summary method are implemented. The latter one provides a similar output is pro-
posed by (Pawlowsky-Glahn, et al. (2008). In addition to that, p-values are provided.

Value
res a list including each test result
check information about the rejection of the null hypothesis
alpha the underlying significance level
info further information which is used by the print and summary method.
est “standard” for standard estimation and “robust” for robust estimation

Author(s)
Matthias Templ and Karel Hron

References
Aitchison, J. (1986) The Statistical Analysis of Compositional Data Monographs on Statistics and

See Also
adtest, pivotCoord

Examples
data(machineOperators)
a <- adtestWrapper(machineOperators, R=50) # choose higher value of R
a
summary(a)
Description

Percentages of children, middle generation and elderly population in 195 countries.

Usage

data(ageCatWorld)

Format

A data frame with 195 rows and 4 variables

Details

- <15 Percentage of people with age below 15
- 15-60 Percentage of people with age between 15 and 60
- 60+ Percentage of people with age above 60
- country country of origin

The rows sum up to 100.

Author(s)

extracted by Karel Hron and Eva Fiserova, implemented by Matthias Templ

References

Examples

data(ageCatWorld)
str(ageCatWorld)
summary(ageCatWorld)
rowSums(ageCatWorld[, 1:3])
ternaryDiag(ageCatWorld[, 1:3])
plot(pivotCoord(ageCatWorld[, 1:3]))
alcohol

alcohol consumptions by country and type of alcohol

Description

- country Country
- year Year
- beer Consumption of pure alcohol on beer (in percentages)
- wine Consumption of pure alcohol on wine (in percentages)
- spirits Consumption of pure alcohol on spirits (in percentages)
- other Consumption of pure alcohol on other beverages (in percentages)

Usage

data(alcohol)

Format

A data frame with 193 rows and 6 variables

Author(s)

Matthias Templ <matthias.templ@tuwien.ac.at>

Source

Transferred from the World Health Organisation website.

Examples

data("alcohol")
str(alcohol)
summary(alcohol)
alcoholreg

Regional alcohol per capita (15+) consumption by WHO region

Description
- country Country
- year Year
- recorded Recorded alcohol consumption
- unrecorded Unrecorded alcohol consumption

Usage
```
data(alcoholreg)
```

Format
A data frame with 6 rows and 4 variables

Author(s)
Matthias Templ <matthias.templ@tuwien.ac.at>

Source
Transferred from the World Health Organisation website.

Examples
```
data("alcoholreg")
alcoholreg
```

arcticLake

Arctic lake sediment data

Description
Sand, silt, clay compositions of 39 sediment samples at different water depths in an Arctic lake. This data set can be found on page 359 of the Aitchison book (see reference).

Usage
```
data(arcticLake)
```
balances

Format
A data frame with 39 rows and 3 variables

Details
- sand numeric vector of percentages of sand
- silt numeric vector of percentages of silt
- clay numeric vector of percentages of clay

The rows sum up to 100, except for rounding errors.

Author(s)
Matthias Templ <matthias.templ@tuwien.ac.at>

References

Examples

```r
data(arcticLake)
str(arcticLake)
summary(arcticLake)
rowSums(arcticLake)
ternaryDiag(arcticLake)
plot(pivotCoord(arcticLake))
```

balances

Balance calculation

Description
Given a D-dimensional compositional data set and a sequential binary partition, the function balances calculates the balances in order to express the given data in the (D-1)-dimensional real space.

Usage
balances(x, y)

Arguments
- x data frame or matrix, typically compositional data
- y binary partition
Details

The sequential binary partition constructs an orthonormal basis in the \((D-1)\)-dimensional hyperplane in real space, resulting in orthonormal coordinates with respect to the Aitchison geometry of compositional data.

Value

The balances represent orthonormal coordinates which allow an interpretation in sense of groups of compositional parts. Output is a matrix, the \(D-1\) columns contain balance coordinates of the observations in the rows.

\[V \]
A \(D\times(D-1)\) contrast matrix associated with the orthonormal basis, corresponding to the sequential binary partition (in clr coefficients).

Author(s)

Veronika Pintar, Karel Hron, Matthias Templ

References

Examples

data(expenditures, package = "robCompositions")
y1 <- data.frame(c(1,1,1,-1,-1),c(1,-1,-1,0,0),
c(0,+1,-1,0,0),c(0,0,0,+1,-1))
y2 <- data.frame(c(1,-1,1,-1,-1),c(1,0,-1,0,0),
c(-1,-1,1,0,0),c(0,-1,0,1,0))
y3 <- data.frame(c(1,1,1,1,-1),c(-1,-1,-1,+1,0),
c(-1,-1,+1,0,0),c(1,1,0,0,0))
y4 <- data.frame(c(1,1,1,-1,-1),c(0,0,0,-1,1),
c(-1,-1,+1,0,0),c(-1,1,0,0,0))
y5 <- data.frame(c(1,1,1,-1,-1),c(-1,-1,+1,0,0),
c(0,0,-1,1,1),c(-1,1,0,0,0))
b1 <- balances(expenditures, y1)
b2 <- balances(expenditures, y5)
b1$balances
b2$balances

data(machineOperators)
sbp <- data.frame(c(1,1,-1,-1),c(-1,+1,0,0),
c(0,0,+1,-1))
balances(machineOperators, sbp)
Biomarker

The function for identification of biomarkers and outlier diagnostics as described in paper "Robust biomarker identification in a two-class problem based on pairwise log-ratios".

Usage

```r
biomarker(
  x,
  cut = qnorm(0.975, 0, 1),
  g1,
  g2,
  type = "tau",
  diag = TRUE,
  plot = FALSE,
  diag.plot = FALSE
)
```

```
## S3 method for class 'biomarker'
plot(x, cut = qnorm(0.975, 0, 1), type = "Vstar", ...)
```

```
## S3 method for class 'biomarker'
print(x, ...)
```

```
## S3 method for class 'biomarker'
summary(object, ...)
```

Arguments

- **x**: data frame
- **cut**: cut-off value, initially set as 0.975 quantile of standard normal distribution
- **g1**: vector with locations of observations of group 1
- **g2**: vector with locations of observations of group 2
- **type**: type of estimation of the variation matrix. Possible values are "sd", "mad" and "tau", representing Standard deviation, Median absolute deviation and Tau estimator of scale
- **diag**: logical, indicating whether outlier diagnostic should be computed
- **plot**: logical, indicating whether Vstar values should be plotted
- **diag.plot**: logical, indicating whether outlier diagnostic plot should be made
- **...**: further arguments can be passed through
- **object**: object of class biomarker
Details

Robust biomarker identification and outlier diagnostics

The method computes variation matrices separately with observations from both groups and also
together with all observations. Then, \(V \) statistics is then computed and normalized. The variables,
for which according \(V^* \) values are bigger that the cut-off value are considered as biomarkers.

Value

The function returns object of type "biomarker". Functions print, plot and summary are available.

- **biom.ident** List of \(V, V^*, \) biomarkers
- **V** Values of \(V \) statistics
- **Vstar** Normalizes values of \(V \) statistics (\(V^* \) values))
- **biomarkers** Logical value, indicating if certain variable was identified as biomarker
- **diag** Outlier diagnostics (returned only if diag=TRUE)

Author(s)

Jan Walach

See Also

plot.biomarker

Examples

```r
# Data simulation
set.seed(4523)
n <- 40; p <- 50
r <- runif(p, min = 1, max = 10)
conc <- runif(p, min = 0, max = 1)*5+matrix(1,p,1)*5
a <- conc*r
S <- rnorm(n,0,0.3) %*% t(rep(1,p))
B <- matrix(rnorm(n*p,0,0.8),n,p)
R <- rep(1,n) %*% t(r)
M <- matrix(rnorm(n*p,0,0.021),n,p)
# Fifth observation is an outlier
M[5,] <- M[5,]*3 + sample(c(0.5,-0.5),replace=TRUE,p)
C <- rep(1,n) %*% t(conc)
C[1:20,c(2,15,28,40)] <- C[1:20,c(2,15,28,40)]+matrix(1,20,4)*1.8
X <- (1-S)*(C*R+B)*exp(M)
# Biomarker identification
b <- biomarker(X, g1 = 1:20, g2 = 21:40, type = "tau")
```
biplot.factanal

Biplot method

Description

Provides robust compositional biplots.

Usage

```r
## S3 method for class 'factanal'
biplot(x, ...)
```

Arguments

- `x` object of class ‘factanal’
- `...` ...

Details

The robust compositional biplot according to Aitchison and Greenacre (2002), computed from resulting (robust) loadings and scores, is performed.

Value

The robust compositional biplot.

Author(s)

M. Templ, K. Hron

References

See Also

`pfa`

Examples

```r
data(expenditures)
res.rob <- pfa(expenditures, factors=2, scores = "regression")
biplot(res.rob)
```
Description

Provides robust compositional biplots.

Usage

```r
## S3 method for class 'pcaCoDa'
biplot(x, y, ..., choices = 1:2)
```

Arguments

- `x`: object of class `pcaCoDa`
- `y`: ...
- `...`: arguments passed to plot methods
- `choices`: selection of two principal components by number. Default: c(1,2)

Details

The robust compositional biplot according to Aitchison and Greenacre (2002), computed from (robust) loadings and scores resulting from `pcaCoDa`, is performed.

Value

The robust compositional biplot.

Author(s)

M. Templ, K. Hron

References

See Also

`pcaCoDa`, `plot.pcaCoDa`
Examples

```r
data(coffee)
p1 <- pcaCoDa(coffee[,-1])
p1
plot(p1, which = 2, choices = 1:2)

# exemplarily, showing the first and third PC
a <- p1$princompOutputClr
biplot(a, choices = c(1,3))

## with labels for the scores:
data(arcticLake)
rownames(arcticLake) <- paste(sample(letters[1:26], nrow(arcticLake), replace=TRUE),
                                1:nrow(arcticLake), sep="")
pc <- pcaCoDa(arcticLake, method="classical")
plot(pc, xlabs=rownames(arcticLake), which = 2)
plot(pc, xlabs=rownames(arcticLake), which = 3)
```

bootnComp

Bootstrap to find optimal number of components

Description

Combined bootstrap and cross validation procedure to find optimal number of PLS components

Usage

```r
bootnComp(X, y, R = 99, plotting = FALSE)
```

Arguments

- `X`: predictors as a matrix
- `y`: response
- `R`: number of bootstrap replicates
- `plotting`: if TRUE, a diagnostic plot is drawn for each bootstrap replicate

Details

Heavily used internally in function impRZlrl.

Value

Including other information in a list, the optimal number of components
Author(s)
Matthias Templ

See Also

impRZilr

Examples

```r
## we refer to impRZilr()
```

bpc

Backwards pivot coordinates and their inverse

Description

Backwards pivot coordinate representation of a set of compositional vectors as a special case of isometric logratio coordinates and their inverse mapping.

Usage

```r
bpc(X, base = exp(1))
```

Arguments

- `X`: object of class `data.frame`. Positive values only.
- `base`: a positive number: the base with respect to which logarithms are computed. Defaults to `exp(1)`.

Details

Backwards pivot coordinates map D-part compositional data from the simplex into a (D-1)-dimensional real space isometrically. The first coordinate has form of pairwise logratio \(\log(x_2/x_1) \) and serves as an alternative to additive logratio transformation with part \(x_1 \) being the rationing element. The remaining coordinates are structured as detailed in Nesrstova et al. (2023). Consequently, when a specific pairwise logratio is of the main interest, the respective columns have to be placed at the first (the compositional part in denominator of the logratio, the rationing element) and the second position (the compositional part in numerator) in the data matrix \(X \).
bpcPca

Value

- **Coordinates**: array of orthonormal coordinates.
- **Coordinates.orgt**: array of orthogonal coordinates (without the normalising constant sqrt(i/i+1)).
- **Contrast.matrix**: contrast matrix corresponding to the orthonormal coordinates.
- **Base**: the base with respect to which logarithms are computed.
- **Levels**: the order of compositional parts.

Author(s)

Kamila Facevicova

References

See Also

- `bpcTab`
- `bpcTabWrapper`
- `bpcPca`
- `bpcReg`

Examples

```r
data(expenditures)
# default setting with ln()
bpc(expenditures)

# logarithm of base 2
bpc(expenditures, base = 2)
```

Description

Principal component analysis based on backwards pivot coordinates

Perform classical or robust principal component analysis on system of backwards pivot coordinates and returns the result related to pairwise logratios as well as the clr representation.

Usage

```r
bpcPca(X, robust = FALSE, norm.cat = NULL)
```
Arguments

\textbf{X} \hspace{1cm} \text{object of class data.frame. Positive values only.}

\textbf{robust} \hspace{1cm} \text{if TRUE, the MCD estimate is used. Defaults to FALSE.}

\textbf{norm.cat} \hspace{1cm} \text{the rationing category placed at the first position in the composition. If not defined, all pairwise logratios are considered. Given in quotation marks.}

Details

\textbf{bpcPca}

The compositional data set is repeatedly expressed in a set of backwards logratio coordinates, when each set highlights one pairwise logratio (or one pairwise logratio with the selected rationing category). For each set, robust or classical principal component analysis is performed and loadings respective to the first backwards pivot coordinate are stored. The procedure results in matrix of scores (invariant to the specific coordinate system), clr loading matrix and matrix with loadings respective to pairwise logratios.

Value

\textbf{scores} \hspace{1cm} \text{array of scores.}

\textbf{loadings} \hspace{1cm} \text{loadings related to the pairwise logratios. The names of the rows indicate the type of the respective coordinate (bpc.1 - the first backwards pivot coordinate) and the logratio quantified thereby. E.g. bpc.1.C2.to.C1 would therefore correspond to the logratio between compositional parts C1 and C2, schematically written log(C2/C1). See Nešrstová et al. (2023) for details.}

\textbf{loadings.clr} \hspace{1cm} \text{loadings in the clr space.}

\textbf{sdev} \hspace{1cm} \text{standard deviations of the principal components.}

\textbf{center} \hspace{1cm} \text{means of the pairwise logratios.}

\textbf{center.clr} \hspace{1cm} \text{means of the clr coordinates.}

\textbf{n.obs} \hspace{1cm} \text{number of observations.}

Author(s)

Kamila Facevicova

References

See Also

\texttt{bpc bpcPcaTab bpcReg}
Examples

data(arcticLake)

classical estimation with all pairwise logratios:
res.cla <- bpcPca(arcticLake)
summary(res.cla)
biplot(res.cla)
head(res.cla$scores)
res.cla$loadings
res.cla$loadings.clr

similar output as from pca CoDa
res.cla2 <- pcaCoDa(arcticLake, method="classical", solve = "eigen")
biplot(res.cla2)
head(res.cla2$scores)
res.cla2$loadings

classical estimation focusing on pairwise logratios with clay:
res.cla.clay <- bpcPca(arcticLake, norm.cat = "clay")
biplot(res.cla.clay)

robust estimation with all pairwise logratios:
res.rob <- bpcPca(arcticLake, robust = TRUE)
biplot(res.rob)

bpcPcaTab

Principal component analysis of compositional tables based on backwards pivot coordinates

Description

Performs classical or robust principal component analysis on a set of compositional tables, based on backwards pivot coordinates. Returns the result related to pairwise row and column balances and four-part log odds-ratios. The loadings in the clr space are available as well.

Usage

bpcPcaTab(
 X,
 obs.ID = NULL,
 row.factor = NULL,
 col.factor = NULL,
 value = NULL,
 robust = FALSE,
 norm.cat.row = NULL,
 norm.cat.col = NULL
)
Arguments

- **X**: object of class data.frame with columns corresponding to row and column factors of the respective compositional table, a variable with the values of the composition (positive values only) and a factor with observation IDs.
- **obs.ID**: name of the factor variable distinguishing the observations. Needs to be given with the quotation marks.
- **row.factor**: name of the variable representing the row factor. Needs to be given with the quotation marks.
- **col.factor**: name of the variable representing the column factor. Needs to be given with the quotation marks.
- **value**: name of the variable representing the values of the composition. Needs to be given with the quotation marks.
- **robust**: if TRUE, the MCD estimate is used. Defaults to FALSE.
- **norm.cat.row**: the rationing category of the row factor. If not defined, all pairs are considered. Given in quotation marks.
- **norm.cat.col**: the rationing category of the column factor. If not defined, all pairs are considered. Given in quotation marks.

Details

bpcPcaTab

The set of compositional tables is repeatedly expressed in a set of backwards logratio coordinates, when each set highlights different combination of pairs of row and column factor categories, as detailed in Nesrstova et al. (2023). For each set, robust or classical principal component analysis is performed and loadings respective to the first row, column and odds-ratio backwards pivot coordinates are stored. The procedure results in matrix of scores (invariant to the specific coordinate system), clr loading matrix and matrix with loadings related to the selected backwards coordinates.

Value

- **scores**: array of scores.
- **loadings**: loadings related to the selected backwards coordinates. The names of the rows indicate the type of the respective coordinate (rbpb.1 - the first row backwards pivot balance, cbpb.1 - the first column backwards pivot balance and tbpc.1.1 - the first table backwards pivot coordinate) and the logratio or log odds-ratio quantified thereby. E.g. cbpb.1_C2.to.C1 would therefore correspond to the logratio between column categories C1 and C2, schematically written log(C2/C1), and tbpc.1.1_R2.to.R1.&.C2.to.C1 would correspond to the log odds-ratio computed from a 2x2 table, which is formed by row categories R1 and R2 and columns C1 and C2. See Nesrstova et al. (2023) for details.
- **loadings.clr**: loadings in the clr space. The names of the rows indicate the position of respective part in the clr representation of the compositional table, labeled as row.category_column.category.
- **sdev**: standard deviations of the principal components.
- **center**: means of the selected backwards coordinates.
center.clr means of the clr coordinates.
n.obs number of observations.

Author(s)
Kamila Facevicova

References

See Also

bpcTabWrapper bpcPca bpcRegTab

Examples

data(manu_abs)
manu_abs$output <- as.factor(manu_abs$output)
manu_abs$isic <- as.factor(manu_abs$isic)

classical estimation with all pairwise balances and four-part ORs:
res.cla <- bpcPcaTab(manu_abs, obs.ID = "country", row.factor = "output",
col.factor = "isic", value = "value")
summary(res.cla)
biplot(res.cla)
head(res.cla$scores)
res.cla$loadings
res.cla$loadings.clr

classical estimation with LAB anf 155 as rationing categories
res.cla.select <- bpcPcaTab(manu_abs, obs.ID = "country", row.factor = "output",
col.factor = "isic", value = "value", norm.cat.row = "LAB", norm.cat.col = "155")
summary(res.cla.select)
biplot(res.cla.select)
head(res.cla.select$scores)
res.cla.select$loadings
res.cla.select$loadings.clr

robust estimation with all pairwise balances and four-part ORs:
res.rob <- bpcPcaTab(manu_abs, obs.ID = "country", row.factor = "output",
col.factor = "isic", value = "value", robust = TRUE)
summary(res.rob)
biplot(res.rob)
head(res.rob$scores)
res.rob$loadings
res.rob$loadings.clr
bpcReg

Classical and robust regression based on backwards pivot coordinates

Description

Performs classical or robust regression analysis of real response on compositional predictors, represented in backwards pivot coordinates. Also non-compositional covariates can be included (additively).

Usage

bpcReg(
 X,
 y,
 external = NULL,
 norm.cat = NULL,
 robust = FALSE,
 base = exp(1),
 norm.const = F,
 seed = 8
)

Arguments

X object of class data.frame with compositional (positive values only) and non-compositional predictors. The response y can be also included.
y character with the name of response (if included in X) or an array with values of the response.
external array with names of non-compositional predictors.
norm.cat the rationing category placed at the first position in the composition. If not defined, all pairwise logratios are considered. Given in quotation marks.
robust if TRUE, the MM-type estimator is used. Defaults to FALSE.
base a positive number: the base with respect to which logarithms are computed. Defaults to exp(1).
norm.const if TRUE, the regression coefficients corresponding to orthonormal coordinates are given a s result. Defaults to FALSE, the normalising constant is omitted.
seed a single value.

Details

bpcReg

The compositional part of the data set is repeatedly expressed in a set of backwards logratio coordinates, when each set highlights one pairwise logratio (or one pairwise logratio with the selected rationing category). For each set (supplemented by non-compositional predictors), robust MM or classical least squares estimate of regression coefficients is performed and information respective to
the first backwards pivot coordinate is stored. The summary therefore collects results from several regression models, each leading to the same overall model characteristics, like the F statistics or R^2. The coordinates are structured as detailed in Nesrstova et al. (2023). In order to maintain consistency of the iterative results collected in the output, a seed is set before robust estimation of each of the models considered. Its specific value can be set via parameter seed.

Value

A list containing:

- **Summary** the summary object which collects results from all coordinate systems. The names of the coefficients indicate the type of the respective coordinate (bpc.1 - the first backwards pivot coordinate) and the logratio quantified thereby. E.g. bpc.1_C2.to.C1 would therefore correspond to the logratio between compositional parts C1 and C2, schematically written log(C2/C1). See Nesrstova et al. (2023) for details.
- **Base** the base with respect to which logarithms are computed
- **Norm.const** the values of normalising constants (when results for orthonormal coordinates are reported).
- **Robust** TRUE if the MM estimator was applied.
- **lm** the lm object resulting from the first iteration.
- **Levels** the order of compositional parts considered in the first iteration.

Author(s)

Kamila Facevicova

References

See Also

* bpc bpcPca bpcRegTab

Examples

```r
## How the total household expenditures in EU Member States depend on relative contributions of single household expenditures:
data(expendituresEU)
y <- as.numeric(apply(expendituresEU, 1, sum))

# classical regression summarizing the effect of all pairwise logratios
lm.cla <- bpcReg(expendituresEU, y)
```

```r
lm.cla
```
gives the same model characteristics as lmCoDaX:
lm <- lmCoDaX(y, expendituresEU, method="classical")
lm$ilr

robust regression, with Food as the rationing category and logarithm of base 2
response is part of the data matrix X
expendituresEU.y <- data.frame(expendituresEU, total = y)
lm.rob <- bpcReg(expendituresEU.y, "total", norm.cat = "Food", robust = TRUE, base = 2)
lm.rob

Illustrative example with exports and imports (categorized) as non-compositional covariates
data(economy)
X.ext <- economy[!economy$country2 %in% c("HR", "NO", "CH"), c("exports", "imports")]
X.ext$imports.cat <- cut(X.ext$imports, quantile(X.ext$imports, c(0, 1/3, 2/3, 1)),
labels = c("A", "B", "C"), include.lowest = TRUE)

X.y.ext <- data.frame(expendituresEU.y, X.ext[, c("exports", "imports.cat")])
lm.ext <- bpcReg(X.y.ext, y = "total", external = c("exports", "imports.cat"))
lm.ext

bpcRegTab

Classical and robust regression based on backwards pivot coordinates

Description

Performs classical or robust regression analysis of real response on a compositional table, which is represented in backwards pivot coordinates. Also non-compositional covariates can be included (additively).

Usage

```r
bpcRegTab(
  X,
  y,
  obs.ID = NULL,
  row.factor = NULL,
  col.factor = NULL,
  value = NULL,
  external = NULL,
  norm.cat.row = NULL,
  norm.cat.col = NULL,
  robust = FALSE,
  base = exp(1),
  norm.const = F,
  seed = 8
)
```
Arguments

- **X**
 object of class data.frame with columns corresponding to row and column factors of the respective compositional table, a variable with the values of the composition (positive values only) and a factor with observation IDs. The response y and non-compositional predictors can be also included.

- **y**
 character with the name of response (if included in X), data frame with row names corresponding to observation IDs or a named array with values of the response.

- **obs.ID**
 name of the factor variable distinguishing the observations. Needs to be given with the quotation marks.

- **row.factor**
 name of the variable representing the row factor. Needs to be given with the quotation marks.

- **col.factor**
 name of the variable representing the column factor. Needs to be given with the quotation marks.

- **value**
 name of the variable representing the values of the composition. Needs to be given with the quotation marks.

- **external**
 array with names of non-compositional predictors.

- **norm.cat.row**
 the rationing category of the row factor. If not defined, all pairs are considered. Given in quotation marks.

- **norm.cat.col**
 the rationing category of the column factor. If not defined, all pairs are considered. Given in quotation marks.

- **robust**
 if TRUE, the MM-type estimator is used. Defaults to FALSE.

- **base**
 a positive number: the base with respect to which logarithms are computed. Defaults to exp(1).

- **norm.const**
 if TRUE, the regression coefficients corresponding to orthonormal coordinates are given as result. Defaults to FALSE, the normalising constant is omitted.

- **seed**
 a single value.

Details

bpcRegTab

The set of compositional tables is repeatedly expressed in a set of backwards logratio coordinates, when each set highlights different combination of pairs of row and column factor categories, as detailed in Nesrstova et al. (2023). For each coordinates system (supplemented by non-compositional predictors), robust MM or classical least squares estimate of regression coefficients is performed and information respective to the first row, column and table backwards pivot coordinate is stored. The summary therefore collects results from several regression models, each leading to the same overall model characteristics, like the F statistics or R^2. In order to maintain consistency of the iterative results collected in the output, a seed is set before robust estimation of each of the models considered. Its specific value can be set via parameter seed.

Value

A list containing:
Summary the summary object which collects results from all coordinate systems. The names of the coefficients indicate the type of the respective coordinate (rbpb.1 - the first row backwards pivot balance, cbpb.1 - the first column backwards pivot balance and tbpc.1.1 - the first table backwards pivot coordinate) and the logratio or log odds-ratio quantified thereby. E.g. cbpb.1_C2.to.C1 would therefore correspond to the logratio between column categories C1 and C2, schematically written log(C2/C1), and tbpc.1.1_R2.to.R1.&.C2.to.C1 would correspond to the log odds-ratio computed from a 2x2 table, which is formed by row categories R1 and R2 and columns C1 and C2. See Nesrstova et al. (2023) for details.

Base the base with respect to which logarithms are computed

Norm.const the values of normalising constants (when results for orthonormal coordinates are reported).

Robust TRUE if the MM estimator was applied.

lm the lm object resulting from the first iteration.

Row.levels the order of the row factor levels cosidered in the first iteration.

Col.levels the order of the column factor levels cosidered in the first iteration.

Author(s)
Kamila Facevicova

References

See Also
bpcTabWrapper bpcPcaTab bpcReg

Examples

```r
# let's prepare some data
data(employment2)
data(unemployed)

table_data <- employment2[employment2$Contract == "FT", ]
y <- unemployed[unemployed$age == "20_24" & unemployed$year == 2015,]
countries <- intersect(levels(droplevels(y$country)), levels(table_data$Country))

table_data <- table_data[table_data$Country %in% countries, ]
y <- y[y$country %in% countries, c("country", "value")]
colnames(y) <- c("Country", "unemployed")

# response as part of X
table_data.y <- merge(table_data, y, by = "Country")
reg.cla <- bpcRegTab(table_data.y, y = "unemployed", obs.ID = "Country", row.factor = "Sex", col.factor = "Age", value = "Value")
reg.cla
```
response as named array
resp <- y$unemployed
names(resp) <- y$Country
reg.cla2 <- bpcRegTab(table_data.y, y = resp, obs.ID = "Country",
row.factor = "Sex", col.factor = "Age", value = "Value")
reg.cla2

response as data.frame, robust estimator, 55plus as the rationing category, logarithm of base 2
resp.df <- as.data.frame(y$unemployed)
rownames(resp.df) <- y$Country
reg.rob <- bpcRegTab(table_data.y, y = resp.df, obs.ID = "Country",
row.factor = "Sex", col.factor = "Age", value = "Value",
norm.cat.col = "55plus", robust = TRUE, base = 2)
reg.rob

Illustrative example with non-compositional predictors and response as part of X
x.ext <- unemployed[unemployed$age == "15_19" & unemployed$year == 2015,]
x.ext <- x.ext[x.ext$country %in% countries, c("country", "value")]
colnames(x.ext) <- c("Country", "15_19")

table_data.y.ext <- merge(table_data.y, x.ext, by = "Country")
reg.cla.ext <- bpcRegTab(table_data.y.ext, y = "unemployed", obs.ID = "Country",
row.factor = "Sex", col.factor = "Age", value = "Value", external = "15_19")
reg.cla.ext

bpcTab

Backwards pivot coordinates and their inverse

Description

Backwards pivot coordinate representation of a compositional table as a special case of isometric logratio coordinates and their inverse mapping.

Usage

bpcTab(x, row.factor = NULL, col.factor = NULL, value = NULL, base = exp(1))

Arguments

- **x**: object of class data.frame with columns corresponding to row and column factors of the respective compositional table and a variable with the values of the composition (positive values only).
- **row.factor**: name of the variable representing the row factor. Needs to be given with the quotation marks.
- **col.factor**: name of the variable representing the column factor. Needs to be given with the quotation marks.
- **value**: name of the variable representing the values of the composition. Needs to be given with the quotation marks.
base a positive number: the base with respect to which logarithms are computed. Defaults to \(\exp(1) \).

Details

bcTab

Backwards pivot coordinates map 1xJ-part compositional table from the simplex into a (IJ-1)-dimensional real space isometrically. Particularly the first coordinate from each group (rbpb.1, cbpb.1, tbpc.1) preserves the elemental information on the two-factorial structure. The first row and column backwards pivot balances rbpb.1 and cbpb.1 represent two-factorial counterparts to the pairwise logratios. More specifically, the first two levels of the considered factor are compared in the ratio, while the first level plays the role of the rationing category (denominator of the ratio) and the second level is treated as the normalized category (numerator of the ratio). All categories of the complementary factor are aggregated with the geometric mean. The first table backwards pivot coordinate, has form of a four-part log odds-ratio (again related to the first two levels of the row and column factors) and quantifies the relations between factors. All coordinates are structured as detailed in Nesrstova et al. (2023).

Value

- Coordinates array of orthonormal coordinates.
- Coordinates.ortg array of orthogonal coordinates.
- Contrast.matrix contrast matrix corresponding to the orthonormal coordinates.
- Base the base with respect to which logarithms are computed.
- Row.levels order of the row factor levels.
- Col.levels order of the column factor levels.

Author(s)

Kamila Facevicova

References

See Also

bcTab, bcTabWrapper, bpcPcaTab, bpcRegTab

Examples

data(manu_abs)
manu_USA <- manu_abs[which(manu_abs$country=='USA'),]
manu_USA$output <- as.factor(manu_USA$output)
manu_USA$isinic <- as.factor(manu_USA$isinic)

default setting with ln()
bpcTab(manu_USA, row.factor = "output", col.factor = "isinic", value = "value")

logarithm of base 2
bpcTab(manu_USA, row.factor = "output", col.factor = "isinic", value = "value", base = 2)

for base exp(1) is the result similar to tabCoord():
r <- rbind(c(-1,1,0), c(-1,-1,1))
c <- rbind(c(-1,1,0,0,0), c(-1,-1,1,0,0), c(-1,-1,-1,1,0), c(-1,-1,-1,-1,1))
tabCoord(manu_USA, row.factor = "output", col.factor = "isinic", value = "value", SBPr = r, SBPc = c)

bpcTabWrapper

Backwards pivot coordinates and their inverse

Description

For each compositional table in the sample a system of backwards pivot coordinates is computed as a special case of isometric logratio coordinates. For their inverse mapping, the contrast matrix is provided.

Usage

```r
bpcTabWrapper(
  X,
  obs.ID = NULL,
  row.factor = NULL,
  col.factor = NULL,
  value = NULL,
  base = exp(1)
)
```

Arguments

- `X` object of class data.frame with columns corresponding to row and column factors of the respective compositional table, a variable with the values of the composition (positive values only) and a factor with observation IDs.

- `obs.ID` name of the factor variable distinguishing the observations. Needs to be given with the quotation marks.

- `row.factor` name of the variable representing the row factor. Needs to be given with the quotation marks.

- `col.factor` name of the variable representing the column factor. Needs to be given with the quotation marks.
value name of the variable representing the values of the composition. Needs to be given with the quotation marks.

base a positive number: the base with respect to which logarithms are computed. Defaults to exp(1).

Details

bpctabWrapper

Backwards pivot coordinates map IxJ-part compositional table from the simplex into a (IJ-1)-dimensional real space isometrically. Particularly the first coordinate from each group (rbpb.1, cbpb.1, tbpc.1) preserves the elemental information on the two-factorial structure. The first row and column backwards pivot balances rbpb.1 and cbpb.1 represent two-factorial counterparts to the pairwise logratios. More specifically, the first two levels of the considered factor are compared in the ratio, while the first level plays the role of the rationing category (denominator of the ratio) and the second level is treated as the normalized category (numerator of the ratio). All categories of the complementary factor are aggregated with the geometric mean. The first table backwards pivot coordinate, has form of a four-part log odds-ratio (again related to the first two levels of the row and column factors) and quantifies the relations between factors. All coordinates are structured as detailed in Nesrstova et al. (2023).

Value

- Coordinates array of orthonormal coordinates.
- Coordinates.ortg array of orthogonal coordinates.
- Contrast.matrix contrast matrix corresponding to the orthonormal coordinates.
- Base the base with respect to which logarithms are computed.
- Row.levels order of the row factor levels.
- Col.levels order of the column factor levels.

Author(s)

Kamila Facevicova

References

See Also

bpctab pcaTab regTab
Examples

```r
data(manu_abs)
manu_abs$output <- as.factor(manu_abs$output)
manu_abs$isic <- as.factor(manu_abs$isic)

# default setting with ln()
bpcTabWrapper(manu_abs, obs.ID = "country", row.factor = "output",
col.factor = "isic", value = "value")

# logarithm of base 2
bpcTabWrapper(manu_abs, obs.ID = "country", row.factor = "output",
col.factor = "isic", value = "value", base = 2)

# for base exp(1) is the result similar to tabCoordWrapper():
r <- rbind(c(-1,1,0), c(-1,-1,1))
c <- rbind(c(-1,1,0,0,0), c(-1,-1,1,0,0), c(-1,-1,-1,1,0), c(-1,-1,-1,-1,1))
tabCoordWrapper(manu_abs, obs.ID = "country", row.factor = "output",
col.factor = "isic", value = "value", SBPr = r, SBPc = c)
```

cancer hospital discharges on cancer and distribution of age

Description

Hospital discharges of in-patients on neoplasms (cancer) per 100.000 inhabitants (year 2007) and population age structure.

Format

A data set on 24 compositions on 6 variables.

Details

- country
- year
- p1 percentage of population with age below 15
- p2 percentage of population with age between 15 and 60
- p3 percentage of population with age above 60
- discharges hospital discharges of in-patients on neoplasms (cancer) per 100.000 inhabitants

The response (discharges) is provided for the European Union countries (except Greece, Hungary and Malta) by Eurostat. As explanatory variables we use the age structure of the population in the same countries (year 2008). The age structure consists of three parts, age smaller than 15, age between 15 and 60 and age above 60 years, and they are expressed as percentages on the overall population in the countries. The data are provided by the United Nations Statistics Division.
Author(s)
conversion to R by Karel Hron and Matthias Templ <matthias.templ@tuwien.ac.at>

Source

References

Examples
```r
data(cancer)
str(cancer)
```

cancerMN

malignant neoplasms cancer

Description
Two main types of malignant neoplasms cancer affecting colon and lung, respectively, in male and female populations. For this purpose population data (2012) from 35 OECD countries were collected.

Format
A data set on 35 compositional tables on 4 parts (row-wise sorted cells) and 5 variables.

Details
- country
- females-colon number of colon cancer cases in female population
- females-lung number of lung cancer cases in female population
- males-colon number of colon cancer cases in male population
- males-lung number of lung cancer cases in male population

The data are obtained from the OECD website.

Author(s)
conversion to R by Karel Hron and intergration by Matthias Templ <matthias.templ@tuwien.ac.at>

Source
From OECD website
Examples

```r
data(cancerMN)
head(cancerMN)
rowSums(cancerMN[, 2:5])
```

Description

Normalized Aitchison distance between two data sets

Usage

```r
ced(x, y, ni)
```

Arguments

- `x`: matrix or data frame
- `y`: matrix or data frame of the same size as `x`
- `ni`: normalization parameter. See details below.

Details

This function has been mainly written for procedures that evaluate imputation or replacement of rounded zeros. The `ni` parameter can thus, e.g. be used for expressing the number of rounded zeros.

Value

the compositional error distance

Author(s)

Matthias Templ

References

See Also

- `rdcm`
Examples

data(expenditures)
x <- expenditures
x[1,3] <- NA
xi <- impKNNa(x)$xImp
ced(expenditures, xi, ni = sum(is.na(x)))

cenLR

Centred logratio coefficients

Description

The centred logratio (clr) coefficients map D-part compositional data from the simplex into a D-dimensional real space.

Usage

cenLR(x, base = exp(1))

Arguments

x multivariate data, ideally of class data.frame or matrix
base a positive or complex number: the base with respect to which logarithms are computed. Defaults to exp(1).

Details

Each composition is divided by the geometric mean of its parts before the logarithm is taken.

Value

the resulting clr coefficients, including
x.clr clr coefficients
gm the geometric means of the original compositional data.

Note

The resulting data set is singular by definition.

Author(s)

Matthias Templ

References

See Also

cenLRinv, addLR, pivotCoord, addLRinv, pivotCoordInv

Examples

data(expenditures)
eclr <- cenLR(expenditures)
inveclr <- cenLRinv(eclr)
head(expenditures)
head(inveclr)
head(pivotCoordInv(eclr$x.clr))

cenLRinv

Inverse centred logratio mapping

Description

Applies the inverse centred logratio mapping.

Usage

cenLRinv(x, useClassInfo = TRUE)

Arguments

x

an object of class “clr”, “data.frame” or “matrix”

useClassInfo

if the object is of class “clr”, the useClassInfo is used to determine if the class information should be used. If yes, also absolute values may be preserved.

Value

the resulting compositional data set.

Author(s)

Matthias Templ

References

See Also

cenLR, addLR, pivotCoord, addLRinv, pivotCoordInv
Examples

data(expenditures)
eclr <- cenLR(expenditures, 2)
ineclr <- cenLRinv(eclr)
head(expenditures)
head(einvclr)
head(cenLRinv(eclr$x.clr))

Description

This data set is almost the same as the 'chorizon' data set in package mvoutlier and chorizonDL, except that values below the detection limit are coded as zeros, and detection limits provided as attributes to the data set and less variables are included.

Format

A data frame with 606 observations on the following 62 variables.

*ID a numeric vector
XCOO a numeric vector
YCOO a numeric vector
Ag concentration in mg/kg
Al concentration in mg/kg
Al_XRF concentration in wt. percentage
As concentration in mg/kg
Ba concentration in mg/kg
Ba_INAA concentration in mg/kg
Be concentration in mg/kg
Bi concentration in mg/kg
Ca concentration in mg/kg
Ca_XRF concentration in wt. percentage
Cd concentration in mg/kg
Ce_INAA concentration in mg/kg
Co concentration in mg/kg
Co_INAA concentration in mg/kg
Cr concentration in mg/kg
Cr_INAA concentration in mg/kg

Cu concentration in mg/kg
Eu_INAA concentration in mg/kg
Fe concentration in mg/kg
Fe_XRF concentration in wt. percentage
Hf_INAA concentration in mg/kg
K concentration in mg/kg
K_XRF concentration in wt. percentage
La concentration in mg/kg
La_INAA concentration in mg/kg
Li concentration in mg/kg
Lu_INAA concentration in mg/kg
Mg concentration in mg/kg
Mg_XRF concentration in wt. percentage
Mn concentration in mg/kg
Mn_XRF concentration in wt. percentage
Na concentration in mg/kg
Na_XRF concentration in wt. percentage
Nd_INAA concentration in mg/kg
Ni concentration in mg/kg
P concentration in mg/kg
P_XRF concentration in wt. percentage
Pb concentration in mg/kg
S concentration in mg/kg
Sc concentration in mg/kg
Sc_INAA concentration in mg/kg
Si concentration in mg/kg
Si_XRF concentration in wt. percentage
Sm_INAA concentration in mg/kg
Sr concentration in mg/kg
Th_INAA concentration in mg/kg
Ti concentration in mg/kg
Ti_XRF concentration in wt. percentage
V concentration in mg/kg
Y concentration in mg/kg
Yb_INAA concentration in mg/kg
Zn concentration in mg/kg
LOI concentration in wt. percentage
pH ph value
ELEV elevation
*COUN country
*ASP a numeric vector
TOPC a numeric vector
LITO information on lithography

Note
For a more detailed description of this data set, see `chorizon` in package mvoutlier.

Source

References

See Also
`chorizon`, `chorizonDL`

Examples

data(chorizonDL, package = "robCompositions")
dim(chorizonDL)
colnames(chorizonDL)
zeroPatterns(chorizonDL)

clustCoDa Clustering in orthonormal coordinates or by using the Aitchison distance
Usage

```r
clustCoDa(
    x, 
    k = NULL, 
    method = "Mclust", 
    scale = "robust", 
    transformation = "pivotCoord", 
    distMethod = NULL, 
    iter.max = 100, 
    vals = TRUE, 
    alt = NULL, 
    bic = NULL, 
    verbose = TRUE
)
```

```r
## S3 method for class 'clustCoDa'
plot(
    x, 
    y, 
    ..., 
    normalized = FALSE, 
    which.plot = "clusterMeans", 
    measure = "silwidths"
)
```

Arguments

- `x`: compositional data represented as a `data.frame`
- `k`: number of clusters
- `method`: clustering method. One of `Mclust`, `cmeans`, `kmeansHartigan`, `cmeansUfcl`, `pam`, `clara`, `fanny`, `ward.D2`, `single`, `hclustComplete`, `average`, `mcquitty`, `median`, `centroid`
- `scale`: if orthonormal coordinates should be normalized.
- `transformation`: default are the isometric logratio coordinates. Can only used when `distMethod` is not `Aitchison`.
- `distMethod`: Distance measure to be used. If "Aitchison", then transformation should be "identity".
- `iter.max`: parameter if `kmeans` is chosen. The maximum number of iterations allowed
- `vals`: if cluster validity measures should be calculated
- `alt`: a known partitioning can be provided (for special cluster validity measures)
- `bic`: if `TRUE` then the BIC criteria is evaluated for each single cluster as validity measure
- `verbose`: if `TRUE` additional print output is provided
- `y`: the y coordinates of points in the plot, optional if `x` is an appropriate structure.
- `...`: additional parameters for print method passed through
normalized results gets normalized before plotting. Normalization is done by z-transformation applied on each variable.

which.plot currently the only plot. Plot of cluster centers.

measure cluster validity measure to be considered for which.plot equals “partMeans”

Details

The compositional data set is either internally represented by orthonormal coordinates before a cluster algorithm is applied, or - depending on the choice of parameters - the Aitchison distance is used.

Value

all relevant information such as cluster centers, cluster memberships, and cluster statistics.

Author(s)

Matthias Templ (accessing the basic features of hclust, Mclust, kmeans, etc. that are all written by others)

References

Examples

data(expenditures)
x <- expenditures
rr <- clustCoDa(x, k=6, scale = "robust", transformation = "pivotCoord")
rr2 <- clustCoDa(x, k=6, distMethod = "Aitchison", scale = "none",
transformation = "identity")
rr3 <- clustCoDa(x, k=6, distMethod = "Aitchison", method = "single",
transformation = "identity", scale = "none")

Not run:
require(reshape2)
plot(rr)
plot(rr, normalized = TRUE)
plot(rr, normalized = TRUE, which.plot = "partMeans")

End(Not run)
Description

Clustering using the variation matrix of compositional parts

Usage

```r
clustCoDa_qmode(x, method = "ward.D2")
```

Arguments

- `x`: compositional data represented as a data.frame
- `method`: hclust method

Value

a hclust object

Author(s)

Matthias Templ (accessing the basic features of hclust that are all written by other authors)

References

Examples

```r
data(expenditures)
x <- expenditures
c1 <- clustCoDa_qmode(x)
## Not run:
require(reshape2)
plot(c1)
c2 <- clustCoDa_qmode(x, method = "single")
plot(c2)
## End(Not run)
```
Description

30 commercially available coffee samples of different origins.

Usage

data(coffee)

Format

A data frame with 30 observations and 7 variables.

Details

- sort sort of coffee
- acit acetic acid
- metpyr methylpyrazine
- furfu furfural
- furfualc furfuryl alcohol
- dimeth 2,6 dimethylpyrazine
- met5 5-methylfurural

In the original data set, 15 volatile compounds (descriptors of coffee aroma) were selected for a statistical analysis. We selected six compounds (compositional parts) on three sorts of coffee.

Author(s)

Matthias Templ <matthias.templ@tuwien.ac.at>, Karel Hron

References

Examples

data(coffee)
str(coffee)
summary(coffee)
compareMahal

Compares Mahalanobis distances from two approaches

Description

Mahalanobis distances are calculated for each zero pattern. Two approaches are used. The first one estimates Mahalanobis distance for observations belonging to one each zero pattern each. The second method uses a more sophisticated approach described below.

Usage

```r
compareMahal(x, imp = "KNNa")
```

```r
## S3 method for class 'mahal'
plot(x, y, ...)
```

Arguments

- `x` data frame or matrix
- `imp` imputation method
- `y` unused second argument for the plot method
- `...` additional arguments for plotting passed through

Value

- `df` a data.frame containing the Mahalanobis distances from the estimation in subgroups, the Mahalanobis distances from the imputation and covariance approach, an indicator specifying outliers and an indicator specifying the zero pattern
- `df2` a groupwise statistics.

Author(s)

Matthias Templ, Karel Hron

References

See Also

`impKNNa`, `pivotCoord`
Examples

```r
data(arcticLake)
# generate some zeros
arcticLake[1:10, 1] <- 0
arcticLake[11:20, 2] <- 0
m <- compareMahal(arcticLake)
plot(m)
```

compositionalSpline \hspace{1cm} Compositional spline

Description

This code implements the compositional smoothing splines grounded on the theory of Bayes spaces.

Usage

```r
compositionalSpline(
  t,
  clrf,
  knots,
  w,
  order,
  der,
  alpha,
  spline.plot = FALSE,
  basis.plot = FALSE
)
```

Arguments

- `t`: class midpoints
- `clrf`: clr transformed values at class midpoints, i.e., fcenLR(f(t))
- `knots`: sequence of knots
- `w`: weights
- `order`: order of the spline (i.e., degree + 1)
- `der`: lth derivation
- `alpha`: smoothing parameter
- `spline.plot`: if TRUE, the resulting spline is plotted
- `basis.plot`: if TRUE, the ZB-spline basis system is plotted
Details

The compositional splines enable to construct a spline basis in the centred logratio (clr) space of density functions (ZB-spline basis) and consequently also in the original space of densities (CB-spline basis). The resulting compositional splines in the clr space as well as the ZB-spline basis satisfy the zero integral constraint. This enables to work with compositional splines consistently in the framework of the Bayes space methodology.

Augmented knot sequence is obtained from the original knots by adding #(order-1) multiple endpoints.

Value

- J value of the functional J
- ZB_coef ZB-spline basis coefficients
- CV score of cross-validation
- GCV score of generalized cross-validation

Author(s)

J. Machalova <jitka.machalova@upol.cz>, R. Talska <talskarenata@seznam.cz>

References

Examples

```r
# Example (Iris data):
SepalLengthCm <- iris$Sepal.Length
Species <- iris$Species
iris1 <- SepalLengthCm[iris$Species==levels(iris$Species)[1]]
h1 <- hist(iris1, plot = FALSE)
midx1 <- h1$mids
midy1 <- matrix(h1$density, nrow=1, ncol = length(h1$density), byrow=TRUE)
clrf <- cenLR(rbind(midy1,midy1))$x.clr[1,]
knots <- seq(min(h1$breaks),max(h1$breaks),l=5)
order <- 4
der <- 2
alpha <- 0.99

sol1 <- compositionalSpline(t = midx1, clrf = clrf, knots = knots, w = rep(1,length(midx1)), order = order, der = der, alpha = alpha, spline.plot = TRUE)
sol1$GCV
ZB_coef <- sol1$ZB_coef
t <- seq(min(knots),max(knots),l=500)
t_step <- diff(t[1:2])
ZB_base <- ZBsplineBasis(t=t,knots,order)$ZBsplineBasis
sol1.t <- ZB_base%*%ZB_coef
```
sol2.t <- fcenLRinv(t, t_step, sol1.t)

h2 = hist(iris1, prob=TRUE, las=1)
points(midx1, midy1, pch=16)
lines(t, sol2.t, col="darkred", lwd=2)

Example (normal distribution):
generate n values from normal distribution
set.seed(1)

n = 1000; mean = 0; sd = 1.5
raw_data = rnorm(n, mean, sd)

number of classes according to Sturges rule
n.class = round(1+1.43*log(n), 0)

Interval midpoints
partition = seq(-5, 5, length=(n.class+1))
t.mid = c(); for (i in 1:n.class){t.mid[i] = (partition[i+1]+partition[i])/2}

counts = table(cut(raw_data, partition))
prob = counts/sum(counts) # probabilities
dens.raw = prob/diff(partition) # raw density data
clrf = cenLR(rbind(dens.raw, dens.raw))$x.clr[,1] # raw clr density data

set the input parameters for smoothing
knots = seq(min(partition), max(partition), l=5)
w = rep(1, length(clrf))
order = 4
der = 2
alpha = 0.5
spline = compositionalSpline(t = t.mid, clrf = clrf, knots = knots,
 w = w, order = order, der = der, alpha = alpha,
 spline.plot = TRUE, basis.plot = FALSE)

ZB-spline coefficients
ZB_coef = spline$ZB_coef

ZB-spline basis evaluated on the grid "t.fine"
t.fine = seq(min(knots), max(knots), l=1000)
ZB_base = ZBsplineBasis(t=t.fine, knots, order)$ZBsplineBasis

Compositional spline in the clr space (evaluated on the grid t.fine)
comp.spline.clr = ZB_base%*%ZB_coef

Compositional spline in the Bayes space (evaluated on the grid t.fine)
comp.spline = fcenLRinv(t.fine, diff(t.fine)[1:2], comp.spline.clr)

dens.true = dnorm(t.fine, mean, sd)/trapzc(diff(t.fine)[1:2], dnorm(t.fine, mean, sd))

Plot of compositional spline together with raw density data
matplot(t.fine, comp.spline, type="l",
 lty=1, las=1, col="darkblue", xlab="t",
 ylab="density", lwd=2, cex.axis=1.2, cex.lab=1.2, ylim=c(0, 0.28))
matpoints(t.mid, dens.raw, pch = 8, col="darkblue", cex=1.3)
constSum

Add true normal density function
matlines(t.fine,dens.true,col="darkred",lwd=2)

constSum | Constant sum

Description
Closes compositions to sum up to a given constant (default 1), by dividing each part of a composition by its row sum.

Usage
constSum(x, const = 1, na.rm = TRUE)

Arguments
- `x` multivariate data ideally of class data.frame or matrix
- `const` constant, the default equals 1.
- `na.rm` removing missing values.

Value
The data for which the row sums are equal to `const`.

Author(s)
Matthias Templ

Examples
```r
data(expenditures)
constSum(expenditures)
constSum(expenditures, 100)
```
coord

Coordinate representation of compositional tables

Description

General approach to orthonormal coordinates for compositional tables

Usage

coord(x, SBPr, SBPc)

```r
## S3 method for class 'coord'
print(x, ...)
```

Arguments

- `x` an object of class “table”, “data.frame” or “matrix”
- `SBPr` sequential binary partition for rows
- `SBPc` sequential binary partition for columns
- `...` further arguments passed to the print function

Details

A contingency or propability table can be considered as a two-factor composition, we refer to compositional tables. This function constructs orthonomal coordinates for compositional tables using the balances approach for given sequential binary partitions on rows and columns of the compositional table.

Value

Row and column balances and odds ratios as coordinate representations of the independence and interaction tables, respectively.

- `row_balances` row balances
- `row_bin` binary partition for rows
- `col_balances` column balances
- `col_bin` binary partition for columns
- `odds_ratios_coord` odds ratio coordinates

Author(s)

Kamila Facevicova, and minor adaption by Matthias Templ
corCoDa

References

Examples

```r
x <- rbind(c(1,5,3,6,8,4),c(6,4,9,5,8,12),c(15,2,68,42,11,6),
          c(20,15,4,6,23,8),c(11,20,35,26,44,8))
x
SBPc <- rbind(c(1,1,1,1,-1,-1),c(1,-1,-1,-1,0,0),c(0,1,1,-1,0,0),
              c(0,1,-1,0,0,0),c(0,0,0,0,0,1),c(0,0,0,0,1,-1))
SBPc
SBPr <- rbind(c(1,1,1,-1,-1),c(1,1,-1,0,0),c(1,-1,0,0,0),c(0,0,0,1,-1))
SBPr
result <- coord(x, SBPr, SBPc)
result
data(socExp)
```

corCoDa

Correlations for compositional data

Description

This function computes correlation coefficients between compositional parts based on symmetric pivot coordinates.

Usage

```r
corCoDa(x, ...)
```

Arguments

- `x`: a matrix or data frame with compositional data
- `...`: additional arguments for the function `cor`

Value

A compositional correlation matrix.

Author(s)

Petra Kynclova

References

Examples

```r
data(expenditures)
corCoDa(expenditures)
x <- arcticLake
corCoDa(x)
```

cubeCoord

Coordinate representation of a compositional cube and of a sample of compositional cubes

Description

cubeCoord computes a system of orthonormal coordinates of a compositional cube. Computation of either pivot coordinates or a coordinate system based on the given SBP is possible.

Wrapper (cubeCoordWrapper): For each compositional cube in the sample cubeCoordWrapper computes a system of orthonormal coordinates and provide a simple descriptive analysis. Computation of either pivot coordinates or a coordinate system based on the given SBP is possible.

Usage

```r
cubeCoord(  
  x,  
  row.factor = NULL,  
  col.factor = NULL,  
  slice.factor = NULL,  
  value = NULL,  
  SBPr = NULL,  
  SBPc = NULL,  
  SBPs = NULL,  
  pivot = FALSE,  
  print.res = FALSE
)
```

```r
cubeCoordWrapper(  
  X,  
  obs.ID = NULL,  
  row.factor = NULL,  
  col.factor = NULL,  
  slice.factor = NULL,  
  value = NULL,  
  SBPr = NULL,  
  SBPc = NULL,  
  SBPs = NULL,  
  pivot = FALSE,  
  test = FALSE,  
  n.boot = 1000
)
```
Arguments

x a data frame containing variables representing row, column and slice factors of the respective compositional cube and variable with the values of the composition.

row.factor name of the variable representing the row factor. Needs to be stated with the quotation marks.

col.factor name of the variable representing the column factor. Needs to be stated with the quotation marks.

slice.factor name of the variable representing the slice factor. Needs to be stated with the quotation marks.

value name of the variable representing the values of the composition. Needs to be stated with the quotation marks.

SBPr an $I - 1 \times I$ array defining the sequential binary partition of the values of the row factor, where I is the number of the row factor levels. The values assigned in the given step to the $+$ group are marked by 1, values from the $-$ group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically.

SBPc an $J - 1 \times J$ array defining the sequential binary partition of the values of the column factor, where J is the number of the column factor levels. The values assigned in the given step to the $+$ group are marked by 1, values from the $-$ group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically.

SBPs an $K - 1 \times K$ array defining the sequential binary partition of the values of the slice factor, where K is the number of the slice factor levels. The values assigned in the given step to the $+$ group are marked by 1, values from the $-$ group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically.

pivot logical, default is FALSE. If TRUE, or one of the SBPs is not defined, its pivot version is used.

print.res logical, default is FALSE. If TRUE, the output is displayed in the Console.

X a data frame containing variables representing row, column and slice factors of the respective compositional cubes, variable with the values of the composition and variable distinguishing the observations.

obs.ID name of the variable distinguishing the observations. Needs to be stated with the quotation marks.

test logical, default is FALSE. If TRUE, the bootstrap analysis of coordinates is provided.

n.boot number of bootstrap samples.

Details

cubeCoord

This transformation moves the IJK-part compositional cubes from the simplex into a (IJK-1)-dimensional real space isometrically with respect to its three-factorial nature.
Wrapper (cubeCoordWrapper): Each of n IJK-part compositional cubes from the sample is with respect to its three-factorial nature isometrically transformed from the simplex into a (IJK-1)-dimensional real space. Sample mean values and standard deviations are computed and using bootstrap an estimate of 95% confidence interval is given.

Value

- **Coordinates**: an array of orthonormal coordinates.
- **Grap.rep**: graphical representation of the coordinates. Parts denoted by + form the groups in the numerator of the respective computational formula, parts - form the denominator and parts . are not involved in the given coordinate.
- **Row.balances**: an array of row balances.
- **Column.balances**: an array of column balances.
- **Slice.balances**: an array of slice balances.
- **Row.column.OR**: an array of row-column OR coordinates.
- **Row.slice.OR**: an array of row-slice OR coordinates.
- **Column.slice.OR**: an array of column-slice OR coordinates.
- **Row.col.slice.OR**: an array of coordinates describing the mutual interaction between all three factors.
- **Contrast.matrix**: contrast matrix.
- **Log.ratios**: an array of pure log-ratios between groups of parts without the normalizing constant.
- **Coda.cube**: cube form of the given composition.
- **Bootstrap**: array of sample means, standard deviations and bootstrap confidence intervals.
- **Cubes**: Cube form of the given compositions.

Author(s)

Kamila Facevicova

References

See Also

- tabCoord
- tabCoordWrapper
Examples

>>>>>>>>>>>>>>>>>>>>
Coordinate representation of a CoDa Cube
Not run:
example from Fačevičov'a (2019)
data(employment2)
CZE <- employment2[which(employment2$Country == 'CZE'),]

pivot coordinates
cubeCoord(CZE, "Sex", 'Contract', "Age", 'Value')

coordinates with given SBP

r <- t(c(1,-1))
c <- t(c(1,-1))
s <- rbind(c(1,-1,-1), c(0,1,-1))
cubeCoord(CZE, "Sex", 'Contract', "Age", 'Value', r,c,s)

End(Not run)

>>>>>>>>>>>>>>>>>>>>
Analysis of a sample of CoDa Cubes
Not run:
example from Fačevičov'a (2019)
data(employment2)
Compositional tables approach,
analysis of the relative structure.
An example from Fačevičov'a (2019)

pivot coordinates
cubeCoordWrapper(employment2, 'Country', 'Sex', 'Contract', 'Age', 'Value',
test=TRUE)

coordinates with given SBP (defined in the paper)

r <- t(c(1,-1))
c <- t(c(1,-1))
s <- rbind(c(1,-1,-1), c(0,1,-1))
res <- cubeCoordWrapper(employment2, 'Country', 'Sex', 'Contract', "Age", 'Value', r,c,s, test=TRUE)

Classical approach,
generalized linear mixed effect model.

library(lme4)
employment2$y <- round(employment2$Value*1000)
glmer(y~Sex*Age*Contract+(1|Country),data=employment2,family=poisson)

other relations within cube (in the log-ratio form)
e.g. ratio between women and man in the group FT, 15to24
and ratio between age groups 15to24 and 55plus

transformation matrix
T <- rbind(c(1, rep(0, 5), -1, rep(0, 5)), c(rep(c(1/4, 0, -1/4), 4)))
T %*% t(res$Contrast.matrix) %*% res$Bootstrap[, 1]

End(Not run)

daCoDa

Linear and quadratic discriminant analysis for compositional data.

Description

Linear and quadratic discriminant analysis for compositional data using either robust or classical estimation.

Usage

daCoDa(x, grp, coda = TRUE, method = "classical", rule = "linear", ...)

Arguments

- `x`: a matrix or data frame containing the explanatory variables
- `grp`: grouping variable: a factor specifying the class for each observation.
- `coda`: TRUE, when the underlying data are compositions.
- `method`: "classical" or "robust"
- `rule`: a character, either "linear" (the default) or "quadratic".
- `...`: additional arguments for the functions passed through

Details

Compositional data are expressed in orthonormal (ilr) coordinates (if coda==TRUE). For linear discriminant analysis the functions LdaClassic (classical) and Linda (robust) from the package rrcov are used. Similarly, quadratic discriminant analysis uses the functions QdaClassic and QdaCov (robust) from the same package.

The classical linear and quadratic discriminant rules are invariant to ilr coordinates and clr coefficients. The robust rules are invariant to ilr transformations if affine equivariant robust estimators of location and covariance are taken.

Value

An S4 object of class LdaClassic, Linda, QdaClassic or QdaCov. See package rrcov for details.

Author(s)

Jutta Gamper
References

See Also
LdaClassic, Linda, QdaClassic, QdaCov

Examples
```r
## toy data (non-compositional)
require(MASS)
x1 <- mvrnorm(20,c(0,0,0),diag(3))
x2 <- mvrnorm(30,c(3,0,0),diag(3))
x3 <- mvrnorm(40,c(0,3,0),diag(3))
X <- rbind(x1,x2,x3)
gp=c(rep(1,20),rep(2,30),rep(3,40))
clas1 <- daCoDa(X, gp, coda=FALSE, method = "classical", rule="linear")
summary(clas1)
## predict runs only with newest verison of rrcov
## Not run:
predict(clas1)

## End(Not run)
# specify different prior probabilities
clas2 <- daCoDa(X, gp, coda=FALSE, prior=c(1/3, 1/3, 1/3))
summary(clas2)

## compositional data
data(coffee)
x <- coffee[coffee$sort!="robusta",2:7]
group <- droplevels(coffee$sort[coffee$sort!="robusta"])
cof.cla <- daCoDa(x, group, method="classical", rule="quadratic")
cof.rob <- daCoDa(x, group, method="robust", rule="quadratic")
## predict runs only with newest verison of rrcov
## Not run:
predict(cof.cla)@ct
predict(cof.rob)@ct

## End(Not run)
```

daFisher

Discriminant analysis by Fisher Rule.

Description

Discriminant analysis by Fishers rule using the logratio approach to compositional data.
Usage

daFisher(x, grp, coda = TRUE, method = "classical", plotScore = FALSE, ...)

S3 method for class 'daFisher'
print(x, ...)

S3 method for class 'daFisher'
predict(object, ..., newdata)

S3 method for class 'daFisher'
summary(object, ...)

Arguments

x a matrix or data frame containing the explanatory variables (training set)
grp grouping variable: a factor specifying the class for each observation.
coda TRUE, when the underlying data are compositions.
method "classical" or "robust" estimation.
plotScore TRUE, if the scores should be plotted automatically.
... additional arguments for the print method passed through
object object of class "daFisher"
newdata new data in the appropriate form (CoDa, etc)

Details

The Fisher rule leads only to linear boundaries. However, this method allows for dimension reduction and thus for a better visualization of the separation boundaries. For the Fisher discriminant rule (Fisher, 1938; Rao, 1948) the assumption of normal distribution of the groups is not explicitly required, although the method looses its optimality in case of deviations from normality.

The classical Fisher discriminant rule is invariant to ilr coordinates and clr coefficients. The robust rule is invariant to ilr transformations if affine equivariant robust estimators of location and covariance are taken.

Robustification is done (method "robust") by estimating the columnwise means and the covariance by the Minimum Covariance Estimator.

Value

an object of class "daFisher" including the following elements

B Between variance of the groups
W Within variance of the groups
loadings loadings
scores fisher scores
mc table indicating misclassifications
mcrate misclassification rate
Author(s)
Peter Filzmoser, Matthias Templ.

References

See Also
Linda

Examples
```r
## toy data (non-compositional)
require(MASS)
x1 <- mvrnorm(20,c(0,0,0),diag(3))
x2 <- mvrnorm(30,c(3,0,0),diag(3))
x3 <- mvrnorm(40,c(0,3,0),diag(3))
X <- rbind(x1,x2,x3)
grp=c(rep(1,20),rep(2,30),rep(3,40))
#par(mfrow=c(1,2))
d1 <- daFisher(X,grp=grp,method="classical",coda=FALSE)
d2 <- daFisher(X,grp=grp,method="robust",coda=FALSE)
d2
summary(d2)
predict(d2, newdata = X)

## example with olive data:
## Not run:
data(olive, package = "RnavGraph")
# exclude zeros (alternatively impute them if
```
the detection limit is known using impRZilr()
ind <- which(olive == 0, arr.ind = TRUE)[,1]
olives <- olive[-ind, ,]
x <- olives[, 4:10]
grp <- olives$Region # 3 groups
res <- daFisher(x, grp)
res
summary(res)
res <- daFisher(x, grp, plotScore = TRUE)
res
summary(res)
predict(res, newdata = x)
res <- daFisher(x, grp, method = "robust")
res
summary(res)
predict(res, newdata = x)

9 regions
grp <- olives$Area
res <- daFisher(x, grp, plotScore = TRUE)
res
summary(res)
predict(res, newdata = x)

End(Not run)

data(economy)

Description

Household and government consumptions, gross capital formation and import and exports of goods and services.

Usage

data(economy)

Format

A data frame with 30 observations and 7 variables

Details

- country country name
- country2 country name, short version
- HHconsumption Household and NPISH final consumption expenditure
- GOVconsumption Final consumption expenditure of general government
- capital Gross capital formation
- exports Exports of goods and services
- imports Imports of goods and services
educFM

Author(s)
Peter Filzmoser, Matthias Templ <matthias.templ@tuwien.ac.at>

References

Examples

data(economy)
str(economy)

educFM

education level of father (F) and mother (M)

Description
Education level of father (F) and mother (M) in percentages of low (l), medium (m), and high (h) of 31 countries in Europe.

Usage
data(educFM)

Format
A data frame with 31 observations and 8 variables

Details
• country community code
• F.l percentage of females with low educuation level
• F.m percentage of females with medium educuation level
• F.h percentage of females with high educuation level
• F.l percentage of males with low educuation level
• F.m percentage of males with medium educuation level
• F.h percentage of males with high educuation level

Author(s)
Peter Filzmoser, Matthias Templ

Source
from Eurostat, https://ec.europa.eu/eurostat/
Examples

```r
data(educFM)
str(educFM)
```

<table>
<thead>
<tr>
<th>efsa</th>
<th>efsa nutrition consumption</th>
</tr>
</thead>
</table>

Description

Comprehensive European Food Consumption Database

Format

A data frame with 87 observations on the following 22 variables.

- Country: country name
- Pop.Class: population class
- grains: Grains and grain-based products
- vegetables: Vegetables and vegetable products (including fungi)
- roots: Starchy roots and tubers
- nuts: Legumes, nuts and oilseeds
- fruit: Fruit and fruit products
- meat: Meat and meat products (including edible offal)
- fish: Fish and other seafood (including amphibians, rept)
- milk: Milk and dairy products
- eggs: Eggs and egg products
- sugar: Sugar and confectionary
- fat: Animal and vegetable fats and oils
- juices: Fruit and vegetable juice
- nonalcoholic: Non-alcoholic beverages (excepting milk based beverages)
- alcoholic: Alcoholic beverages
- water: Drinking water (water without any additives)
- herbs: Herbs, spices and condiments
- small_children_food: Food for infants and small children
- special: Products for special nutritional use
- composite: Composite food (including frozen products)
- snacks: Snacks, desserts, and other foods
Details

The Comprehensive Food Consumption Database is a source of information on food consumption across the European Union (EU). The food consumption are reported in grams per day (g/day).

Source

efsa

Examples

```r
data(efsa)
```

election election data

Description

Results of a election in Germany 2013 in different federal states

Usage

```r
data(election)
```

Format

A data frame with 16 observations and 8 variables

Details

Votes for the political parties in the elections (compositional variables), and their relation to the unemployment rate and the average monthly income (external non-compositional variables). Votes are for the Christian Democratic Union and Christian Social Union of Bavaria, also called The Union (CDU/CSU), Social Democratic Party (SDP), The Left (DIE LINKE), Alliance ’90/The Greens (GRUNE), Free Democratic Party (FDP) and the rest of the parties participated in the elections (other parties). The votes are examined in absolute values (number of valid votes). The unemployment in the federal states is reported in percentages, and the average monthly income in Euros.

- **CDU_CSU** Christian Democratic Union and Christian Social Union of Bavaria, also called The Union
- **SDP** Social Democratic Party
- **GRUENE** Alliance ’90/The Greens
- **FDP** Free Democratic Party
- **DIE_LINKE** The Left
- **other_parties** Votes for the rest of the parties participated in the elections
- **unemployment** Unemployment in the federal states in percentages
- **income** Average monthly income in Euros
Author(s)
Petra Klynclova, Matthias Templ

Source
German Federal Statistical Office

References

Examples

data(election)
str(election)

<table>
<thead>
<tr>
<th>electionATbp</th>
<th>Austrian presidential election data</th>
</tr>
</thead>
</table>

Description
Results the Austrian presidential election in October 2016.

Usage
data(electionATbp)

Format
A data frame with 2202 observations and 10 variables

Details
Votes for the candidates Hofer and Van der Bellen.

- GKZ Community code
- Name Name of the community
- Eligible eligible votes
- Votes_total total votes
- Votes_invalid invalid votes
- Votes_valid valid votes
- Hofer_total votes for Hofer
- Hofer_perc votes for Hofer in percentages
- VanderBellen_total votes for Van der Bellen
- VanderBellen_perc votes for Van der Bellen in percentages
employment

Author(s)
 Peter Filzmoser

Source
 OpenData Austria, https://www.data.gv.at/

Examples
 data(electionATbp)
 str(electionATbp)

———

employment
 employment in different countries by gender and status.

———

Description
 employment in different countries by gender and status.

Usage
 data(employment)

Format
 A three-dimensional table

Examples
 data(employment)
 str(employment)
 employment

———

employment2
 Employment in different countries by Sex, Age, Contract, Value

———

Description
 Estimated number of employees in 42 countries in 2015, distributed according to gender (Women/Men), age (15-24, 25-54, 55+) and type of contract (Full- and part-time).

Usage
 data(employment2)
Format

A data.frame with 504 rows and 5 columns.

Details

For each country in the sample, an estimated number of employees in the year 2015 was available, divided according to gender and age of employees and the type of the contract. The data form a sample of 42 cubes with two rows (gender), two columns (type of contract) and three slices (age), which allow for a deeper analysis of the overall employment structure, not just from the perspective of each factor separately, but also from the perspective of the relations/interactions between them. Thorough analysis of the sample is described in Facevicova (2019).

• Country
• Sex (gender, males (M) and females (F))
• Age (age class, young (category 15 - 24), middle-aged (25 - 54) and older (55+) employees)
• Contract (factor, defining the type of contract, full-time (FT) and part-time (PT) contracts)
• Value (Number of employees in the given category (in thousands))

Author(s)

Kamila Facevicova

Source

https://stats.oecd.org

References

Examples

data(employment2)
head(employment2)
expenditures

Usage

data(employment_df)

Format

A data frame with 132 rows and 4 columns.

Examples

data(employment_df)
head(employment_df)

expenditures

synthetic household expenditures toy data set

Description

This data set from Aitchison (1986), p. 395, describes household expenditures (in former Hong Kong dollars) on five commodity groups.

Usage

data(expenditures)

Format

A data frame with 20 observations on the following 5 variables.

Details

• housing housing (including fuel and light)
• foodstuffs foodstuffs
• alcohol alcohol and tobacco
• other other goods (including clothing, footwear and durable goods)
• services services (including transport and vehicles)

This data set contains household expenditures on five commodity groups of 20 single men. The variables represent housing (including fuel and light), foodstuff, alcohol and tobacco, other goods (including clothing, footwear and durable goods) and services (including transport and vehicles). Thus they represent the ratios of the men’s income spent on the mentioned expenditures.

Author(s)

Matthias Templ <matthias.templ@tuwien.ac.at>, Karel Hron
References

Examples

```r
data(expenditures)
## imputing a missing value in the data set using k-nearest neighbor imputation:
expenditures[1,3] <- NA
impKNNa(expenditures)$xImp[1,3]
```

Description

Mean consumption expenditure of households at EU-level. The final consumption expenditure of households encompasses all domestic costs (by residents and non-residents) for individual needs.

Format

A data frame with 27 observations on the following 12 variables.

- Food
- Alcohol
- Clothing
- Housing
- Furnishings
- Health
- Transport
- Communications
- Recreation
- Education
- Restaurants
- Other

Source

Eurostat

Examples

```r
data(expendituresEU)
```
fcenLR transformation (functional)

Description

fcenLR[lambda] transformation: mapping from $B^2(\lambda)$ into $L^2(\lambda)$

Usage

fcenLR(z, z_step, density)

Arguments

- `z`: grid of points defining the abscissa
- `z_step`: step of the grid of the abscissa
- `density`: grid evaluation of the lambda-density

Value

- `out`: grid evaluation of the lambda-density in $L^2(\lambda)$

Author(s)

R. Talska<talkrenata@seznam.cz>, A. Menafoglio, K. Hron<karehron@upol.cz>, J. J. Egozcue, J. Palarea-Albaladejo

References

Examples

```r
# Example (normal density)
t = seq(-4.7, 4.7, length = 1000)
t_step = diff(t[1:2])
mean = 0; sd = 1.5
f = dnorm(t, mean, sd)
f1 = f/trapzc(t_step,f)

f.fcenLR = fcenLR(t, t_step, f)
f.fcenLRinv = fcenLRinv(t.fine, t_step, f.fcenLR)

plot(t, f.fcenLR, type="l", las=1, ylab="fcenLR(density)",
     cex.lab=1.2,cex.axis=1.2, col="darkblue", lwd=2)
abline(h=0, col="red")
```
fcenLRinv

Inverse of fcenLR transformations (functional)

Description
Inverse of fcenLR transformations

Usage
fcenLRinv(z, z_step, fcenLR, k = 1)

Arguments
z grid of points defining the abscissa
z_step step of the grid of the abscissa
fcenLR grid evaluation of (i) fcenLR[lambda] transformed lambda-density, (ii) fcenLR[u] transformed P-density, (iii) fcenLR[P] transformed P-density
k value of the integral of density; if k=1 it returns a unit-integral representation of density

Details
By default, it returns a unit-integral representation of density.

Value
out ... grid evaluation of (i) lambda-density in B2(lambda), (ii) P-density in unweighted B2(lambda), (iii) P-density in B2(P)

Author(s)
R. Talska <talskarenata@seznam.cz>, A. Menafoglio, K. Hron <karel.hron@upol.cz>, J. J. Egozcue, J. Palarea-Albaladejo

Examples
Example (normal density)
t = seq(-4.7, 4.7, length = 1000)
t_step = diff(t[1:2])
mean = 0; sd = 1.5
f = dnorm(t, mean, sd)
f1 = f/trapzc(t_step,f)
fcenLRp

Description

fcenLRp transformation: mapping from \(B_2(P) \) into \(L_2(P) \)

Usage

\[
\text{fcenLRp}(z, \ z_\text{step}, \ \text{density}, \ p)
\]

Arguments

- \(z \) grid of points defining the abscissa
- \(z_\text{step} \) step of the grid of the abscissa
- \(\text{density} \) grid evaluation of the \(P \)-density
- \(p \) density of the reference measure \(P \)

Value

\[
\text{out} \quad \text{grid evaluation of the } P \text{-density in } L_2(P)
\]

Author(s)

R. Talska <talskarenata@seznam.cz>, A. Menafoglio, K. Hron <karel.hron@upol.cz>, J.J. Egozcue, J. Palarea-Albaladejo

References

fcenLRu transformation (functional)

Description

fcenLR[u] transformation: mapping from B2(P) into unweighted L2(lambda)

Usage

fcenLRu(z, z_step, density, p)

Arguments

z grid of points defining the abscissa
z_step step of the grid of the abscissa
density grid evaluation of the P-density
p density of the reference measure P

Value

out grid evaluation of the P-density in unweighted L2(lambda)

Author(s)

R. Talska<talkarenata@seznam.cz>, A. Menafoglio, K. Hron<karel.hron@upol.cz>, J. J. Egozcue, J. Palarea-Albaladejo

References

Examples

Common example for all transformations - fcenLR, fcenLRp, fcenLRu
Example (log normal distribution under the reference P)
t = seq(1,10, length = 1000)
t_step = diff(t[1:2])

Log normal density w.r.t. Lebesgue reference measure in B2(lambda)
f = dlnorm(t, meanlog = 1.5, sdlog = 0.5)

Log normal density w.r.t. Lebesgue reference measure in L2(lambda)
f.fcenLR = fcenLR(t, t_step, f)

New reference given by exponential density
p = dexp(t,0.25)/trapzc(t_step,dexp(t,0.25))
Plot of log normal density w.r.t. Lebesgue reference measure
in B2(\lambda) together with the new reference density p
matplot(t,f,type="l",las=1, ylab="density",cex.lab=1.2,cex.axis=1.2,
 col="black",lwd=2,ylim=c(0,0.3),xlab="t")
matlines(t,p,col="blue")
text(2,0.25,"p",col="blue")
text(4,0.22,"f",col="black")

Log-normal density w.r.t. exponential distribution in B2(P)
(unit-integral representation)
fp = (f/p)/trapzct(t_step,f/p)

Log-normal density w.r.t. exponential distribution in L2(P)
fp.fcenLRp = fcenLRp(t,t_step,fp,p)

Log-normal density w.r.t. exponential distribution in L2(\lambda)
fp.fcenLRu = fcenLRu(t,t_step,fp,p)

Log-normal density w.r.t. exponential distribution in B2(\lambda)
fp.u = fcenLRinv(t,t_step,fp.fcenLRu)

Plot
layout(rbind(c(1,2,3,4),c(7,8,5,6)))
par(cex=1.1)

plot(t, f.fcenLR, type='l', ylab=expression(fcenLR[\lambda](f)),
 xlab='t',las=1,ylim=c(-3,3),
 main=expression(bold(atop(paste('\(a\) Representation of f in ', \(L^2, (\lambda))\),'[not weighted]'))) abline(h=0,col="red")

plot(t, f, type='l', ylab=expression(f[\lambda]),
 xlab='t',las=1,ylim=c(0,0.4),
 main=expression(bold(atop(paste('\(b\) Density f in ', \(B^2, (\lambda))\),'[not weighted]'))))

plot(t, fp, type='l', ylab=expression(f[P]), xlab='t',
 las=1,ylim=c(0,0.4),
 main=expression(bold(atop(paste('\(c\) Density f in ', \(B^2, (P))\),'[weighted with P]'))))

plot(t, fp.fcenLRp, type='l', ylab=expression(fcenLRP[P](f[P])),
 xlab='t',las=1,ylim=c(-3,3),
 main=expression(bold(atop(paste('\(d\) Representation of f in ', \(L^2, (P))\),'[weighted with P]')))) abline(h=0,col="red")

plot(t, fp.u, type='l', ylab=expression(paste(\(\omega^{-1}\),f[P]))),
 xlab='t',las=1,ylim=c(0,0.4),
 main=expression(bold(atop(paste('\(e\) Representation of f in ', \(B^2, (\lambda))\),'[unweighted]'))))

plot(t, fp.fcenLRu, type='l', ylab=expression(paste(fcenLRu[P](f[P]))),
 xlab='t',las=1,ylim=c(-3,3),
 main=expression(bold(atop(paste('\(f\) Representation of f in ', \(L^2, (\lambda))\),'[unweighted]')))) abline(h=0,col="red")
foodbalance country food balances

Description
Food balance in each country (2018)

Format
A data frame with 115 observations on the following 116 variables.

- country
- Cereals - Excluding Beer
- Food balance on cereals
-
- Alcohol - Non-Food
- Food balance on alcohol

Source

Examples
data(foodbalance)

GDPsatis GDP satisfaction

Description
Satisfaction of GDP in 31 countries. The GDP is measured per capita from the year 2012.

Usage
data(GDPsatis)

Format
A data frame with 31 observations and 8 variables
Details

- country community code
- gdp GDP per capita in 2012
- very.bad satisfaction very bad
- bad satisfaction bad
- moderately.bad satisfaction moderately bad
- moderately.good satisfaction moderately good
- good satisfaction good
- very.good satisfaction very good

Author(s)

Peter Filzmoser, Matthias Templ

Source

from Eurostat, https://ec.europa.eu/eurostat/

Examples

```r
data(GDPsatis)
str(GDPsatis)
```

gemas   GEMAS geochemical data set

Description

Geochemical data set on agricultural and grazing land soil

Usage

```r
data(gemas)
```

Format

A data frame with 2108 observations and 30 variables
The sampling, at a density of 1 site/2500 sq. km, was completed at the beginning of 2009 by collecting 2211 samples of agricultural soil (Ap-horizon, 0-20 cm, regularly ploughed fields), and 2118 samples from land under permanent grass cover (grazing land soil, 0-10 cm), according to an agreed field protocol. All GEMAS project samples were shipped to Slovakia for sample preparation, where they were air dried, sieved to <2 mm using a nylon screen, homogenised and split to subsamples for analysis. They were analysed for a large number of chemical elements. In this sample, the main elements by X-ray fluorescence are included as well as the composition on sand, silt, clay.
Author(s)

GEMAS is a cooperation project between the EuroGeoSurveys Geochemistry Expert Group and Eurometaux. Integration in R, Peter Filzmoser and Matthias Templ.

References

Examples

data(gemas)
str(gemas)
sample sites
Not run:
require(ggmap)
map <- get_map("europe", source = "stamen", maptype = "watercolor", zoom=4)
ggmap(map) + geom_point(aes(x=longitude, y=latitude), data=gemas)
map <- get_map("europe", zoom=4)
ggmap(map) + geom_point(aes(x=longitude, y=latitude), data=gemas, size=0.8)
End(Not run)

Description

Gjovik geochemical data set

Format

A data frame with 615 observations and 63 variables.

- ID a numeric vector
- MAT type of material
- mE32wgs longitude
- mN32wgs latitude
- XC00 X coordinates
- YC00 Y coordinates
- ALT altitude
- kmNS some distance north-south
- kmSN some distance south-north
- LITHO lithologies
- Ag a numeric vector
- Al a numeric vector
- As a numeric vector
- Au a numeric vector
- B a numeric vector
- Ba a numeric vector
- Be a numeric vector
- Bi a numeric vector
- Ca a numeric vector
- Cd a numeric vector
- Ce a numeric vector
- Co a numeric vector
- Cr a numeric vector
- Cs a numeric vector
- Cu a numeric vector
- Fe a numeric vector
- Ga a numeric vector
- Ge a numeric vector
- Hf a numeric vector
- Hg a numeric vector
- In a numeric vector
- K a numeric vector
- La a numeric vector
- Li a numeric vector
- Mg a numeric vector
- Mn a numeric vector
- Mo a numeric vector
- Na a numeric vector
- Nb a numeric vector
- Ni a numeric vector
- P a numeric vector
- Pb a numeric vector
- Pd a numeric vector
- Pt a numeric vector
• Rb a numeric vector
• Re a numeric vector
• S a numeric vector
• Sb a numeric vector
• Sc a numeric vector
• Se a numeric vector
• Sn a numeric vector
• Sr a numeric vector
• Ta a numeric vector
• Te a numeric vector
• Th a numeric vector
• Tl a numeric vector
• U a numeric vector
• V a numeric vector
• W a numeric vector
• Y a numeric vector
• Zn a numeric vector
• Zr a numeric vector

Details

Geochemical data set. 41 sample sites have been investigated. At each site, 15 different sample materials have been collected and analyzed for the concentration of more than 40 chemical elements. Soil: CHO - C horizon, OHO - O horizon. Mushroom: LAC - milkcap. Plant: BIL - birch leaves, BLE - blueberry leaves, BLU - blueberry twigs, BTW - birch twigs, CLE - cowberry leaves, COW - cowberry twigs, EQU - horsetail, FER - fern, HYL - terrestrial moss, PIB - pine bark, SNE - spruce needles, SPR - spruce twigs.

Author(s)

Peter Filzmoser, Dominika Miksova

References

Examples

data(gjovik)
str(gjovik)
This function calculates the geometric mean.

Usage

`gm(x)`

Arguments

- `x`: a vector

Details

`gm` calculates the geometric mean for all positive entries of a vector. Please note that there is a faster version available implemented with Rcpp but it currently do not pass CRAN checks cause of use of Rcpp11 features. This C++ version accounts for over- and underflows. It is placed in inst/doc

Author(s)

Matthias Templ

Examples

`gm(c(3,5,3,6,7))`

Computes the geometric mean(s) of a numeric vector, matrix or data.frame

Usage

`gmean_sum(x, margin = NULL)`

`gmean(x, margin = NULL)`

Arguments

- `x`: matrix or data.frame with numeric entries
- `margin`: a vector giving the subscripts which the function will be applied over, 1 indicates rows, 2 indicates columns, 3 indicates all values.
Details

gmean_sum calculates the totals based on geometric means while gmean calculates geometric means on rows (margin = 1), on columns (margin = 2), or on all values (margin = 3)

Value

geometric means (if gmean is used) or totals (if gmean_sum is used)

Author(s)

Matthias Templ

Examples

data("precipitation")
gmean_sum(precipitation)
gmean_sum(precipitation, margin = 2)
gmean_sum(precipitation, margin = 1)
gmean_sum(precipitation, margin = 3)
addmargins(precipitation)
addmargins(precipitation, FUN = gmean_sum)
addmargins(precipitation, FUN = mean)
addmargins(precipitation, FUN = gmean)

data("arcticLake", package = "robCompositions")
gmean(arcticLake$sand)
gmean(as.numeric(arcticLake[1,]))
gmean(arcticLake)
gmean(arcticLake, margin = 1)
gmean(arcticLake, margin = 2)
gmean(arcticLake, margin = 3)

govexp government spending

Description

Government expenditures based on COFOG categories

Format

A (tidy) data frame with 5140 observations on the following 4 variables.

- country Country of origin
- category The COFOG expenditures are divided into the following ten categories: general public services; defence; public order and safety; economic affairs; environmental protection; housing and community amenities; health; recreation, culture and religion; education; and social protection.
- year Year
- value COFOG spendings/expenditures
Details

The general government sector consists of central, state and local governments, and the social security funds controlled by these units. The data are based on the system of national accounts, a set of internationally agreed concepts, definitions, classifications and rules for national accounting. The classification of functions of government (COFOG) is used as classification system. The central government spending by category is measured as a percentage of total expenditures.

Author(s)

translated from https://data.oecd.org/ and restructured by Matthias Templ

Source

OECD: https://data.oecd.org/

Examples

data(govexp)
str(govexp)

Description

Distribution of European Y-chromosome DNA (Y-DNA) haplogroups by region in percentage.

Format

A data frame with 38 observations on the following 12 variables.

• I1 pre-Germanic (Nordic)
• I2b pre-Celto-Germanic
• I2a1 Sardinian, Basque
• I2a2 Dinaric, Danubian
• N1c1 Uralo-Finnic, Baltic, Siberian
• R1a Balto-Slavic, Mycenaean Greek, Macedonia
• R1b Italic, Celtic, Germanic; Hitite, Armenian
• G2a Caucasian, Greco-Anatolien
• E1b1b North and Eastern Afrika, Near Eastern, Balkanic
• J2 Mesopotamian, Minoan Greek, Phoenician
• J1 Semitic (Arabic, Jewish)
• T Near-Eastern, Egyptian, Ethiopian, Arabic
Details

Human Y-chromosome DNA can be divided in genealogical groups sharing a common ancestor, called haplogroups.

Source

Eupedia: https://www.eupedia.com/europe/european_y-dna_haplogroups.shtml

Examples

data(haplogroups)

<table>
<thead>
<tr>
<th>honey</th>
<th>honey compositions</th>
</tr>
</thead>
</table>

Description

The contents of honey, syrup, and adulteration mineral elements.

Format

A data frame with 429 observations on the following 17 variables.

- `class` adulterated honey, Honey or Syrup
- `group` group information
- `group3` detailed group information
- `group1` less detailed group information
- `region` region
- `Al` chemical element
- `B` chemical element
- `Ba` chemical element
- `Ca` chemical element
- `Fe` chemical element
- `K` chemical element
- `Mg` chemical element
- `Mn` chemical element
- `Na` chemical element
- `P` chemical element
- `Sr` chemical element
- `Zn` chemical element
Details
Discrimination of honey and adulteration by elemental chemometrics profiling.

Note
In the original paper, sparse PLS-DA were applied to optimize the classify model and test effectiveness. Classify accuracy were exceeded 87.7 percent.

Source
Mendeley Data, contributed by Liping Luo and translated to R by Matthias Templ

References

Examples

data(honey)

ilr.2x2

ilr coordinates in 2x2 compositional tables

Description
ilr coordinates of original, independent and interaction compositional table using SBP1 and SBP2

Usage
ilr.2x2(x, margin = 1, type = "independence", version = "book")

Arguments

- x: a 2x2 table
- margin: for 2x2 tables available for a whole set of another dimension. For example, if 2x2 tables are available for every country.
- type: choose between “independence” or “interaction” table
- version: the version used in the “paper” below or the version of the “book”.

Value
The ilr coordinates
impAll

Author(s)

Kamila Facevicova, Matthias Templ

References

Examples

data(employment)
ilr.2x2(employment[,,"AUT"])
ilr.2x2(employment[,,"AUT"], version = "paper")
ilr.2x2(employment, margin = 3, version = "paper")
ilr.2x2(employment[,,"AUT"], type = "interaction")

impAll Replacement of rounded zeros and missing values.

Description

Parametric replacement of rounded zeros and missing values for compositional data using classical and robust methods based on ilr coordinates with special choice of balances. Values under detection limit should be saved with the negative value of the detection limit (per variable). Missing values should be coded as NA.

Usage

impAll(x)

Arguments

x data frame

Details

This is a wrapper function that calls impRZilr() for the replacement of zeros and impCoda for the imputation of missing values sequentially. The detection limit is automatically derived form negative numbers in the data set.

Value

The imputed data set.

Note

This function is mainly used by the compositionsGUI.
References

See Also

impCoda, impRZilr

Examples

```r
## see the compositionsGUI
```

```
impCoda

Imputation of missing values in compositional data
```

Description

This function offers different methods for the imputation of missing values in compositional data. Missing values are initialized with proper values. Then iterative algorithms try to find better estimations for the former missing values.

Usage

```r
impCoda(
  x,
  maxit = 10,
  eps = 0.5,
  method = "ltsReg",
  closed = FALSE,
  init = "KNN",
  k = 5,
  dl = rep(0.05, ncol(x)),
  noise = 0.1,
  bruteforce = FALSE
)
```
Arguments

- **x**: data frame or matrix
- **maxit**: maximum number of iterations
- **eps**: convergence criteria
- **method**: imputation method
- **closed**: imputation of transformed data (using ilr transformation) or in the original space (closed equals TRUE)
- **init**: method for initializing missing values
- **k**: number of nearest neighbors (if init $==$ “KNN”)
- **dl**: detection limit(s), only important for the imputation of rounded zeros
- **noise**: amount of adding random noise to predictors after convergency
- **bruteforce**: if TRUE, imputations over dl are set to dl. If FALSE, truncated (Tobit) regression is applied.

Details

eps: The algorithm is finished as soon as the imputed values stabilize, i.e. until the sum of Aitchison distances from the present and previous iteration changes only marginally (eps).

method: Several different methods can be chosen, such as ‘ltReg’: least trimmed squares regression is used within the iterative procedure. ‘lm’: least squares regression is used within the iterative procedure. ‘classical’: principal component analysis is used within the iterative procedure. ‘ltReg2’: least trimmed squares regression is used within the iterative procedure. The imputed values are perturbed in the direction of the predictor by values drawn form a normal distribution with mean and standard deviation related to the corresponding residuals and multiplied by noise.

Value

- **xOrig**: Original data frame or matrix
- **xImp**: Imputed data
- **criteria**: Sum of the Aitchison distances from the present and previous iteration
- **iter**: Number of iterations
- **maxit**: Maximum number of iterations
- **w**: Amount of imputed values
- **wind**: Index of the missing values in the data

Author(s)

Matthias Templ, Karel Hron

References

impKNNa

Imputation of missing values in compositional data using knn methods

Description
This function offers several k-nearest neighbor methods for the imputation of missing values in compositional data.

Usage

impKNNa(
 x,
 method = "knn",
 k = 3,
 metric = "Aitchison",
 agg = "median",
 primitive = FALSE,
 normknn = TRUE,
 das = FALSE,
 adj = "median"
)

Arguments

x data frame or matrix
method method (at the moment, only “knn” can be used)
k number of nearest neighbors chosen for imputation

Examples

data(expenditures)
x <- expenditures
x[1,3]
x[1,3] <- NA
xi <- impCoda(x)$xImp
xi[1,3]
s1 <- sum(x[1,-3])
impS <- sum(xi[1,-3])
xi[,3] * s1/impS

other methods
impCoda(x, method = "lm")
impCoda(x, method = "ltsReg")

See Also

impKNNa, pivotCoord
metric
“Aichison” or “Euclidean”

agg
“median” or “mean”, for the aggregation of the nearest neighbors

primitive
if TRUE, a more enhanced search for the k-nearest neighbors is obtained (see details)

normknn
An adjustment of the imputed values is performed if TRUE

das
deprecated. if TRUE, the definition of the Aitchison distance, based on simple logratios of the compositional part, is used (Aitchison, 2000) to calculate distances between observations. if FALSE, a version using the clr transformation is used.

adj
either ‘median’ (default) or ‘sum’ can be chosen for the adjustment of the nearest neighbors, see Hron et al., 2010.

Details

The Aitchison metric should be chosen when dealing with compositional data, the Euclidean metric otherwise.

If `primitive == FALSE`, a sequential search for the k-nearest neighbors is applied for every missing value where all information corresponding to the non-missing cells plus the information in the variable to be imputed plus some additional information is available. If `primitive == TRUE`, a search of the k-nearest neighbors among observations is applied where in addition to the variable to be imputed any further cells are non-missing.

If `normknn` is TRUE (prefered option) the imputed cells from a nearest neighbor method are adjusted with special adjustment factors (more details can be found online (see the references)).

Value

- **xOrig**: Original data frame or matrix
- **xImp**: Imputed data
- **w**: Amount of imputed values
- **wind**: Index of the missing values in the data
- **metric**: Metric used

Author(s)

Matthias Templ

References

See Also

impCoda
Examples

data(expenditures)
x <- expenditures
x[1,3]
x[1,3] <- NA
xi <- impKNNa(x)$xImp
xi[1,3]

impRZalr()

Description

A modified EM alr-algorithm for replacing rounded zeros in compositional data sets.

Usage

impRZalr(
 x,
 pos = ncol(x),
 dl = rep(0.05, ncol(x) - 1),
 eps = 1e-04,
 maxit = 50,
 bruteforce = FALSE,
 method = "lm",
 step = FALSE,
 nComp = "boot",
 R = 10,
 verbose = FALSE
)

Arguments

x compositional data
pos position of the rationing variable for alr transformation
dl detection limit for each part
eps convergence criteria
maxit maximum number of iterations
bruteforce if TRUE, imputations over dl are set to dl. If FALSE, truncated (Tobit) regression is applied.
method either "lm" (default) or "MM"
step if TRUE, a stepwise (AIC) procedure is applied when fitting models
impRZalr

- **nComp**: if determined, it fixes the number of pls components. If “boot”, the number of pls components are estimated using a bootstrapped cross validation approach.
- **R**: number of bootstrap samples for the determination of pls components. Only important for method “pls”.
- **verbose**: additional print output during calculations.

Details

Statistical analysis of compositional data including zeros runs into problems, because log-ratios cannot be applied. Usually, rounded zeros are considerer as missing not at random missing values. The algorithm first applies an additive log-ratio transformation to the compositions. Then the rounded zeros are imputed using a modified EM algorithm.

Value

- **xOrig**: Original data frame or matrix
- **xImp**: Imputed data
- **wind**: Index of the missing values in the data
- **iter**: Number of iterations
- **eps**: eps

Author(s)

Matthias Templ and Karel Hron

References

See Also

- **impRZilr**

Examples

```r
data(arcticLake)
x <- arcticLake
# generate rounded zeros artificially:
x[x[,1] < 5, 1] <- 0
x[x[,2] < 47, 2] <- 0
xia <- impRZalr(x, pos=3, dl=c(5,47), eps=0.05)
xia$xImp
```
EM-based replacement of rounded zeros in compositional data

Description
Parametric replacement of rounded zeros for compositional data using classical and robust methods based on ilr coordinates with a special choice of balances.

Usage
impRZilr(
 x,
 maxit = 10,
 eps = 0.1,
 method = "pls",
 dl = rep(0.05, ncol(x)),
 variation = FALSE,
 nComp = "boot",
 bruteforce = FALSE,
 noisemethod = "residuals",
 noise = FALSE,
 R = 10,
 correction = "normal",
 verbose = FALSE
)

Arguments

x data.frame or matrix
maxit maximum number of iterations
eps convergency criteria
method either “lm”, “MM” or “pls”
dl Detection limit for each variable. zero for variables with variables that have no detection limit problems.
variation matrix is used to first select number of parts
nComp if determined, it fixes the number of pls components. If “boot”, the number of pls components are estimated using a bootstraped cross validation approach.
bruteforce sets imputed values above the detection limit to the detection limit. Replacement above the detection limit only exceptionally occur due to numerical instabilities. The default is FALSE!
oisemethod adding noise to imputed values. Experimental
noise TRUE to activate noise (experimental)
R number of bootstrap samples for the determination of pls components. Only important for method “pls”.
correction normal or density
verbose additional print output during calculations.
Details

Statistical analysis of compositional data including zeros runs into problems, because log-ratios cannot be applied. Usually, rounded zeros are considered as missing not at random missing values. The algorithm iteratively imputes parts with rounded zeros whereas in each step (1) compositional data are expressed in pivot coordinates (2) tobit regression is applied (3) the rounded zeros are replaced by the expected values (4) the corresponding inverse ilr mapping is applied. After all parts are imputed, the algorithm starts again until the imputations do not change.

Value

- **x** imputed data
- **criteria** change between last and second last iteration
- **iter** number of iterations
- **maxit** maximum number of iterations
- **wind** index of zeros
- **nComp** number of components for method pls
- **method** chosen method

Author(s)

Matthias Templ and Peter Filzmoser

References

See Also

impRZilr

Examples

data(arcticLake)
x <- arcticLake
generate rounded zeros artificially:
#x[x[,1] < 5, 1] <- 0
x[x[,2] < 44, 2] <- 0
xia <- impRZilr(x, dl=c(5,44,0), eps=0.01, method="lm")
xia$x
imputeBDLs

EM-based replacement of rounded zeros in compositional data

Description

Parametric replacement of rounded zeros for compositional data using classical and robust methods based on ilr coordinates with a special choice of balances.

Usage

```r
imputeBDLs(
  x,
  maxit = 10,
  eps = 0.1,
  method = "subPLS",
  dl = rep(0.05, ncol(x)),
  variation = TRUE,
  nPred = NULL,
  nComp = "boot",
  bruteforce = FALSE,
  noisemethod = "residuals",
  noise = FALSE,
  R = 10,
  correction = "normal",
  verbose = FALSE,
  test = FALSE
)
```

```r
adjustImputed(xImp, xOrig, wind)
```

```r
checkData(x, dl)
```

```r
## S3 method for class 'replaced'
print(x, ...)
```

Arguments

- `x`: data.frame or matrix
- `maxit`: maximum number of iterations
- `eps`: convergency criteria
- `method`: either "lm", "lmrob" or "pls"
- `dl`: Detection limit for each variable, zero for variables with variables that have no detection limit problems.
- `variation`, if TRUE those predictors are chosen in each step, who’s variation is lowest to the predictor.
Details

Statistical analysis of compositional data including zeros runs into problems, because log-ratios cannot be applied. Usually, rounded zeros are considered as missing not at random missing values.

The algorithm iteratively imputes parts with rounded zeros whereas in each step (1) compositional data are expressed in pivot coordinates (2) tobit regression is applied (3) the rounded zeros are replaced by the expected values (4) the corresponding inverse ilr mapping is applied. After all parts are imputed, the algorithm starts again until the imputations do not change.

Value

- `x` imputed data
- `criteria` change between last and second last iteration
- `iter` number of iterations
- `maxit` maximum number of iterations
- `wind` index of zeros
- `nComp` number of components for method pls
- `method` chosen method

Author(s)

Matthias Templ, method subPLS from Jiajia Chen
References

See Also

imputeBDLs

Examples

```r
p <- 10
n <- 50
k <- 2
T <- matrix(rnorm(n*k), ncol=k)
B <- matrix(runif(p*k,-1,1),ncol=k)
X <- T %*% t(B)
E <- matrix(rnorm(n*p, 0,0.1), ncol=p)
XE <- X + E
data <- data.frame(pivotCoordInv(XE))
col <- ncol(data)
row <- nrow(data)
DL <- matrix(rep(0),ncol=col,nrow=1)
for(j in seq(1,col,2)){
  DL[j] <- quantile(data[,j],probs=0.06,na.rm=FALSE)
}
for(j in 1:col){
  data[data[,j]<DL[j],j] <- 0
}
# Not run:
# under dontrun because of long execution time
imp <- imputeBDLs(data,dl=DL,maxit=10,eps=0.1,R=10,method="subPLS")
imp <- imputeBDLs(data,dl=DL,maxit=10,eps=0.1,R=10,method="pls", variation = FALSE)
imp <- imputeBDLs(data,dl=DL,maxit=10,eps=0.1,R=10,method="lm")
imp <- imputeBDLs(data,dl=DL,maxit=10,eps=0.1,R=10,method="lmrob")
imp

data(mcad)
## generate rounded zeros artificially:
x <- mcad
x <- x[1:25, 2:ncol(x)]
dl <- apply(x, 2, quantile, 0.1)
for(i in seq(1, ncol(x), 2)){
  x[x[,i] < dl[i], i] <- 0
}
```

imputeUDLs

Imputation of values above an upper detection limit in compositional data

Description

Parametric replacement of values above upper detection limit for compositional data using classical and robust methods (possibly also the pls method) based on ilr-transformations with special choice of balances.

Usage

```r
imputeUDLs(x, maxit = 10, eps = 0.1, method = "lm", dl = NULL, variation = TRUE, nPred = NULL, nComp = "boot", bruteforce = FALSE, noisemethod = "residuals", noise = FALSE, R = 10, correction = "normal", verbose = FALSE)
```

Arguments

- **x**: data.frame or matrix
imputeUDLs

maxit maximum number of iterations
eps convergency criteria
method either "lm", "lmrob" or "pls"
dl Detection limit for each variable. zero for variables with variables that have no
detection limit problems.
variation, if TRUE those predictors are chosen in each step, who’s variation is lowest to
the predictor.
nPred, if determined and variation equals TRUE, it fixes the number of predictors
nComp if determined, it fixes the number of pls components. If “boot”, the number of
pls components are estimated using a bootstraped cross validation approach.
bruteforce sets imputed values above the detection limit to the detection limit. Replacement
above the detection limit are only expectionally occur due to numerical instabilities. The default is FALSE!
noisemethod adding noise to imputed values. Experimental
noise TRUE to activate noise (experimental)
R number of bootstrap samples for the determination of pls components. Only
important for method “pls”.
correction normal or density
verbose additional print output during calculations.

Details

imputeUDLs

An imputation method for right-censored compositional data. Statistical analysis is not possible
with values reported in data, for example as ">10000". These values are replaced using tobit regression.

The algorithm iteratively imputes parts with values above upper detection limit whereas in each
step (1) compositional data are expressed in pivot coordinates (2) tobit regression is applied (3) the
values above upper detection limit are replaced by the expected values (4) the corresponding inverse
ilr mapping is applied. After all parts are imputed, the algorithm starts again until the imputations
only change marginally.

Value

x imputed data
criteria change between last and second last iteration
iter number of iterations
maxit maximum number of iterations
wind index of values above upper detection limit
nComp number of components for method pls
method chosen method
ind2x2

Independence 2x2 compositional table

Description

Estimates the expected frequencies from an 2x2 table under the null hypotheses of independence.

Usage

```
ind2x2(x, margin = 3, pTabMethod = c("dirichlet", "half", "classical"))
```

Arguments

- `x` a 2x2 table
- `margin` if multidimensional table (larger than 2-dimensional), then the margin determines on which dimension the independene tables should be estimated.
- `pTabMethod` ‘classical’ that is function `prop.table()` from package base or method “half” that add 1/2 to each cell to avoid zero problems.

Examples

```r
data(gemas)  # read data
dat <- gemas[gemas$COUNTRY=="HEL",c(12:29)]
UDL <- apply(dat,2,max)
names(UDL) <- names(dat)
UDL["Mn"] <- quantile(dat,"Mn", probs = 0.8)  # UDL present only in one variable
whichudl <- dat,"Mn" > UDL["Mn"]
# classical method
imp.lm <- dat
imp.lm[whichudl,"Mn"] <- Inf
res.lm <- imputeUDLs(imp.lm, dl=UDL, method="lm", variation=TRUE)
imp.lm <- res.lm$x
```

See Also

`imputeBDLs`

References

Author(s)

Peter Filzmoser, Dominika Miksova based on function imputeBDLs code from Matthias Templ
Value

The independence table(s) with either relative or absolute frequencies.

Author(s)

Kamila Facevicova, Matthias Templ

References

Examples

data(employment)
ind2x2(employment)

Description

Estimates the expected frequencies from an m-way table under the null hypotheses of independence.

Usage

```r
indTab(
  x,
  margin = c("gmean_sum", "sum"),
  frequency = c("relative", "absolute"),
  pTabMethod = c("dirichlet", "half", "classical")
)
```

Arguments

- `x`: an object of class table
- `margin`: determines how the margins of the table should be estimated (default via geometric mean margins)
- `frequency`: indicates whether absolute or relative frequencies should be computed.
- `pTabMethod`: to estimate the probability table. Default is ‘dirichlet’. Other available methods: ‘classical’ that is function `prop.table()` from package base or method “half” that add 1/2 to each cell to avoid zero problems.

Details

Because of the compositional nature of probability tables, the independence tables should be estimated using geometric marginals.
Value

The independence table(s) with either relative or absolute frequencies.

Author(s)

Matthias Templ

References

Examples

data(precipitation)
tab1 <- indTab(precipitation)
tab1
sum(tab1)

Not run:
data("PreSex", package = "vcd")
indTab(PreSex)

End(Not run)

instw

value added, output and input for different ISIC codes and countries.

Description

- `ctct`
- `isicISIC classification, Rev 3.2`
- `VA` value added
- `OUT` output
- `INP` input
- `IS03` country code
- `mht` mht

Usage

data(instw)

Format

A data.frame with 1555 rows and 7 columns.
Examples

```r
data(instw)
head(instw)
```

Description

Estimates the interactions from an 2x2 table under the null hypotheses of independence.

Usage

```r
int2x2(x, margin = 3, pTabMethod = c("dirichlet", "half", "classical"))
```

Arguments

- `x` a 2x2 table
- `margin` if multidimensional table (larger than 2-dimensional), then the margin determines on which dimension the independence tables should be estimated.
- `pTabMethod` to estimate the probability table. Default is ‘dirichlet’. Other available methods: ‘classical’ that is function `prop.table()` from package base or method “half” that add 1/2 to each cell to avoid zero problems.

Value

The independence table(s) with either relative or absolute frequencies.

Author(s)

Kamila Facevicova, Matthias Templ

References

Examples

```r
data(employment)
int2x2(employment)
```
intArray

Interaction array

Description

Estimates the interaction compositional table with normalization for further analysis according to Egozcue et al. (2015)

Usage

`intArray(x)`

Arguments

- `x` an object of class “intTab”

Details

Estimates the interaction table using its ilr coordinates.

Value

The interaction array

Author(s)

Matthias Templ

References

See Also

`intTab`

Examples

```r
data(precipitation)
tab1prob <- prop.table(precipitation)
tab1 <- indTab(precipitation)
tabINT <- intTab(tab1prob, tab1)
intArray(tabINT)
```
intTab

Interaction table

Description

Estimates the interaction table based on clr and inverse clr coefficients.

Usage

```r
intTab(x, y, frequencies = c("relative", "absolute"))
```

Arguments

- `x` an object of class table
- `y` the corresponding independence table which is of class “intTab”.
- `frequencies` indicates whether absolute or relative frequencies should be computed.

Details

Because of the compositional nature of probability tables, the independence tables should be estimated using geometric marginals.

Value

- `intTab` The interaction table(s) with either relative or absolute frequencies.
- `signs` The sign illustrates if there is an excess of probability (plus), or a deficit (minus) regarding to the estimated probability table and the independence table in the clr space.

Author(s)

Matthias Templ

References

Examples

```r
data(precipitation)
tab1prob <- prop.table(precipitation)
tab1 <- indTab(precipitation)
intTab(tab1prob, tab1)
```
is.equivalent

equivalence class

Description

Checks if two vectors or two data frames are from the same equivalence class.

Usage

is.equivalent(x, y, tolerance = .Machine$double.eps^0.5)

Arguments

x
either a numeric vector, or a data.frame containing such vectors.
y
either a numeric vector, or a data.frame containing such vectors.
tolerance
numeric >= 0. Differences smaller than tolerance are not considered.

Value

logical TRUE if the two vectors are from the same equivalence class.

Author(s)

Matthias Templ

References

See Also

all.equal

Examples

is.equivalent(1:10, 1:10*2)
is.equivalent(1:10, 1:10+1)
data(expenditures)
x <- expenditures
is.equivalent(x, constSum(x))
y <- x
y[1,1] <- x[1,1]+1
is.equivalent(y, constSum(x))
isic32 ISIC codes by name

Description

• code ISIC code, Rev 3.2
• description Description of ISIC codes

Usage
data(isic32)

Format

A data.frame with 24 rows and 2 columns.

Examples
data(instw)
instw

laborForce labour force by status in employment

Description

Labour force by status in employment for 124 countries, latest update: December 2009

Format

A data set on 124 compositions on 9 variables.

Details

• country country
• year year
• employeesW percentage female employees
• employeesM percentage male employees
• employersW percentage female employers
• employersM percentage male employers
• ownW percentage female own-account workers and contributing family workers
• ownM percentage male own-account workers and contributing family workers
• source HS: household or labour force survey. OE: official estimates. PC: population census
Author(s)
conversion to R by Karel Hron and Matthias Templ <matthias.templ@tuwien.ac.at>

Source
from UNSTATS website

References

Examples

data(laborForce)
str(laborForce)

landcover European land cover

Description
Land cover data from Eurostat (2015) extended with (log) population and (log) pollution

Format
A data set on 28 compositions on 7 variables.

Details
- Woodland Coverage in km²
- Cropland Coverage in km²
- Grassland Coverage in km²
- Water Coverage in km²
- Artificial Coverage in km²
- Pollution log(Pollution) values per country
- PopDensity log(PopDensity) values per country

Author(s)
conversion to R by Karel Hron

Source
Lucas land cover
lifeExpGdp

Examples

data(landcover)
str(landcover)

lifeExpGdp

life expectancy and GDP (2008) for EU-countries

Description

Social-economic data for compositional regression.

Format

A data set on 27 compositions on 9 variables.

Details

- country
country
- agriculture GDP on agriculture, hunting, forestry, fishing (ISIC A-B, x1)
- manufacture GDP on mining, manufacturing, utilities (ISIC C-E, x2)
- construction GDP on construction (ISIC F, x3)
- wholesales GDP on wholesale, retail trade, restaurants and hotels (ISIC G-H, x4)
- transport GDP on transport, storage and communication (ISIC I, x5)
- other GDP on other activities (ISIC J-P, x6)
- lifeExpMen life expectancy for men and women
- lifeExpWomen life expectancy for men and women

Author(s)

conversion to R by Karel Hron and Matthias Templ <matthias.templ@tuwien.ac.at>

Source

References

Examples

data(lifeExpGdp)
str(lifeExpGdp)
Description

Delivers appropriate inference for regression of y on a compositional matrix X or and compositional and non-compositional combined predictors.

Usage

```r
lmCoDaX(  
  y,  
  X,  
  external = NULL,  
  method = "robust",  
  pivot_norm = "orthonormal",  
  max_refinement_steps = 200  
)
```

Arguments

- **y**
 The response which should be non-compositional

- **X**
 The compositional and/or non-compositional predictors as a matrix, data.frame or numeric vector

- **external**
 Specify the columns name of the external variables. The name has to be introduced as follows: external = c(‘variable_name’). Multiple selection is supported for the external variable. Factor variables are automatically detected.

- **method**
 If robust, LTS-regression is applied, while with method equals “classical”, the conventional least squares regression is applied.

- **pivot_norm**
 if FALSE then the normalizing constant is not used, if TRUE sqrt((D-i)/(D-i+1)) is used (default). The user can also specify a self-defined constant.

- **max_refinement_steps**
 (for the fast-S algorithm): maximal number of refinement steps for the fully iterated best candidates.

Details

Compositional explanatory variables should not be directly used in a linear regression model because any inference statistic can become misleading. While various approaches for this problem were proposed, here an approach based on the pivot coordinates is used. Further these compositional explanatory variables can be supplemented with external non-compositional data and factor variables.

Value

An object of class ‘lts’ or ‘lm’ and two summary objects.
Author(s)

Peter Filzmoser, Roman Wiedemeier, Matthias Templ

References

See Also

lm

Examples

```r
## How the total household expenditures in EU Member States depend on relative contributions of single household expenditures:
data(expendituresEU)
y <- as.numeric(apply(expendituresEU, 1, sum))
lmCoDaX(y, expendituresEU, method="classical")

## How the relative content of sand of the agricultural and grazing land soils in Germany depend on relative contributions of the main chemical trace elements, their different soil types and the Annual mean temperature:
data("gemas")
gemas$COUNTRY <- as.factor(gemas$COUNTRY)
gemas_GER <- dplyr::filter(gemas, gemas$COUNTRY == 'POL')
ssc <- cenLR(gemas_GER[, c("sand", "silt", "clay")])$x.clr
y <- ssc$sand
X <- dplyr::select(gemas_GER, c(MeanTemp, soilclass, Al:Zr))
X$soilclass <- factor(X$soilclass)
lmCoDaX(y, X, external = c('MeanTemp', 'soilclass'), method='classical', pivot_norm = 'orthonormal')
```

```r
lmCoDaX(y, X, external = c('MeanTemp', 'soilclass'), method='robust', pivot_norm = 'orthonormal')
```

Description

Compositions of eight-hour shifts of 27 machine operators

Usage

data(machineOperators)

Author(s)
Matthias Templ <matthias.templ@tuwien.ac.at>

References

Examples

```r
data(machineOperators)
str(machineOperators)
summary(machineOperators)
rowSums(machineOperators)
```

Description
The data consists of values of the manufacturing output in 42 countries in 2009. The output, given in national currencies, is structured according to the 3-digit ISIC category and its components. Thorough analysis of the sample is described in Facevicova (2018).

Usage
```r
data(manu_abs)
```

Format
A data frame with 630 observations of 4 variables.
Details

- **country** Country
- **isic** 3-digit ISIC category. The categories are 151 processed meat, fish, fruit, vegetables, fats; 152 Dairy products; 153 Grain mill products, starches, animal feeds; 154 Other food products and 155 Beverages.
- **output** The output components are Labour, Surplus and Input.
- **value** Value of manufacturing output in the national currency

Author(s)

Kamila Facevicova

Source

References

Examples

data(manu_abs)

```r
### Compositional tables approach
### analysis of the relative structure

result <- tabCoordWrapper(manu_abs, obs.ID = 'country', row.factor = 'output',
                          col.factor = 'isic', value = 'value', test = TRUE)

result$Bootstrap

### Classical approach
### generalized linear mixed effect model

# Not run:
library(lme4)
m <- glmer(value ~ output*as.factor(isic)+(1|country),
           data=manu_abs,family=poisson)
summary(m)

# End(Not run)
```
Description

The aim of the experiment was to ascertain novel biomarkers of MCAD (Medium chain acyl-CoA dehydrogenase) deficiency. The data consists of 25 patients and 25 controls and the analysis was done by LC-MS. Rows represent patients and controls and columns represent chemical entities with their quantity.

Usage

data(mcad)

Format

A data frame with 50 observations and 279 variables

Details

- group patient group
- . . . the remaining variables columns are represented by m/z which are chemical characterizations of individual chemical components on exact mass measurements..

References

Examples

data(mcad)
str(mcad)

missPatterns

missing or zero pattern structure.

Description

Analysis of the missing or the zero patterns structure of a data set.
Usage

missPatterns(x)

zeroPatterns(x)

Arguments

x a data frame or matrix.

Details

Here, one pattern defines those observations that have the same structure regarding their missingness or zeros. For all patterns a summary is calculated.

Value

- groups: List of the different patterns and the observation numbers for each pattern
- cn: the names of the patterns coded as vectors of 0-1’s
- tabcomb: the pattern structure - all combinations of zeros or missings in the variables
- tabcombPlus: the pattern structure - all combinations of zeros or missings in the variables including the size of those combinations/patterns, i.e. the number of observations that belongs to each pattern.
- rsum: the number of zeros or missing values in each row of the data set.
- rindex: the index of zeros or missing values in each row of the data set

Author(s)

Matthias Templ. The code is based on a previous version from Andreas Alfons and Matthias Templ from package VIM

See Also

aggr

Examples

data(expenditures)
set NA’s artificial:
expenditures[expenditures < 300] <- NA
detect the NA structure:
missPatterns(expenditures)
Description

- country country name
- country2 country name, short version
- sex gender
- lifeExpectancy life expectancy
- infectious certain infectious and parasitic diseases (A00-B99)
- neoplasms malignant neoplasms (C00-C97)
- endocrine endocrine nutritional and metabolic diseases (E00-E90)
- mental mental and behavioural disorders (F00-F99)
- nervous diseases of the nervous system and the sense organs (G00-H95)
- circulatory diseases of the circulatory system (I00-I99)
- respiratory diseases of the respiratory system (J00-J99)
- digestive diseases of the digestive system (K00-K93)

Usage

data(mortality)

Format

A data frame with 60 observations and 12 variables

Author(s)

Peter Filzmoser, Matthias Templ <matthias.templ@tuwien.ac.at>

References

Examples

data(mortality)
str(mortality)
totals (mortality)
aggregate(mortality[,5:ncol(mortality)],
 list(mortality$country2), sum)
mortality_tab

Description
Mortality data by gender, unknown year

Usage
data(mortality_tab)

Format
A table

Details
- female mortality rates for females by age groups
- male mortality rates for males by age groups

Author(s)
Matthias Templ

Examples
data(mortality_tab)
mortality_tab

norm1

Normalize a vector to length 1

Description
Scales a vector to a unit vector.

Usage
norm1(x)

Arguments
x
a numeric vector

Author(s)
Matthias Templ
Examples

data(expenditures)
i <- 1
D <- 6
vec <- c(rep(-1/i, i), 1, rep(0, (D-i-1)))
norm1(vec)

nutrients

Description

Nutrients on more than 40 components and 965 generic food products

Usage

data(nutrients)

Format

A data frame with 965 observations on the following 50 variables.

Details

- ID, for internal use
- ID_V4 V4, for internal use
- ID_SwissFIR ID, for internal use
- name_D Name in German
- name_F Name in French
- name_I Name in Italian
- name_E Name in Spanish
- category_D Category name in German
- category_F Category name in French
- category_I Category name in Italy
- category_E Category name in Spanish
- gravity specific gravity
- `energy_kJ` energy in kJ per 100g edible portion
- energy_kcal energy in kcal per 100g edible portion
- protein protein in gram per 100g edible portion
- alcohol alcohol in gram per 100g edible portion
- water water in gram per 100g edible portion
- carbohydrates carbohydrates in gram per 100g edible portion
- starch starch in gram per 100g edible portion
- sugars sugars in gram per 100g edible portion
- 'dietar_fibres 'dietar fibres in gram per 100g edible portion
- fat fat in gram per 100g edible portion
- cholesterol cholesterol in milligram per 100g edible portion
- fattyacids_monounsaturated fatty acids monounsaturated in gram per 100g edible portion
- fattyacids_saturated fatty acids saturated in gram per 100g edible portion
- fatty_acids_polyunsaturated fatty acids polyunsaturated in gram per 100g edible portion
- vitaminA vitamin A in retinol equivalent per 100g edible portion
- 'all-trans_retinol_equivalents 'all-trans-retinol equivalents in gram per 100g edible portion
- 'beta-carotene-activity 'beta-carotene activity in beta-carotene equivalent per 100g edible portion
- 'beta-carotene 'beta-carotene in micogram per 100g edible portion
- vitaminB1 vitamin B1 in milligram per 100g edible portion
- vitaminB2 vitamin B2 in milligram per 100g edible portion
- vitaminB6 vitamin B6 in milligram per 100g edible portion
- vitaminB12 vitamin B12 in micogram per 100g edible portion
- niacin niacin in milligram per 100g edible portion
- folate folate in micogram per 100g edible portion
- pantothenic_acid pantothenic acid in milligram per 100g edible portion
- vitaminC vitamin C in milligram per 100g edible portion
- vitaminD vitamin D in micogram per 100g edible portion
- vitaminE vitamin E in alpha-tocopherol equivalent per 100g edible portion
- Na Sodium in milligram per 100g edible portion
- K Potassium in milligram per 100g edible portion
- Cl Chloride
- Ca Calcium
- Mg Magnesium
- P Phosphorus
- Fe Iron
- I Iodide in milligram per 100g edible portion
- Zn Zink
- unit a factor with levels per 100g edible portion per 100ml food volume

Author(s)
Translated from the Swiss nutrition data base by Matthias Templ <matthias.templ@tuwien.ac.at>
Source
From the Swiss nutrition data base 2015 (second edition)

Examples

```r
data(nutrients)
str(nutrients)
head(nutrients[, 41:49])
```

Description

Nutrients on more than 10 components and 9618 branded food products

Usage

```r
data(nutrients_branded)
```

Format

A data frame with 9618 observations on the following 18 variables.

Details

- `name_D` name (in German)
- `category_D` factor specifying the category names
- `category_F` factor specifying the category names
- `category_I` factor specifying the category names
- `category_E` factor specifying the category names
- `gravity` specific gravity
- `energy_kJ` energy in kJ
- `energy_kcal` energy in kcal
- `protein` protein in gram
- `alcohol` alcohol in gram
- `water` water in gram
- `carbohydrates_available` available carbohydrates in gram
- `sugars` sugars in gram
- `dietary_fibres` dietary fibres in gram
- `fat_total` total fat in gram
- `fatty_acids_saturated` saturated acids fat in gram
- `Na` Sodium in gram
- `unit` a factor with levels per 100g edible portion per 100ml food volume
Author(s)

Translated from the Swiss nutrition data base by Matthias Templ <matthias.templ@tuwien.ac.at>

Source

From the Swiss nutrition data base 2015 (second edition)

Examples

data(nutrients_branded)
str(nutrients_branded)

description

Orthonormal basis from cenLR transformed data to pivotCoord transformed data.

Usage

orthbasis(D)

Arguments

D number of parts (variables)

Details

For the chosen balances for “pivotCoord”, this is the orthonormal basis that transfers the data from centered logratio to isometric logratio.

Value

the orthonormal basis.

Author(s)

Karel Hron, Matthias Templ. Some code lines of this function are a copy from function gsi.buildilr from

See Also

pivotCoord, cenLR
Examples

```r
data(expenditures)
V <- orthbasis(ncol(expenditures))
xcen <- cenLR(expenditures)$x.clr
xi <- as.matrix(xcen) %*% V$V
xi
xi2 <- pivotCoord(expenditures)
xi2
```

outCoDa

Description

Outlier detection for compositional data using standard and robust statistical methods.

Usage

```r
outCoDa(x, quantile = 0.975, method = "robust", alpha = 0.5, coda = TRUE)
```

```r
## S3 method for class 'outCoDa'
print(x, ...)
```

```r
## S3 method for class 'outCoDa'
plot(x, y, ..., which = 1)
```

Arguments

- **x**: compositional data
- **quantile**: quantile, corresponding to a significance level, is used as a cut-off value for outlier identification: observations with larger (squared) robust Mahalanobis distance are considered as potential outliers.
- **method**: either "robust" (default) or "standard"
- **alpha**: the size of the subsets for the robust covariance estimation according the MCD-estimator for which the determinant is minimized, see `covMcd`
- **coda**: if TRUE, data transformed to coordinate representation before outlier detection.
- **...**: additional parameters for print and plot method passed through
- **y**: unused second plot argument for the plot method
- **which**: 1 ... MD against index 2 ... distance-distance plot
Details

The outlier detection procedure is based on (robust) Mahalanobis distances in isometric logratio coordinates. Observations with squared Mahalanobis distance greater equal a certain quantile of the chi-squared distribution are marked as outliers.

If method “robust” is chosen, the outlier detection is based on the homogeneous majority of the compositional data set. If method “standard” is used, standard measures of location and scatter are applied during the outlier detection procedure. Method “robust” can be used if the number of variables is greater than the number of observations. Here the OGK estimator is chosen.

plot method: the Mahalanobis distance are plotted against the index. The dashed line indicates the (1 - alpha) quantile of the chi-squared distribution. Observations with Mahalanobis distance greater than this quantile could be considered as compositional outliers.

Value

- mahalDist: resulting Mahalanobis distance
- limit: quantile of the Chi-squared distribution
- outlierIndex: logical vector indicating outliers and non-outliers
- method: method used

Note

It is highly recommended to use the robust version of the procedure.

Author(s)

Matthias Templ, Karel Hron

References

See Also

- pivotCoord

Examples

data(expenditures)
oD <- outCoDa(expenditures)
oD
providing a function:
Description

Payments splitted by different NACE categories and kind of employment in Austria 2004

Usage

data(payments)

Format

A data frame with 535 rows and 11 variables

Details

- `nace` NACE classification, 2 digits
- `oenace_2008` Corresponding Austrian NACE classification (in German)
- `year` year
- `month` month
- `localunit` local unit ID
- `spay` special payments (total)
- `spay_wc` special payments for white collar workers
- `spay_bc` special payments for blue collar workers
- `spay_traintrade` special payments for trainees in trade business
- `spay_home` special payments for home workers
- `spay_traincomm` special payments for trainees in commercial business

Author(s)

Matthias Templ <matthias.templ@tuwien.ac.at>

Source

statCube data base at the website of Statistics Austria. The product and all material contained therein are protected by copyright with all rights reserved by the Bundesanstalt Statistik Oesterreich (STATISTICS AUSTRIA). It is permitted to reproduce, distribute, make publicly available and process the content for non-commercial purposes. Prior to any use for commercial purposes a written consent of STATISTICS AUSTRIA must be obtained. Any use of the contained material must be correctly reproduced and clearly cite the source STATISTICS AUSTRIA. If tables published by STATISTICS AUSTRIA are partially used, displayed or otherwise changed, a note must be added at an adequate position to show data was extracted or adapted.
Examples

```r
data(payments)
str(payments)
summary(payments)
```

pcaCoDa

Robust principal component analysis for compositional data

Description

This function applies robust principal component analysis for compositional data.

Usage

```r
pcaCoDa(
x, 
method = "robust", 
mult_comp = NULL, 
external = NULL, 
solve = "eigen"
)
```

S3 method for class 'pcaCoDa'

```r
print(x, ...)
```

S3 method for class 'pcaCoDa'

```r
summary(object, ...)
```

Arguments

- **x**: compositional data
- **method**: must be either “robust” (default) or “classical”
- **mult_comp**: a list of numeric vectors holding the indices of linked compositions
- **external**: external non-compositional variables
- **solve**: eigen (as princomp does, i.e. eigenvalues of the covariance matrix) or svd (as prcomp does with single value decomposition instead of eigen). Only for method classical.
- **...**: additional parameters for print method passed through
- **object**: object of class pcaCoDa
Details

The compositional data set is expressed in isometric logratio coordinates. Afterwards, robust principal component analysis is performed. Resulting loadings and scores are back-transformed to the clr space where the compositional biplot can be shown.

`mult_comp` is used when there are more than one group of compositional parts in the data. To give an illustrative example, let's assume that one variable group measures angles of the inner ear-bones of animals which sum up to 100 and another one having percentages of a whole on the thickness of the inner ear-bones included. Then two groups of variables exist which are both compositional parts. The isometric logratio coordinates are then internally applied to each group independently whenever the `mult_comp` is set correctly.

Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scores</code></td>
<td>scores in clr space</td>
</tr>
<tr>
<td><code>loadings</code></td>
<td>loadings in clr space</td>
</tr>
<tr>
<td><code>eigenvalues</code></td>
<td>eigenvalues of the clr covariance matrix</td>
</tr>
<tr>
<td><code>method</code></td>
<td>method</td>
</tr>
<tr>
<td><code>princompOutputClr</code></td>
<td>output of <code>princomp</code> needed in <code>plot.pcaCoDa</code></td>
</tr>
</tbody>
</table>

Author(s)

Karel Hron, Peter Filzmoser, Matthias Templ and a contribution for dimnames in external variables by Amelia Landre.

References

See Also

`print.pcaCoDa`, `summary.pcaCoDa`, `biplot.pcaCoDa`, `plot.pcaCoDa`

Examples

data(arcticLake)

```r
## robust estimation (default):
res.rob <- pcaCoDa(arcticLake)
res.rob
summary(res.rob)
plot(res.rob)
```

```r
## classical estimation:
```
perturbation

Perturbation and powering

Description
Perturbation and powering for two compositions.

Usage
perturbation(x, y)

powering(x, a)

Arguments
- x (compositional) vector containing positive values
- y (compositional) vector containing positive values or NULL for powering
- a constant, numeric vector of length 1

Value
Result of perturbation or powering

Author(s)
Matthias Templ

References
Examples

```r
data(expenditures)
x <- expenditures[1,]
y <- expenditures[2,]
perturbation(x, y)
powering(x, 2)
```

pfa
Factor analysis for compositional data

Description

Computes the principal factor analysis of the input data which are transformed and centered first.

Usage

```r
pfa(
x,  
factors,
robust = TRUE,
data = NULL,
covmat = NULL,
n.obs = NA,
subset,
na.action,
start = NULL,

to = c("none", "regression", "Bartlett"),
rotation = "varimax",
maxiter = 5,
control = NULL,
...
)
```

Arguments

- `x`
 (robustly) scaled input data

- `factors`
 number of factors

- `robust`
 default value is TRUE

- `data`
 default value is NULL

- `covmat`
 (robustly) computed covariance or correlation matrix

- `n.obs`
 number of observations

- `subset`
 if a subset is used

- `na.action`
 what to do with NA values

- `start`
 starting values
scores which method should be used to calculate the scores
rotation if a rotation should be made
maxiter maximum number of iterations
control default value is NULL
... arguments for creating a list

Details

The main difference to usual implementations is that uniquenesses are nor longer of diagonal form. This kind of factor analysis is designed for centered log-ratio transformed compositional data. However, if the covariance is not specified, the covariance is estimated from isometric log-ratio transformed data internally, but the data used for factor analysis are backtransformed to the clr space (see Filzmoser et al., 2009).

Value

loadings A matrix of loadings, one column for each factor. The factors are ordered in decreasing order of sums of squares of loadings.
uniqueness uniqueness
correlation correlation matrix
criteria The results of the optimization: the value of the negativ log-likelihood and information of the iterations used.
factors the factors
dof degrees of freedom
method “principal”
n.obs number of observations if available, or NA
call The matched call.
STATISTIC, PVAL The significance-test statistic and p-value, if they can be computed

Author(s)

Peter Filzmoser, Karel Hron, Matthias Templ

References

Examples

data(expenditures)
x <- expenditures
res.rob <- pfa(x, factors=1)
res.cla <- pfa(x, factors=1, robust=FALSE)

the following produce always the same result:
res1 <- pfa(x, factors=1, covmat="covMcd")
res2 <- pfa(x, factors=1, covmat=robustbase::covMcd(pivotCoord(x))$cov)
res3 <- pfa(x, factors=1, covmat=robustbase::covMcd(pivotCoord(x)))

PhD students in the EU

Description

PhD students in Europe based on the standard classification system splitted by different kind of studies (given as percentages).

Format

A data set on 32 compositions and 11 variables.

Details

Due to unknown reasons the rowSums of the percentages is not always 100.

- country country of origin (German)
- countryEN country of origin (English)
- country2 country of origin, 2-digits
- total total phd students (in 1.000)
- male male phd students (in 1.000)
- female total phd students (in 1.000)
- technical phd students in natural and technical sciences
- socio-economic-low phd students in social sciences, economic sciences and law sciences
- human phd students in human sciences including teaching
- health phd students in health and life sciences
- agriculture phd students in agriculture

Source

Eurostat
References

Examples

```r
data(phd)
str(phd)
```

phd_totals
PhD students in the EU (totals)

Description

PhD students in Europe by different kind of studies.

Format

A data set on 29 compositions and 5 variables.

Details

- technical phd students in natural and technical sciences
- socio-economic-low phd students in social sciences, economic sciences and law sciences
- human phd students in human sciences including teaching
- health phd students in health and life sciences
- agriculture phd students in agriculture

Source

Eurostat

References

Examples

```r
data("phd_totals")
str(phd_totals)
```
pivotCoord

Pivot coordinates and their inverse

Description

Pivot coordinates as a special case of isometric logratio coordinates and their inverse mapping.

Usage

pivotCoord(
 x,
 pivotvar = 1,
 fast = FALSE,
 method = "pivot",
 base = exp(1),
 norm = "orthonormal"
)

isomLR(x, fast = FALSE, base = exp(1), norm = "sqrt((D-i)/(D-i+1))")

isomLRinv(x)

pivotCoordInv(x, norm = "orthonormal")

isomLRp(x, fast = FALSE, base = exp(1), norm = "sqrt((D-i)/(D-i+1))")

isomLRinvp(x)

Arguments

x object of class data.frame or matrix. Positive values only.
pivotvar pivotal variable. If any other number than 1, the data are resorted in that sense that the pivotvar is shifted to the first part.
fast if TRUE, it is approx. 10 times faster but numerical problems in case of high-dimensional data may occur. Only available for method “pivot”.
method pivot takes the method described in the description. Method "symm" uses symmetric pivot coordinates (parameters pivotvar and norm have then no effect)
base a positive or complex number: the base with respect to which logarithms are computed. Defaults to exp(1).
norm if FALSE then the normalizing constant is not used, if TRUE sqrt((D-i)/(D-i+1)) is used (default). The user can also specify a self-defined constant.
Details

Pivot coordinates map D-part compositional data from the simplex into a (D-1)-dimensional real space isometrically. From our choice of pivot coordinates, all the relative information about one of parts (or about two parts) is aggregated in the first coordinate (or in the first two coordinates in case of symmetric pivot coordinates, respectively).

Value

The data represented in pivot coordinates

Author(s)

Matthias Templ, Karel Hron, Peter Filzmoser

References

Examples

require(MASS)
Sigma <- matrix(c(5.05,4.95,4.95,5.05), ncol=2, byrow=TRUE)
z <- pivotCoordInv(mvrnorm(100, mu=c(0,2), Sigma=Sigma))
data(expenditures)
first variable as pivot variable
pivotCoord(expenditures)
third variable as pivot variable
pivotCoord(expenditures, 3)
x <- exp(mvrnorm(2000, mu=rep(1,10), diag(10)))
system.time(pivotCoord(x))
system.time(pivotCoord(x, fast=TRUE))

without normalizing constant
pivotCoord(expenditures, norm = "orthogonal") # or:
pivotCoord(expenditures, norm = "1")
other normalization
pivotCoord(expenditures, norm = "-sqrt((D-i)/(D-i+1))")

symmetric balances (results in 2-dim symmetric pivot coordinates)
pivotCoord(expenditures, method = "symm")
plot.imp
Plot method for objects of class imp

Description

This function provides several diagnostic plots for the imputed data set in order to see how the imputed values are distributed in comparison with the original data values.

Usage

```r
## S3 method for class 'imp'
plot(
  x,
  ...,
  which = 1,
  ord = 1:ncol(x),
  colcomb = "missnonmiss",
  plotvars = NULL,
  col = c("skyblue", "red"),
  alpha = NULL,
  lty = par("lty"),
  xaxt = "s",
  xaxlabels = NULL,
  las = 3,
  interactive = TRUE,
  pch = c(1, 3),
  ask = prod(par("mfcol")) < length(which) && dev.interactive(),
  center = FALSE,
  scale = FALSE,
  id = FALSE,
  seg.l = 0.02,
  seg1 = TRUE
)
```

Arguments

- **x**
 object of class ‘imp’
- **...**
 other parameters to be passed through to plotting functions.
- **which**
 if a subset of the plots is required, specify a subset of the numbers 1:3.
- **ord**
 determines the ordering of the variables
- **colcomb**
 if `colcomb="missnonmiss"`, observations with missings in any variable are highlighted. Otherwise, observations with missings in any of the variables specified by `colcomb` are highlighted in the parallel coordinate plot.
- **plotvars**
 Parameter for the parallel coordinate plot. A vector giving the variables to be plotted. If NULL (the default), all variables are plotted.
col a vector of length two giving the colors to be used in the plot. The second color will be used for highlighting.
alpha a numeric value between 0 and 1 giving the level of transparency of the colors, or NULL. This can be used to prevent overplotting.
lty a vector of length two giving the line types. The second line type will be used for the highlighted observations. If a single value is supplied, it will be used for both non-highlighted and highlighted observations.

Details
The first plot (which == 1) is a multiple scatterplot where for the imputed values another plot symbol and color is used in order to highlight them. Currently, the ggpairs functions from the GGally package is used.

Plot 2 is a parallel coordinate plot in which imputed values in certain variables are highlighted. In parallel coordinate plots, the variables are represented by parallel axes. Each observation of the scaled data is shown as a line. If interactive is TRUE, the variables to be used for highlighting can be selected interactively. Observations which includes imputed values in any of the selected variables will be highlighted. A variable can be added to the selection by clicking on a coordinate axis. If a variable is already selected, clicking on its coordinate axis will remove it from the selection. Clicking anywhere outside the plot region quits the interactive session.

Plot 3 shows a ternary diagram in which imputed values are highlighted, i.e. those spikes of the chosen plotting symbol are colored in red for which of the values are missing in the unimputed data set.

Value
None (invisible NULL).
Author(s)
Matthias Templ

References

See Also
impCoda, impKNNa

Examples

data(expenditures)
expenditures[1,3] <- NA
xi <- impKNNa(expenditures)

summary(xi)
Not run: plot(xi, which=1)
plot(xi, which=2)
plot(xi, which=3)
plot(xi, which=3, seg1=FALSE)

Description
Provides a screeplot and biplot for (robust) compositional principal components analysis.

Usage

S3 method for class 'pcaCoDa'
plot(x, y, ..., which = 1, choices = 1:2)

Arguments

x object of class ‘pcaCoDa’
y ...
... ...
which an integer between 1 and 3. Produces a screeplot (1), or a biplot using stats biplot.prcomp function (2), or a biplot using ggfortify’s autoplot function (3).
choices principal components to plot by number
plot.smoothSpl

Value

The robust compositional screeplot.

Author(s)

M. Templ, K. Hron

References

See Also

pcaCoDa, biplot.pcaCoDa

Examples

data(coffee)
Not run:
p1 <- pcaCoDa(coffee[, -1])
plot(p1)
plot(p1, type="lines")
plot(p1, which = 2)
plot(p1, which = 3)
End(Not run)

Description

plot densities of objects of class smoothSpl

Usage

S3 method for class 'smoothSpl'
plot(x, y, ..., by = 1, n = 10, index = NULL)
Arguments

- `x` class `smoothSpl` object
- `y` ignored
- `...` further arguments passed by `by`
- `n` length of sequence to plot
- `index` optionally the sequence instead of `by` and `n`

Author(s)

Alessia Di Blasi, Federico Pavone, Gianluca Zeni

Description

table containing counts for 24-hour precipitation for season at the rain-gouge.

Usage

data(precipitation)

Format

A table with 4 rows and 6 columns

Details

- `spring` numeric vector on counts for different level of precipitation
- `summer` numeric vector on counts for different level of precipitation
- `autumn` numeric vector on counts for different level of precipitation
- `winter` numeric vector on counts for different level of precipitation

Author(s)

Matthias Templ <matthias.templ@tuwien.ac.at>

References

print.imp

Examples

data(precipitation)
precipitation
str(precipitation)

print.imp

Print method for objects of class imp

Description

The function returns a few information about how many missing values are imputed and possible other information about the amount of iterations, for example.

Usage

```r
## S3 method for class 'imp'
print(x, ...)
```

Arguments

- `x`: an object of class ‘imp’
- `...`: additional arguments passed through

Value

None (invisible NULL).

Author(s)

Matthias Templ

See Also

impCoda, impKNNa

Examples

data(expenditures)
expenditures[1,3]
expenditures[1,3] <- NA
Not run:
xi <- impCoda(expenditures)
xi
summary(xi)
plot(xi, which=1:2)

End(Not run)
Description

- nace NACE classification, 2 digits
- oenace_2008 Corresponding Austrian NACE classification (in German)
- year
- month
- enterprise enterprise ID
- total total ...
- home home ...
- EU EU ...
- non-EU non-EU ...

Usage

data(production)

Format

A data frame with 535 rows and 9 variables

Author(s)

Matthias Templ <matthias.templ@tuwien.ac.at>

Source

statCube data base at the website of Statistics Austria. The product and all material contained therein are protected by copyright with all rights reserved by the Bundesanstalt Statistik Oesterreich (STATISTICS AUSTRIA). It is permitted to reproduce, distribute, make publicly available and process the content for non-commercial purposes. Prior to any use for commercial purposes a written consent of STATISTICS AUSTRIA must be obtained. Any use of the contained material must be correctly reproduced and clearly cite the source STATISTICS AUSTRIA. If tables published by STATISTICS AUSTRIA are partially used, displayed or otherwise changed, a note must be added at an adequate position to show data was extracted or adapted.

Examples

data(production)
str(production)
summary(production)
pTab

Propability table

Description

Calculates the propability table using different methods

Usage

pTab(x, method = "dirichlet", alpha = 1/length(as.numeric(x)))

Arguments

x an object of class table
method default is ‘dirichlet’. Other available methods: ‘classical’ that is function prop.table() from package base or method “half” that add 1/2 to each cell to avoid zero problems.
alpha constant used for method ‘dirichlet’

Value

The probablity table

Author(s)

Matthias Templ

References

Examples

data(precipitation)
pTab(precipitation)
pTab(precipitation, method = "dirichlet")
rcodes

codes for UNIDO tables

Description

- `ISOCN` ISOCN codes
- `OPERATOR` Operator
- `ADESC` Country
- `CCODE` Country code
- `CDESC` Country destination
- `ACODE` Country destination code

Usage

```r
data(rcodes)
```

Format

A data.frame with 2717 rows and 6 columns.

Examples

```r
data(rcodes)
str(rcodes)
```

rdcm

relative difference between covariance matrices

Description

The sample covariance matrices are computed from compositions expressed in the same isometric logratio coordinates.

Usage

```r
rdcm(x, y)
```

Arguments

- `x` matrix or data frame
- `y` matrix or data frame of the same size as `x`.
Details

The difference in covariance structure is based on the Euclidean distance between both covariance estimations.

Value

the error measures value

Author(s)

Matthias Templ

References

See Also

rdcm

Examples

data(expenditures)
x <- expenditures
x[1,3] <- NA
xi <- impKNNa(x)$xImp
rdcm(expenditures, xi)

rSDev

Relative simplicial deviance

Description

Relative simplicial deviance

Usage

rSDev(x, y)

Arguments

x a propability table
y an interaction table
Value

The relative simplicial deviance

Author(s)

Matthias Templ

References

Examples

data(precipitation)
tabprob <- prop.table(precipitation)
tabind <- indTab(precipitation)
tabint <- intTab(tabprob, tabind)
rSDev(tabprob, tabint$intTab)

rSDev.test Relative simplicial deviance tests

Description

Monte Carlo based contingency table tests considering the compositional approach to contingency tables.

Usage

rSDev.test(x, R = 999, method = "multinom")

Arguments

x matrix, data.frame or table
R an integer specifying the number of replicates used in the Monte Carlo test.
method either “rmultinom” (default) or “permutation”.

Details

Method “rmultinom” generate multinomially distributed samples from the independent probability table, which is estimated from x using geometric mean marginals. The relative simplicial deviance of the original data are then compared to the generated ones.

Method “permutation” permutes the entries of x and compares the relative simplicial deviance estimated from the original data to the ones of the permuted data (the independence table is unchanged and originates on x).

Method “rmultinom” should be preferred, while method “permutation” can be used for comparisons.
Value
A list with class “htest” containing the following components:

- statistic: the value of the relative simplicial deviance (test statistic).
- method: a character string indicating what type of rSDev.test was performed.
- p.value: the p-value for the test.

Author(s)
Matthias Templ, Karel Hron

References

See Also
rSDev

Examples
```r
data(precipitation)
rSDev.test(precipitation)
```

Description
Stable isotope ratio and trace metal concentration data for saffron samples.

Format
A data frame with 53 observations on the following 36 variables.

- Sample: adulterated honey, Honey or Syrup
- Country: group information
- Batch: detailed group information
- Region: less detailed group information
- d2H: region
- d13C: chemical element
- d15N: chemical element
- Li: chemical element

saffron compositions

saffron compositions
- B chemical element
- Na chemical element
- Mg chemical element
- Al chemical element
- K chemical element
- Ca chemical element
- V chemical element
- Mn chemical element
- Fe chemical element
- Co chemical element
- Ni chemical element
- Cu chemical element
- Zn chemical element
- Ga chemical element
- As chemical element
- Rb chemical element
- Sr chemical element
- Y chemical element
- Mo chemical element
- Cd chemical element
- Cs chemical element
- Ba chemical element
- Ce chemical element
- Pr chemical element
- Nd chemical element
- Sm chemical element
- Gd chemical element
- Pb chemical element

Note
In the original paper, the authors applied LDA for classifying the observations.

Source
Mendeley Data, contributed by Russell Frew and translated to R by Matthias Templ

References
Frew, Russell (2019), Data for: CHEMICAL PROFILING OF SAFFRON FOR AUTHENTICATION OF ORIGIN, Mendeley Data, V1, doi:10.17632/5544tn9v6c.1
Examples

```r
data(saffron)
```

<table>
<thead>
<tr>
<th>SDev</th>
<th>Simplicial deviance</th>
</tr>
</thead>
</table>

Description

Simplicial deviance

Usage

```r
SDev(x)
```

Arguments

- `x` a probability table

Value

The simplicial deviance

Author(s)

Matthias Templ

References

Examples

```r
data(precipitation)
tablprob <- prop.table(precipitation)
SDev(tablprob)
```
Description

AFM compositions of 23 aphyric Skye lavas. This data set can be found on page 360 of the Aitchison book (see reference).

Usage

```r
data(skyeLavas)
```

Format

A data frame with 23 observations on the following 3 variables.

Details

- **sodium-potassium** a numeric vector of percentages of Na2O+K2O
- **iron** a numeric vector of percentages of Fe2O3
- **magnesium** a numeric vector of percentages of MgO

Author(s)

Matthias Templ <matthias.templ@tuwien.ac.at>

References

Examples

```r
data(skyeLavas)
str(skyeLavas)
summary(skyeLavas)
rowSums(skyeLavas)
```
smoothSplines Estimate density from histogram

Description

Given raw (discretized) distributional observations, smoothSplines computes the density function that 'best' fits data, in a trade-off between smooth and least squares approximation, using B-spline basis functions.

Usage

smoothSplines(
 k,
 l,
 alpha,
 data,
 xcp,
 knots,
 weights = matrix(1, dim(data)[1], dim(data)[2]),
 num_points = 100,
 prior = "default",
 cores = 1,
 fast = 0
)

Arguments

k smoothing splines degree
l order of derivative in the penalization term
alpha weight for penalization
data an object of class "matrix" containing data to be smoothed, row by row
xcp vector of control points
knots either vector of knots for the splines or a integer for the number of equispaced knots
weights matrix of weights. If not given, all data points will be weighted the same.
num_points number of points of the grid where to evaluate the density estimated
prior prior used for zero-replacements. This must be one of "perks", "jeffreys", "bayes_laplace", "sq" or "default"
cores number of cores for parallel execution, if the option was enabled before installing the package
fast 1 if maximal performance is required (print statements suppressed), 0 otherwise
Details

The original discretized densities are not directly smoothed, but instead the centred logratio transformation is first applied, to deal with the unit integral constraint related to density functions. Then the constrained variational problem is set. This minimization problem for the optimal density is a compromise between staying close to the given data, at the corresponding xcp, and obtaining a smooth function. The non-smoothness measure takes into account the lth derivative, while the fidelity term is weighed by alpha.

The solution is a natural spline. The vector of its coefficients is obtained by the minimum norm solution of a linear system. The resulting splines can be either back-transformed to the original Bayes space of density functions (in order to provide their smoothed counterparts for visualization and interpretation purposes), or retained for further statistical analysis in the clr space.

Value

An object of class smoothSpl, containing among the other the following variables:

- bspline: each row is the vector of B-spline coefficients
- Y: the values of the smoothed curve, for the grid given
- Y_clr: the values of the smoothed curve, in the clr setting, for the grid given

Author(s)

Alessia Di Blasi, Federico Pavone, Gianluca Zeni, Matthias Templ

References

Examples

```r
SepalLengthCm <- iris$Sepal.Length
Species <- iris$Species

iris1 <- SepalLengthCm[iris$Species==levels(iris$Species)[1]]
h1 <- hist(iris1, nclass = 12, plot = FALSE)
midx1 <- h1$mids
midy1 <- matrix(h1$density, nrow=1, ncol = length(h1$density), byrow=TRUE)

knots <- 7

## Not run:
sol1 <- smoothSplines(k=3,l=2,alpha=1000,midy1,midx1,knots)
plot(sol1)

h1 <- hist(iris1, freq = FALSE, nclass = 12, xlab = "Sepal Length [cm]", main = "Iris setosa")
# black line: kernel method; red line: smoothSplines result
lines(density(iris1), col = "black", lwd = 1.5)
xx1 <- seq(sol1$Xcp[1],tail(sol1$Xcp,n=1),length.out = sol1$NumPoints)
lines(xx1,sol1$Y[1,], col = "red", lwd = 2)

## End(Not run)
```
smoothSplinesVal Estimate density from histogram - for different alpha

Description

As smoothSplines, smoothSplinesVal computes the density function that 'best' fits discretized distributional data, using B-spline basis functions, for different alpha. Comparing and choosing an appropriate alpha is the ultimate goal.

Usage

smoothSplinesVal(
 k,
 l,
 alpha,
 data,
 xcp,
 knots,
 weights = matrix(1, dim(data)[1], dim(data)[2]),
 prior = "default",
 cores = 1
)

Arguments

k
smoothing splines degree

l
order of derivative in the penalization term

alpha
vector of weights for penalization

data
an object of class "matrix" containing data to be smoothed, row by row

xcp
vector of control points

knots
either vector of knots for the splines or a integer for the number of equispaced knots

weights
matrix of weights. If not gives, all data points will be weighted the same.

prior
prior used for zero-replacements. This must be one of "perks", "jeffreys", "bayes_laplace", "sq" or "default"

cores
number of cores for parallel execution

Details

See smoothSplines for the description of the algorithm.
socExp

Value

A list of three objects:

- alpha: the values of alpha
- J: the values of the functional evaluated in the minimizing
- CV-error: the values of the leave-one-out CV-error

Author(s)

Alessia Di Blasi, Federico Pavone, Gianluca Zeni, Matthias Templ

References

Examples

```r
SepalLengthCm <- iris$Sepal.Length
Species <- iris$Species

iris1 <- SepalLengthCm[iris$Species==levels(iris$Species)[1]]
h1 <- hist(iris1, nclass = 12, plot = FALSE)

## Not run:
midx1 <- h1$mids
midy1 <- matrix(h1$density, nrow=1, ncol = length(h1$density), byrow=TRUE)
knots <- 7
sol1 <- smoothSplinesVal(k=3,l=2,alpha=10^seq(-4,4,by=1),midy1,midx1,knots,cores=1)
## End(Not run)
```

Description

Social expenditures according to source (public or private) and three important branches (health, old age, incapacity related) in selected OECD countries in 2010. Expenditures are always provided in the respective currency.

Usage

data(socExp)

Format

A data frame with 20 observations on the following 8 variables (country + currency + row-wise sorted cells of 2x3 compositional table).
Details

- country Country of origin
- currency Currency unit (in Million)
- health-public Health from the public
- old-public Old age expenditures from the public
- incap-public Incapacity related expenditures from the public
- health-private Health from private sources
- old-private Old age expenditures from private sources
- incap-private Incapacity related expenditures from private sources

Author(s)

conversion to R by Karel Hron Karel Hron and modifications by Matthias Templ <matthias.templ@tuwien.ac.at>

References

OECD

Examples

data(socExp)
str(socExp)
rowSums(socExp[, 3:ncol(socExp)])

stats

Classical estimates for tables

Description

Some standard/classical (non-compositional) statistics

Usage

stats(
 x,
 margins = NULL,
 statistics = c("phi", "cramer", "chisq", "yates"),
 maggr = mean
)
Arguments

- `x`: a data.frame, matrix or table
- `margins`: margins
- `statistics`: statistics of interest
- `maggr`: a function for calculating the mean margins of a table, default is the arithmetic mean

Details

statistics ‘phi’ is the values of the table divided by the product of margins. ‘cramer’ normalize these values according to the dimension of the table. ‘chisq’ are the expected values according to Pearson while ‘yates’ according to Yates.

For the `maggr` function argument, arithmetic means (`mean`) should be chosen to obtain the classical results. Any other user-provided functions should be take with care since the classical estimations relies on the arithmetic mean.

Value

List containing all statistics

Author(s)

Matthias Templ

References

Examples

data(precipitation)
tab1 <- indTab(precipitation)
stats(precipitation)
stats(precipitation, statistics = "cramer")
stats(precipitation, statistics = "chisq")
stats(precipitation, statistics = "yates")

take with care
(the provided statistics are not designed for that case):
stats(precipitation, statistics = "chisq", maggr = gmean)
summary.imp

Summary method for objects of class imp

Description

A short comparison of the original data and the imputed data is given.

Usage

```r
## S3 method for class 'imp'
summary(object, ...)
```

Arguments

- `object` an object of class ‘imp’
- `...` additional arguments passed through

Details

Note that this function will be enhanced with more sophisticated methods in future versions of the package. It is very rudimental in its present form.

Value

None (invisible NULL).

Author(s)

Matthias Templ

See Also

`impCoda, impKNNa`

Examples

```r
data(expenditures)
expenditures[1,3] <- NA
xi <- impKNNa(expenditures)
xi
summary(xi)
# plot(xi, which=1:2)
```
tabCoord

Coordinate representation of compositional tables and a sample of compositional tables

Description

tabCoord computes a system of orthonormal coordinates of a compositional table. Computation of either pivot coordinates or a coordinate system based on the given SBP is possible.

tabCoordWrapper: For each compositional table in the sample tabCoordWrapper computes a system of orthonormal coordinates and provide a simple descriptive analysis. Computation of either pivot coordinates or a coordinate system based on the given SBP is possible.

Usage

```r
tabCoord(
  x = NULL,
  row.factor = NULL,
  col.factor = NULL,
  value = NULL,
  SBPr = NULL,
  SBPc = NULL,
  pivot = FALSE,
  print.res = FALSE
)

width  = 1000

tabCoordWrapper(
  X,
  obs.ID = NULL,
  row.factor = NULL,
  col.factor = NULL,
  value = NULL,
  SBPr = NULL,
  SBPc = NULL,
  pivot = FALSE,
  test = FALSE,
  n.boot = 1000
)
```

Arguments

- **x**: a data frame containing variables representing row and column factors of the respective compositional table and variable with the values of the composition.
- **row.factor**: name of the variable representing the row factor. Needs to be stated with the quotation marks.
- **col.factor**: name of the variable representing the column factor. Needs to be stated with the quotation marks.
tabCoord

value
name of the variable representing the values of the composition. Needs to be stated with the quotation marks.

SBPr
an $I - 1 \times I$ array defining the sequential binary partition of the values of the row factor, where I is the number of the row factor levels. The values assigned in the given step to the + group are marked by 1, values from the - group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically.

SBPc
an $J - 1 \times J$ array defining the sequential binary partition of the values of the column factor, where J is the number of the column factor levels. The values assigned in the given step to the + group are marked by 1, values from the - group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically.

pivot
logical, default is FALSE. If TRUE, or one of the SBPs is not defined, its pivot version is used.

print.res
logical, default is FALSE. If TRUE, the output is displayed in the Console.

X
a data frame containing variables representing row and column factors of the respective compositional tables, variable with the values of the composition and variable distinguishing the observations.

obs.ID
name of the variable distinguishing the observations. Needs to be stated with the quotation marks.

test
logical, default is FALSE. If TRUE, the bootstrap analysis of coordinates is provided.

n.boot
number of bootstrap samples.

Details

tabCoord
This transformation moves the IJ-part compositional tables from the simplex into a (IJ-1)-dimensional real space isometrically with respect to its two-factorial nature. The coordinate system is formed by two types of coordinates - balances and log odds-ratios.

tabCoordWrapper: Each of n IJ-part compositional tables from the sample is with respect to its two-factorial nature isometrically transformed from the simplex into a (IJ-1)-dimensional real space. Sample mean values and standard deviations are computed and using bootstrap an estimate of 95% confidence interval is given.

Value

Coordinates
an array of orthonormal coordinates.

Grap.rep
graphical representation of the coordinates. Parts denoted by + form the groups in the numerator of the respective computational formula, parts - form the denominator and parts . are not involved in the given coordinate.

Ind.coord
an array of row and column balances. Coordinate representation of the independent part of the table.

Int.coord
an array of OR coordinates. Coordinate representation of the interactive part of the table.
Contrast.matrix
c contrast matrix.
Log.ratios
an array of pure log-ratios between groups of parts without the normalizing con-
stant.
Coda.table
table form of the given composition.
Bootstrap
array of sample means, standard deviations and bootstrap confidence intervals.
Tables
Table form of the given compositions.

Author(s)
Kamila Facevicova

References
Facevicova, K., Hron, K., Todorov, V. and M. Templ (2018) General approach to coordinate repre-

See Also
cubeCoord cubeCoordWrapper

Examples

Coordinate representation of a CoDa Table

example from Fa\'cevicova (2018):
data(manu_abs)
manu_USA <- manu_abs[which(manu_abs$country=='USA'),]
manu_USA$output <- factor(manu_USA$output, levels=c('LAB', 'SUR', 'INP'))

pivot coordinates
tabCoord(manu_USA, row.factor = 'output', col.factor = 'isic', value='value')

SBPs defined in paper
r <- rbind(c(-1,-1,1), c(-1,1,0))
c <- rbind(c(-1,-1,-1,1,1), c(-1,1,-1,1,0), c(-1,-1,1,0,0), c(-1,1,0,0,0))
tabCoord(manu_USA, row.factor = 'output', col.factor = 'isic', value='value', SBPr=r, SBPc=c)

Analysis of a sample of CoDa Tables

example from Fa\'cevicova (2018):
data(manu_abs)

Compositional tables approach,
analysis of the relative structure.
An example from Facevicova (2018)
manu_abs$output <- factor(manu_abs$output, levels=c('LAB', 'SUR', 'INP'))
pivot coordinates
tabCoordWrapper(manu_abs, obs.ID=’country’,
row.factor = ’output’, col.factor = ’isic’, value=’value’)

SBPs defined in paper
r <- rbind(c(-1,-1,1), c(-1,1,0))
c <- rbind(c(-1,-1,-1,-1,1), c(-1,-1,-1,1,0),
c(-1,-1,1,0,0), c(-1,1,0,0,0))
tabCoordWrapper(manu_abs, obs.ID=’country’,row.factor = ’output’,
col.factor = ’isic’, value=’value’, SBPr=r, SBPc=c, test=TRUE)

Classical approach,
generalized linear mixed effect model.

Not run:
library(lme4)
glmer(value~output*as.factor(isic)+(1|country),data=manu_abs,family=poisson)
End(Not run)

teachingStuff
teaching stuff

Description

Teaching stuff in selected countries

Format

A (tidy) data frame with 1216 observations on the following 4 variables.

- country Country of origin
- subject school type: primary, lower secondary, higher secondary and tertiary
- year Year
- value Number of stuff

Details

Teaching staff include professional personnel directly involved in teaching students, including classroom teachers, special education teachers and other teachers who work with students as a whole class, in small groups, or in one-to-one teaching. Teaching staff also include department chairs of whose duties include some teaching, but it does not include non-professional personnel who support teachers in providing instruction to students, such as teachers’ aides and other paraprofessional personnel. Academic staff include personnel whose primary assignment is instruction, research or public service, holding an academic rank with such titles as professor, associate professor, assistant professor, instructor, lecturer, or the equivalent of any of these academic ranks. The category includes personnel with other titles (e.g. dean, director, associate dean, assistant dean, chair or head of department), if their principal activity is instruction or research.
ternaryDiag

Author(s)
translated from https://data.oecd.org/ and restructured by Matthias Templ

Source
OECD: https://data.oecd.org/

References

Examples

data(teachingStuff)
str(teachingStuff)

ternaryDiag Ternary diagram

Description
This plot shows the relative proportions of three variables (compositional parts) in one diagramm. Before plotting, the data are scaled.

Usage

ternaryDiag(
 x,
 name = colnames(x),
 text = NULL,
 grid = TRUE,
 gridCol = grey(0.6),
 mcex = 1.2,
 line = "none",
 robust = TRUE,
 group = NULL,
 tol = 0.975,
 ...
)

Arguments

 x matrix or data.frame with 3 columns
 name names of the variables
 text default NULL, text for each point can be provided
 grid if TRUE a grid is plotted additionally in the ternary diagram
gridCol color for the grid lines
mcex label size
line may be set to “none”, “pca”, “regression”, “regressionconf”, “regressionpred”, “ellipse”, “lda”
robust if line equals TRUE, it dedicates if a robust estimation is applied or not.
group if line equals “da”, it determines the grouping variable
tol if line equals “ellipse”, it determines the parameter for the tolerance ellipse
... further parameters, see, e.g., par()

Details

The relative proportions of each variable are plotted.

Author(s)

Peter Filzmoser <<P.Filzmoser@tuwien.ac.at>>, Matthias Templ <<matthias.templ@fhnw.ch>>

References

Examples

 data(arcticLake)
 ternaryDiag(arcticLake)

 data(coffee)
 x <- coffee[,2:4]
 grp <- as.integer(coffee[,1])
 ternaryDiag(x, col=grp, pch=grp)
 ternaryDiag(x, grid=FALSE, col=grp, pch=grp)
 legend("topright", legend=unique(coffee[,4]), pch=1:2, col=1:2)

 ternaryDiag(x, grid=FALSE, col=grp, pch=grp, line="ellipse", tol=c(0.975,0.9), lty=2)
 ternaryDiag(x, grid=FALSE, line="pca")
 ternaryDiag(x, grid=FALSE, col=grp, pch=grp, line="pca", lty=2, lwd=2)

ternaryDiagAbline Adds a line to a ternary diagram.

Description

A low-level plot function which adds a line to a high-level ternary diagram.
ternaryDiagAbline

Usage

ternaryDiagAbline(x, ...)

Arguments

x Two-dimensional data set in isometric log-ratio transformed space.
...
Additional graphical parameters passed through.

Details

This is a small utility function which helps to add a line in a ternary plot from two given points in an isometric transformed space.

Value

no values are returned.

Author(s)

Matthias Templ

See Also

ternaryDiag

Examples

data(coffee)
x <- coffee[, 2:4]
ternaryDiag(x, grid=FALSE)
ternaryDiagAbline(data.frame(z1=c(0.01, 0.5), z2=c(0.4, 0.8)), col="red")

ternaryDiagEllipse

Adds tolerance ellipses to a ternary diagram.

description

Low-level plot function which add tolerance ellipses to a high-level plot of a ternary diagram.

Usage

ternaryDiagEllipse(x, tolerance = c(0.9, 0.95, 0.975), locscatt = "MCD", ...)

ternaryDiagPoints

Arguments

x Three-part composition. Object of class “matrix” or “data.frame”.
tolerance Determines the amount of observations with Mahalanobis distance larger than the drawn ellipse, scaled to one.
locscatt Method for estimating the mean and covariance.
... Additional arguments passed through.

Value

no values are returned.

Author(s)

Peter Filzmoser, Matthias Templ

See Also

ternaryDiag

Examples

data(coffee)
x <- coffee[,2:4]
ternaryDiag(x, grid=FALSE)
ternaryDiagEllipse(x)
or directly:
ternaryDiag(x, grid=FALSE, line="ellipse")

ternaryDiagPoints Add points or lines to a given ternary diagram.

Description

Low-level plot function to add points or lines to a ternary high-level plot.

Usage

ternaryDiagPoints(x, ...)

Arguments

x Three-dimensional composition given as an object of class “matrix” or “data.frame”.
... Additional graphical parameters passed through.
Value

no values are returned.

Author(s)

Matthias Templ

References

See Also

ternaryDiag

Examples

data(coffee)
x <- coffee[,2:4]
ternaryDiag(x, grid=FALSE)
ternaryDiagPoints(x+1, col="red", pch=2)

trapzc

Trapezoidal formula for numerical integration

Description

Numerical integration via trapezoidal formula.

Usage

trapzc(step, f)

Arguments

step step of the grid
f grid evaluation of density

Value

int The value of integral computed numerically by trapezoidal formula.

Author(s)

R. Talska<talskarenata@seznam.cz>, K. Hron<karel.hron@upol.cz>
Examples

```r
# Example (zero-integral of fcenLR density)
t = seq(-4.7, 4.7, length = 1000)
t_step = diff(t[1:2])
mean = 0; sd = 1.5
f = dnorm(t, mean, sd)
f.fcenLR = fcenLR(t, t_step, f)
trapzc(t_step, f.fcenLR)
```

trondelagC

regional geochemical survey of soil C in Norway

Description

A regional-scale geochemical survey of C horizon samples in Nord-Trondelag, Central Norway

Usage

```r
data(trondelagC)
```

Format

A data frame with 754 observations and 70 variables

Details

- `X.S_ID` ID
- `X.Loc_ID` ID
- `longitude` longitude in WGS84
- `latitude` latitude in WGS84
- `E32wgs` UTM zone east
- `N32wgs` UTM zone north
- `X.Medium`
- `Ag` Concentration of silver (in mg/kg)
- `Al` Concentration of aluminum (in mg/kg)
- `As` Concentration of arsenic (in mg/kg)
- `Au` Concentration of gold (in mg/kg)
- `B` Concentration of boron (in mg/kg)
- `Ba` Concentration of barium (in mg/kg)
- `Be` Concentration of beryllium (in mg/kg)
- `Bi` Concentration of bismuth (in mg/kg)
- `Ca` Concentration of calcium (in mg/kg)
- Cd Concentration of cadmium (in mg/kg)
- Ce Concentration of cerium (in mg/kg)
- Co Concentration of cobalt (in mg/kg)
- Cr Concentration of chromium (in mg/kg)
- Cs Concentration of cesium (in mg/kg)
- Cu Concentration of copper (in mg/kg)
- Fe Concentration of iron (in mg/kg)
- Ga Concentration of gallium (in mg/kg)
- Ge Concentration of germanium (in mg/kg)
- Hf Concentration of hafnium (in mg/kg)
- Hg Concentration of mercury (in mg/kg)
- In Concentration of indium (in mg/kg)
- K Concentration of potassium (in mg/kg)
- La Concentration of lanthanum (in mg/kg)
- Li Concentration of lithium (in mg/kg)
- Mg Concentration of magnesium (in mg/kg)
- Mn Concentration of manganese (in mg/kg)
- Mo Concentration of molybdenum (in mg/kg)
- Na Concentration of sodium (in mg/kg)
- Nb Concentration of niobium (in mg/kg)
- Ni Concentration of nickel (in mg/kg)
- P Concentration of phosphorus (in mg/kg)
- Pb Concentration of lead (in mg/kg)
- Pb204 Concentration of lead, 204 neutrons (in mg/kg)
- Pb206 Concentration of lead, 206 neutrons (in mg/kg)
- Pb207 Concentration of lead, 207 neutrons (in mg/kg)
- Pb208 Concentration of lead, 208 neutrons (in mg/kg)
- X6_7Pb Concentration of lead (in mg/kg)
- X7_8Pb Concentration of lead (in mg/kg)
- X6_4Pb Concentration of lead (in mg/kg)
- X7_4Pb Concentration of lead (in mg/kg)
- X8_4Pb Concentration of lead (in mg/kg)
- Pd Concentration of palladium (in mg/kg)
- Pt Concentration of platinum (in mg/kg)
- Rb Concentration of rubidium (in mg/kg)
- Re Concentration of rhenium (in mg/kg)
- S Concentration of sulfur (in mg/kg)
• Sb Concentration of antimony (in mg/kg)
• Sc Concentration of scandium (in mg/kg)
• Se Concentration of selenium (in mg/kg)
• Sn Concentration of tin (in mg/kg)
• Sr Concentration of strontium (in mg/kg)
• Ta Concentration of tantalum (in mg/kg)
• Te Concentration of tellurium (in mg/kg)
• Th Concentration of thorium (in mg/kg)
• Ti Concentration of titanium (in mg/kg)
• Tl Concentration of thalium (in mg/kg)
• U Concentration of uranium (in mg/kg)
• V Concentration of vanadium (in mg/kg)
• W Concentration of tungsten (in mg/kg)
• Y Concentration of yttrium (in mg/kg)
• Zn Concentration of zinc (in mg/kg)
• Zr Concentration of zirconium (in mg/kg)

The samples were analysed using aqua regia extraction. Sampling was based on a 6.6km grid, i.e. 1 sample site/36 km2.

Author(s)

NGU, https://www.ngu.no, transferred to R by Matthias Templ <matthias.templ@tuwien.ac.at>

References

Examples

data(trondelagC)
str(trondelagC)
Description

A regional-scale geochemical survey of O horizon samples in Nord-Trondelag, Central Norway

Usage

data(trondelagO)

Format

A data frame with 754 observations and 70 variables

Details

- X.Loc_ID ID
- LITHO Rock type
- longitude latitude in WGS84
- latitude latitude in WGS84
- E32wgs UTM zone east
- N32wgs UTM zone north
- X.Medium a numeric vector
- Alt_masl a numeric vector
- LOI_480 Loss on ignition
- pH Numeric scale used to specify the acidity or alkalinity of an aqueous solution
- Ag Concentration of silver (in mg/kg)
- Al Concentration of aluminum (in mg/kg)
- As Concentration of arsenic (in mg/kg)
- Au Concentration of gold (in mg/kg)
- B Concentration of boron (in mg/kg)
- Ba Concentration of barium (in mg/kg)
- Be Concentration of beryllium (in mg/kg)
- Bi Concentration of bismuth (in mg/kg)
- Ca Concentration of calcium (in mg/kg)
- Cd Concentration of cadmium (in mg/kg)
- Ce Concentration of cerium (in mg/kg)
- Co Concentration of cobalt (in mg/kg)
- Cr Concentration of chromium (in mg/kg)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Element</th>
<th>Concentration (in mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs</td>
<td>Cesium</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>Ga</td>
<td>Gallium</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>Germanium</td>
<td></td>
</tr>
<tr>
<td>Hf</td>
<td>Hafnium</td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
<td></td>
</tr>
<tr>
<td>In</td>
<td>Indium</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>Lanthanum</td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>Niobium</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Pb204</td>
<td>Lead, 204 neutrons</td>
<td></td>
</tr>
<tr>
<td>Pb206</td>
<td>Lead, 206 neutrons</td>
<td></td>
</tr>
<tr>
<td>Pb207</td>
<td>Lead, 207 neutrons</td>
<td></td>
</tr>
<tr>
<td>Pb208</td>
<td>Lead, 208 neutrons</td>
<td></td>
</tr>
<tr>
<td>X6_7Pb</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>X7_8Pb</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>X6_4Pb</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>X7_4Pb</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>X8_4Pb</td>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td>Palladium</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>Rubidium</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>Rhenium</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Sulfur</td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>Antimony</td>
<td></td>
</tr>
<tr>
<td>Sc</td>
<td>Scandium</td>
<td></td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
<td></td>
</tr>
<tr>
<td>Sn</td>
<td>Tin</td>
<td></td>
</tr>
</tbody>
</table>
• Sr Concentration of strontium (in mg/kg)
• Ta Concentration of tantalum (in mg/kg)
• Te Concentration of tellurium (in mg/kg)
• Th Concentration of thorium (in mg/kg)
• Ti Concentration of titanium (in mg/kg)
• Tl Concentration of thalium (in mg/kg)
• U Concentration of uranium (in mg/kg)
• V Concentration of vanadium (in mg/kg)
• W Concentration of tungsten (in mg/kg)
• Y Concentration of yttrium (in mg/kg)
• Zn Concentration of zinc (in mg/kg)
• Zr Concentration of zirconium (in mg/kg)

The samples were analysed using aqua regia extraction. Sampling was based on a 6.6km grid, i.e. 1 sample site/36 km2.

Author(s)
NGU, https://www.ngu.no, transferred to R by Matthias Templ <matthias.templ@tuwien.ac.at>

References

Examples

data(trondelagO)
str(trondelagO)

<table>
<thead>
<tr>
<th>unemployed</th>
<th>unemployed of young people</th>
</tr>
</thead>
</table>

Description
Youth not in employment, education or training (NEET) in 43 countries from 1997 till 2015

Format
A (tidy) data frame with 1216 observations on the following 4 variables.

• country Country of origin
• age age group
• year Year
• value percentage of unemployed
Details

This indicator presents the share of young people who are not in employment, education or training (NEET), as a percentage of the total number of young people in the corresponding age group, by gender. Young people in education include those attending part-time or full-time education, but exclude those in non-formal education and in educational activities of very short duration. Employment is defined according to the OECD/ILO Guidelines and covers all those who have been in paid work for at least one hour in the reference week of the survey or were temporarily absent from such work. Therefore NEET youth can be either unemployed or inactive and not involved in education or training. Young people who are neither in employment nor in education or training are at risk of becoming socially excluded - individuals with income below the poverty-line and lacking the skills to improve their economic situation.

Author(s)

translated from https://data.oecd.org/ and restructured by Matthias Templ

Source

OECD: https://data.oecd.org/

References

Examples

```r
data(unemployed)
str(unemployed)
```

<table>
<thead>
<tr>
<th>variation</th>
<th>Robust and classical variation matrix</th>
</tr>
</thead>
</table>

Description

Estimates the variation matrix with robust methods.

Usage

```r
variation(x, method = "robustPivot", algorithm = "MCD")
```

Arguments

- `x` : data frame or matrix with positive entries
- `method` : method used for estimating covariances. See details.
- `algorithm` : kind of robust estimator (MCD or MM)
The variation matrix is estimated for a given compositional data set. Instead of using the classical
standard deviations the minimum covariance estimator is used (\texttt{covMcd}) is used when parameter
robust is set to TRUE.

For method \texttt{robustPivot} formula 5.8. of the book (see second reference) is used. Here robust
(mcd-based) covariance estimation is done on pivot coordinates. Method \texttt{robustPairwise} uses
a mcd covariance estimation on pairwise log-ratios. Methods \texttt{Pivot} (see second reference) and
\texttt{Pairwise} (see first reference) are the non-robust counterparts. Naturally, \texttt{Pivot} and \texttt{Pairwise}
gives the same results, but the computational time is much less for method \texttt{Pairwise}.

The (robust) variation matrix.

Karel Hron, Matthias Templ

Aitchison, J. (1986) \textit{The Statistical Analysis of Compositional Data} Monographs on Statistics and

Filzmoser, P., Hron, K., Templ, M. (2018) \textit{Applied Compositional Data Analysis}. Springer,
Cham.

data(expenditures)
variation(expenditures) # default is method \texttt{"robustPivot"}
variation(expenditures, method = \texttt{"Pivot"})
variation(expenditures, method = \texttt{"robustPairwise"})
variation(expenditures, method = \texttt{"Pairwise"}) # same results as \texttt{Pivot}

Weighted pivot coordinates as a special case of isometric logratio coordinates.
Usage

weightedPivotCoord(
 x,
 pivotvar = 1,
 option = "var",
 method = "classical",
 pow = 1,
 yvar = NULL
)

Arguments

x
 object of class 'data.frame' or 'matrix'; positive values only

pivotvar
 pivotal variable; if any other number than 1, the data are resorted in that sense
 that pivotvar is shifted to the first part

option
 option for the choice of weights. If 'option = "var"' (default), weights are based
 on variation matrix elements: '(1/t_1j)^pow', if 'option = "cor"', weights are
 based on correlations between variable specified in yvar and logratios and its
 distribution: 'integral_0^r_j f(x) dx', 'f(x)...' Kernel density estimator for 's_j;
 s_j=0 if |r_j|<cut' otherwise 's_j=r_j'. 'cut = min(#r_j=>0/#r_j, #r_j<0/#r_j',
 with Gaussian Kernel function and bandwidth 'h=0.05'.

method
 method for estimation of variation/correlation, if 'option = "classical"' (default),
 classical estimation is applied, if 'option = "robust"', robust estimation is ap-
 plied;

pow
 if 'option = "var"', power 'pow' is applied on unnormalized weights; default is
 1;

yvar
 if 'option = "cor"', weights are based on correlation between logratios and vari-
 able specified in 'yvar';

Details

Weighted pivot coordinates map D-part compositional data from the simplex into a (D-1)-dimensional
real space isometrically. The relevant relative information about one of parts is contained in the first
coordinate. Unlike in the (ordinary) pivot coordinates, the pairwise logratios aggregated into the
first coordinate are weighted according to their relevance for the purpose of the analysis.

Value

WPC
 weighted pivot coordinates (matrix with n rows and (D-1) columns)

w
 logcontrasts (matrix with D rows and (D-1) columns)

Author(s)

Nikola Stefelova
References

See Also

pivotCoord

Examples

first variable as pivotal, weights based on variation matrix
wpc_var <- weightedPivotCoord(x)
coordinates <- wpc_var$WPC
logcontrasts <- wpc_var$w

third variable as pivotal, weights based on variation matrix,
robust estimation of variance, effect of weighting enhanced
wpc_var <- weightedPivotCoord(x, pivotvar = 3, method = "robust", pow = 2)
coordinates = wpc_var$WPC
logcontrasts = wpc_var$w

first variable as pivotal, weights based on correlation between pairwise logratios and y
wpc_cor <- weightedPivotCoord(x, option = "cor", yvar = phd$female)
coordinates <- wpc_cor$WPC
logcontrasts <- wpc_cor$w

fifth variable as pivotal, weights based on correlation between pairwise logratios
and y, robust estimation of correlation
wpc_cor <- weightedPivotCoord(x, pivotvar = 5, option = "cor", method = "robust", yvar = phd$female)
coordinates <- wpc_cor$WPC
logcontrasts <- wpc_cor$w

ZBsplineBasis

ZB-spline basis
Description

Spline basis system having zero-integral on I=[a,b] of the L^2_0 space (called ZB-splines) has been proposed for an basis representation of fcenLR transformed probability density functions. The ZB-spline basis functions can be back transformed to Bayes spaces using inverse of fcenLR transformation, resulting in compositional B-splines (CB-splines), and forming a basis system of the Bayes spaces.

Usage

ZBsplineBasis(t, knots, order, basis.plot = FALSE)

Arguments

t a vector of argument values at which the ZB-spline basis functions are to be evaluated
knots sequence of knots
order order of the ZB-splines (i.e., degree + 1)
basis.plot if TRUE, the ZB-spline basis system is plotted

Value

ZBsplineBasis matrix of ZB-spline basis functions evaluated at a vector of argument values t
nbasis number of ZB-spline basis functions

Author(s)

J. Machalova <jitka.machalova@upol.cz>, R. Talska <talskarenata@seznam.cz>

References

Examples

Example: ZB-spline basis functions evaluated at a vector of argument values t
t = seq(0,20,l=500)
knots = c(0,2,5,9,14,20)
order = 4
ZBsplineBasis.out = ZBsplineBasis(t,knots,order, basis.plot=TRUE)

Back-transformation of ZB-spline basis functions from L^2_0 to Bayes space ->
CB-spline basis functions
CBsplineBasis=NULL
for (i in 1:ZBsplineBasis.out$nbasis)
{
 CB_spline = fcenRinv(t,diff(t)[1:2],ZBsplineBasis.out$ZBsplineBasis[,i])
 CBsplineBasis = cbind(CBsplineBasis,CB_spline)
zeroOut

Detection of outliers of zero-inflated data

Description

detects outliers in compositional zero-inflated data

Usage

zeroOut(x, impute = "knn")

Arguments

x a data frame
impute imputation method internally used

Details

XXX

Value

XXX

Author(s)

Matthias Templ

Examples

Installing and loading required packages
data(expenditures)
Index

* aplot
 - biplot.factanal, 23
 - biplot.pcaCoDa, 24
 - plot.imp, 141
 - plot.pcaCoDa, 143
 - ternaryDiag, 167
 - ternaryDiagAbline, 168
 - ternaryDiagEllipse, 169
 - ternaryDiagPoints, 170
* arith
 - aDist, 10
 - perturbation, 134
* coordinates
 - bpc, 26
* datasets
 - cancer, 41
 - cancerMN, 42
 - chorizonDL, 46
 - efsa, 70
 - expendituresEU, 76
 - foodbalance, 82
 - gjovik, 85
 - govexp, 89
 - haplogroups, 90
 - honey, 91
 - laborForce, 114
 - landcover, 115
 - lifeExpGdp, 116
 - phd, 137
 - phd_totals, 138
 - saffron, 152
 - teachingStuff, 166
 - unemployed, 177
* data
 - ageCatWorld, 16
 - alcohol, 17
 - alcoholreg, 18
 - arcticLake, 18
 - coffee, 52
 - economy, 68
 - educFM, 69
 - election, 71
 - electionATbp, 72
 - employment, 73
 - employment2, 73
 - employment_df, 74
 - expenditures, 75
 - GDPsatis, 82
 - gemas, 83
 - instw, 109
 - isic32, 114
 - machineOperators, 118
 - manu_abs, 119
 - mcad, 121
 - mortality, 123
 - mortality_tab, 124
 - nutrients, 125
 - nutrients_branded, 127
 - payments, 131
 - precipitation, 145
 - production, 147
 - rcodes, 149
 - skyeLavas, 155
 - socExp, 159
 - trondelagC, 172
 - trondelagO, 175
* hplot
 - plot.imp, 141
* htest
 - adtest, 13
 - adtestWrapper, 14
 - rSDev.test, 151
* iteration
 - impCoda, 94
* manip
 - addLR, 7
 - addLRinv, 8
 - adjust, 11
bootnComp, 25
ced, 43
cenLR, 44
cenLRinv, 45
constSum, 57
impAll, 93
impKNNa, 96
impRZalr, 98
impRZilr, 100
imputeBDLs, 102
imputeUDLs, 105
is.equivalent, 113
norm1, 124
orthbasis, 128
rdcm, 149
* math
 aDist, 10
 perturbation, 134
 pivotCoord, 139
* models
 lmCoDaX, 117
* multivariate
 bpc, 26
 bpcPca, 27
 bpcPcaTab, 29
 bpcTab, 37
 bpcTabWrapper, 39
 clustCoDa, 48
 clustCoDa_qmode, 51
 cubeCoord, 60
daCoDa, 64
daFisher, 65
impCoda, 94
impKNNa, 96
impRZalr, 98
impRZilr, 100
imputeBDLs, 102
imputeUDLs, 105
missPatterns, 121
outCoDa, 129
pcaCoDa, 132
pfa, 135
tabCoord, 163
ternaryDiag, 167
variation, 178
weightedPivotCoord, 179
* package
 robCompositions-package, 5

* print
 print.imp, 146
 summary.imp, 162
* regression
 bpcReg, 32
 bpcRegTab, 34
* robust
 impCoda, 94
 variation, 178

addLR, 7, 9, 45
addLRinv, 8, 8, 45
aDist, 10
adjust, 11
adjustImputed (imputeBDLs), 102
adtest, 13, 15
adtestWrapper, 13, 14, 14
ageCatWorld, 16
aggr, 122
alcohol, 17
alcoholreg, 18
all.equal, 113
arcticLake, 18
balances, 19
biomarker, 21
biplot.factanal, 23
biplot.pcaCoDa, 24, 133, 144
bootnComp, 25
bpc, 26, 28, 33, 38, 40
bpcPca, 27, 27, 31, 33
bpcPcaTab, 28, 29, 36, 38, 40
bpcReg, 27, 28, 32, 36
bpcRegTab, 31, 33, 34, 38, 40
bpcTab, 27, 37
bpcTabWrapper, 27, 31, 36, 38, 39
cancer, 41
cancerMN, 42
ced, 43
cenLR, 9, 44, 45, 128
cenLRinv, 9, 45, 45
checkData (imputeBDLs), 102
chorizonDL, 46, 46, 48
clustCoDa, 48
clustCoDa_qmode, 51
coffee, 52
compareMahal, 53
compositionalSpline, 54
constSum, 57
coord, 58
cor, 59
corCoDa, 59
covMcd, 129, 179
cubeCoord, 60, 165
cubeCoordWrapper, 165
cubeCoordWrapper (cubeCoord), 60
daCoDa, 64
daFisher, 65
economy, 68
educFM, 69
efsa, 70
election, 71
electionATbp, 72
employment, 73
employment2, 73
employment_df, 74
expenditures, 75
expendituresEU, 76
fcenLR, 77
fcenLRinv, 78
fcenLrp, 79
fcenLRu, 80
foodbalance, 82
GDPsatis, 82
gemas, 83
getEstimates (compareMahal), 53
gjovik, 85
gm, 88
gmean (gmean_sum), 88
gmean_sum, 88
govexp, 89
ahaplogroups, 90
honey, 91
ilr.2x2, 92
ilrregression (lmCoDaX), 117
impAll, 93
impCoda, 12, 94, 97, 143, 146, 162
impKNNa, 53, 96, 97, 143, 146, 162
impRZalr, 98, 101
impRZilr, 98, 100
imputeBDLs, 102, 104, 107
imputeUDLs, 105

ind2x2, 107
indTab, 108
instw, 109
int2x2, 110
intArray, 111
intTab, 111, 112
iproduct (aDist), 10
is.equivalent, 113
isic32, 114
isomLR (pivotCoord), 139
isomLRinv (pivotCoord), 139
isomLRinvp (pivotCoord), 139
isomLrp (pivotCoord), 139
laborForce, 114
landcover, 115
LdaClassic, 65
lifeExpGdp, 116
Linda, 65, 67
lm, 118
lmCoDaX, 117

machineOperators, 118
manu_abs, 119
mcad, 121
missPatterns, 121
mortality, 123
mortality_tab, 124
norml, 124
nutrients, 125
nutrients_branded, 127

orthbasis, 128
outCoDa, 129

par, 142
payments, 131
 pcaCoDa, 24, 132, 144
perturbation, 134
pfa, 23, 135
phd, 137
 phd_totals, 138
pivotCoord, 8, 11, 15, 45, 53, 96, 128, 130, 139, 181
pivotCoordInv, 9, 45
pivotCoordInv (pivotCoord), 139
plot.biomarker, 22
plot.biomarker (biomarker), 21
INDEX

plot.clustCoDa (clustCoDa), 48
plot.clustCoDa_qmode (clustCoDa_qmode), 51
plot.estimates (compareMahal), 53
plot.mahal (compareMahal), 53
plot.outCoDa (outCoDa), 129
plot.pcaCoDa, 24, 133, 143
plot.smoothSpl, 144
powering (perturbation), 134
precipitation, 145
predict.daFisher (daFisher), 65
print.adtestWrapper (adtestWrapper), 14
print.biomarker (biomarker), 21
print.coord (coord), 58
print.daFisher (daFisher), 65
print.estimates (compareMahal), 53
print.imp, 146
print.outCoDa (outCoDa), 129
print.pcaCoDa, 133
print.pcaCoDa (pcaCoDa), 132
print.replaced (imputeBDLs), 102
production, 147
pTab, 148
QdaClassic, 65
QdaCov, 65
rcodes, 149
rdcm, 43, 149, 150
robjectCompositions
 (robCompositions-package), 5
robjectCompositions-package, 5
robilrregression (lmCoDaX), 117
rSDev, 150, 152
rSDev.test, 151
saffron, 152
SDev, 154
skyelavas, 155
smoothSplines, 156, 158
smoothSplinesVal, 158
socExp, 159
stats, 160
summary.adtestWrapper (adtestWrapper), 14
summary.biomarker (biomarker), 21
summary.daFisher (daFisher), 65
summary.imp, 162
summary.pcaCoDa, 133
summary.pcaCoDa (pcaCoDa), 132
tabCoord, 62, 163
tabCoordWrapper, 62
tabCoordWrapper (tabCoord), 163
teachingStuff, 166
ternaryDiag, 167, 169–171
ternaryDiagAbline, 168
ternaryDiagEllipse, 169
ternaryDiagLines (ternaryDiagPoints), 170
ternaryDiagPoints, 170
trapzc, 171
trondelagC, 172
trondelagO, 175
unemployed, 177
variation, 178
weightedPivotCoord, 179
ZBsplineBasis, 181
zeroOut, 183
zeroPatterns (missPatterns), 121