Package ‘robcp’

June 4, 2019

Title Robust Change-Point Tests
Version 0.2.4
Description Provides robust methods to detect change-points in uni- or multivariate time series. They can cope with corrupted data and heavy tails. One can detect changes in location, scale and dependence structure of a possibly multivariate time series. Procedures are based on Huberized versions of CUSUM tests proposed in Duerre and Fried (2019) <arXiv:1905.06201>.

Depends R (>= 3.3.1)
License GPL-3
Encoding UTF-8
LazyData true
NeedsCompilation yes
Author Sheila Goerz [aut, cre],
 Alexander Duerre [ctb]
Maintainer Sheila Goerz <sheila.goerz@tu-dortmund.de>
Repository CRAN
Date/Publication 2019-06-03 23:50:14 UTC

R topics documented:

huber_cusum .. 2
h_cumsum .. 3
modifChol .. 4
pKSdist .. 5
psi ... 7
sigma2 ... 9
teststat ... 10
zeros .. 11

Index 12
huber_cusum

Huberized CUSUM test

Description

Performs a CUSUM test on data transformed by \(\psi \). Depending in the chosen psi-function different types of changes can be detected.

Usage

```
huber_cusum(x, fun = "hlm", tol = 1e-8, b_n, k, constant)
```

Arguments

- `x`: numeric vector containing a single time series or a numeric matrix containing multiple time series (column-wise).
- `fun`: character string specifying the transformation function \(\psi \), see details.
- `tol`: tolerance of the distribution function (numeric), which is used to compute p-values.
- `b_n`: bandwidth, which is used to estimate the long run variance, see the help page of \(\sigma^2 \) for details.
- `k`: numeric bound used in \(\psi \).
- `constant`: scale factor of the MAD. Default is 1.4826.

Details

The function performs a Huberized CUSUM test. First the data is transformed by a suitable psi-function. To detect changes in location one can apply `fun = "hlm", "hlg", "vlm"` or `"vlg"`, for changes in scale `fun = "hcm"` is available and for changes in the dependence respectively covariance structure `fun = "hcm", "hcg", "vcm"` and `"vcg"` are possible. The actual definitions of the psi-functions can be found in the help page of `psi`. Denote \(Y_1, \ldots, Y_n \) the transformed time series. If \(Y_1 \) is one dimensional, then the test statistic

\[
V = \max_{k=1, \ldots, n} \frac{1}{\sqrt{n}\sigma} \left| \sum_{i=1}^{k} Y_i - \frac{k}{n} \sum_{i=1}^{n} Y_i \right|
\]

is calculated, where \(\sigma^2 \) is an estimator for the long run variance, see the help function of `sigma2` for details. \(V \) is asymptotically Kolmogorov-Smirnov distributed. We use a finite sample correction \(V + 0.58/\sqrt{n} \) to improve finite sample performance.

If \(Y[1] \) is multivariate, then the test statistic

\[
W = \max_{k=1, \ldots, n} \frac{1}{n} \left(\sum_{i=1}^{k} Y_i - \frac{k}{n} \sum_{i=1}^{n} Y_i \right)^T \Sigma^{-1} \left(\sum_{i=1}^{k} Y_i - \frac{k}{n} \sum_{i=1}^{n} Y_i \right)
\]

is computed, where \(\Sigma \) is the long run covariance, see also `sigma2` for details. \(W \) is asymptotically distributed like the maximum of a squared Bessel bridge. We use the identity derived in Kiefer to derive p-values. Like in the one dimensional case we use a finite sample correction \((\sqrt{W} + 0.58/\sqrt{n})^2 \).
Value

A list of the class "htest" containing the following components:

- **statistic**: value of the test statistic (numeric).
- **p.value**: p-value (numeric).
- **alternative**: alternative hypothesis (character string).
- **method**: name of the performed test (character string).
- **data.name**: name of the data (character string).

Author(s)

Sheila Görz

References

See Also

`sigma2`, `psi`, `h_cumsum`, `teststat`, `pKsdist`

Examples

```r
set.seed(1895)

# time series with a structural break at t = 20
Z <- c(rnorm(20, 0), rnorm(20, 2))
huber_cumsum(Z)

# two time series with a structural break at t = 20
timeSeries <- matrix(c(rnorm(20, 0), rnorm(20, 2), rnorm(20, 1), rnorm(20, 3), ncol = 2))

huber_cumsum(timeSeries)
```

h_cumsum
Cumulative sum of transformed vectors

Description

Computes the cumulative sum of a transformed numeric vector or matrix. Default transformation is `psi`.
modifChol

Usage

modifChol(x, tau = .Machine$double.eps^(1 / 3),
 tau_bar = .Machine$double.eps^(2 / 3), mu = 0.1)

modifChol

Revised Modified Cholesky Factorization

Description

Computes the revised modified Cholesky factorization described in Schnabel and Eskow (1999).

Usage

modifChol(x, tau = .Machine$double.eps^(1 / 3),
 tau_bar = .Machine$double.eps^(2 / 3), mu = 0.1)
pKSDist

Arguments

- **x**: a symmetric matrix.
- **tau**: (machine epsilon)^{(1/3)}.
- **tau_bar**: (machine epsilon^{(2/3)}).
- **mu**: numeric, 0 < µ ≤ 1.

Details

`modif.chol` computes the revised modified Cholesky Factorization of a symmetric, not necessarily positive definite matrix \(x + E \) such that \(LL' = x + E \) for \(E \geq 0 \).

Value

Lower triangular matrix \(L \) of the form \(LL' = x + E \). The attribute `swaps` is a vector of the length of dimension of \(x \). It contains the indices of the rows and columns that were swapped in \(x \) in order to compute the modified Cholesky factorization. For example if the i-th element of `swaps` is the number j, then the i-th and the j-th row and column were swapped. To reconstruct the original matrix `swaps` has to be read backwards.

Author(s)

Sheila Görz

References

Examples

```r
y <- matrix(runif(9), ncol = 3)
x <- psi(y)
modifChol(sigma2(x))
```

pKSDist

Asymptotic cumulative distribution for the Huberized CUSUM Test statistic

Description

Computes the asymptotic cumulative distribution of the statistic of `teststat`.

Usage

```
pKSDist(tn, tol = 1e-8)
pbessel3(tn, h)
```
Arguments

- **tn**: vector of test statistics (numeric). For pbessel13 length of tn has to be 1.
- **h**: dimension of time series (integer). If h is equal to 1 pbessel13 uses pKS2 to compute the corresponding probability.
- **tol**: tolerance (numeric).

Details

For a single time series, the distribution is the same distribution as in the two sample Kolmogorov Smirnov Test, namely the distribution of the maximal value of the absolute values of a Brownian bridge. It is computed as follows (van Mulbregt, 2018):

For \(t_n(x) < 1 \):

\[
P(t_n(X) \leq t_n(x)) = \sqrt{2 \pi / t_n(x)} \times t(1 + t^8(1 + t^{16}(1 + t^{24}(1 + ...))))
\]

up to \(t^{8k_{max}}, k_{max} = \lfloor \sqrt{2 - \log(tol)} \rfloor \) where \(t = \exp(-\pi^2/(8 * x^2)) \)

else:

\[
P(t_n(X) \leq t_n(x)) = 2 \sum_{k=1}^{\infty} (-1)^{k-1} \times \exp(-2 * k^2 * x^2)
\]

until \(|2 \times (-1)^{k-1} \times \exp(-2 * k^2 * x^2) - 2 \times (-1)^{(k-1)-1} \times \exp(-2 * (k-1)^2 * x^2)| \leq tol \).

In case of multiple time series, the distribution equals that of the maximum of an \(h \) dimensional squared Bessel bridge. It can be computed by (Kiefer, 1959):

\[
P(t_n(X) \leq t_n(x)) = \frac{4}{\Gamma(h/2)} \times \sum_{i=1}^{\infty} \left((\gamma(h-2)/2, n)^{h-2} \times \exp(-\gamma(h-2)/2, n)^2/(2t_n^2) \right) / J_{h/2}(\gamma(h-2)/2, n) \]

where \(J_h \) is the Bessel function of first kind and \(h \)-th order, \(\Gamma \) is the gamma function and \(\gamma_{h,n} \) denotes the n-th zero of \(J_h \).

Value

vector of \(P(t_n(X) \leq t_n[i]) \).

Author(s)

Sheila Görz, Alexander Dürre

References

psi

See Also

psi, teststat, h_cumsum, huber_cusum

Examples

single time series
timeSeries <- c(rnorm(20, 0), rnorm(20, 2))
 tn <- teststat(timeSeries)

pKSDist(tn)

two time series
timeSeries <- matrix(c(rnorm(20, 0), rnorm(20, 2), rnorm(20, 1), rnorm(20, 3),
 ncol = 2))
tn <- teststat(timeSeries)

pbessel3(tn, 2)

psi Transformation of time series

Description

Computation of values transformed by their median, MAD and a ψ function.

Usage

psi(y, fun = "HLM", k, constant = 1.4826)

Arguments

y vector or matrix with each column representing a time series (numeric).
fun character string specifying the transformation function ψ.
k numeric bound used for Huber type psi-functions which determines robustness
and efficiency of the test. Default for psi = "HgL" or "HCG" is \sqrt{qchisq(0.8, df = m)}
where m are the number of time series, and otherwise it is 1.5.
constant scale factor of the MAD.

Details

Let x = (y - Median(y))/MAD(y) be the standardized values of a single time series.

Available ψ functions are:

marginal Huber for location:
fun = "HLM".
\[\psi_{HLm}(x) = k \ast 1_{x > k} + z \ast 1_{-k \leq x \leq k} - k \ast 1_{x < -k}. \]

global Huber for location:
\[\text{fun} = "HLg". \]
\[\psi_{HLg}(x) = x \ast 1_{0 \leq |x| \leq k} + k \ast x / |x| \ast 1_{|x| > k}. \]

marginal sign for location:
\[\text{fun} = "Vlm". \]
\[\psi_{Vlm}(x_i) = \text{sign}(x_i). \]

global sign for location:
\[\text{fun} = "Vlg". \]
\[\psi_{Vlg}(x) = x / |x| \ast 1_{|x| > 0}. \]

marginal Huber for covariance:
\[\text{fun} = "Hcm". \]
\[\psi_{Hcm}(x) = \psi_{HLm}(x) \psi_{HLm}(x)^T. \]

global Huber for covariance:
\[\text{fun} = "Hcg". \]
\[\psi_{Hcg}(x) = \psi_{HLg}(x) \psi_{HLg}(x)^T. \]

marginal sign covariance:
\[\text{fun} = "Vcm". \]
\[\psi_{Vcm}(x) = \psi_{Vlm}(x) \psi_{Vlm}(x)^T. \]

global sign covariance:
\[\text{fun} = "Vcg". \]
\[\psi_{Vcg}(x) = \psi_{Vcg}(x) \psi_{Vcg}(x)^T. \]

Note that for all covariances only the upper diagonal is used and turned into a vector. In case of the marginal sign covariance, the main diagonal is also left out. At the global sign covariance matrix the last element of the main diagonal is left out.

Value

Transformed numeric vector or matrix with the same number of rows as \(y \).

Author(s)

Sheila Görz

See Also

h_cumsum, teststat
Examples

```r
psi(rnorm(100))
```

Description

Estimates the long run variance respectively covariance matrix of the supplied time series.

Usage

```r
sigma2(x, b_n)
```

Arguments

- `x`: vector or matrix with each column representing a time series (numeric).
- `b_n`: Must be greater than 0. default is \(n^{1/3} \) with \(n \) being the number of observations.

Details

The long run variance equals \(n \) times the asymptotic variance of the arithmetic mean of a short range dependent time series, where \(n \) is the length of the time series. It is used to standardize CUSUM Tests.

The long run variance is estimated by a kernel estimator using the bandwidth \(b_n = n^{1/3} \) and the flat top kernel

\[
k(x) = x \cdot 1_{|x| < 0.5} + (2 - |x|) \cdot 1_{0.5 < |x| < 1}
\]

. In the one dimensional case this results in:

\[
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} \left(x[i] - \text{mean}(x) \right)^2 + 2 \frac{1}{n} \sum_{h=1}^{n-h} \sum_{i=1}^{n-h} \left(x[i] - \text{mean}(x) \right) \left(x[i+h] - \text{mean}(x) \right) k(h/b_n).
\]

If \(x \) is a multivariate timeseries the \(k, l \)-element of \(\Sigma \) is estimated by

\[
\hat{\Sigma}^{(k,l)} = \frac{1}{n} \sum_{i,j=1}^{n} \left(x[i]^{(k)} - \text{mean}(x)^{(k)} \right) \left(x[j]^{(l)} - \text{mean}(x)^{(l)} \right) k((i-j)/b_n).
\]

Value

- long run variance \(\sigma^2 \) respectively \(\Sigma \) (numeric)

Author(s)

Sheila Görz
teststat

Test statistic for the Huberized CUSUM Test

Description
Computes the test statistic for a structural break test called 'Huberized CUSUM Test'.

Usage
teststat(y, fun = "hlm", b_n, k, constant)

Arguments
y vector or matrix with each column representing a time series (numeric).
fun character string specifying the transformation function \(\psi \).
b_n for \(\sigma_2 \).
k numeric bound used in \(\psi \).
constant scale factor of the MAD. Default is 1.4826.

Details
\(y \) is transformed by \(\text{fun} \). Let \(x \) be the resulting vector or matrix and \(n \) be the length of a time series.
In case of a vector the test statistic can be written as
\[
\max_{k=1,\ldots,n} \frac{1}{\sqrt{n} \hat{\sigma}} \left| \sum_{i=1}^{k} x_i - \left(\frac{k}{n} \right) \sum_{i=1}^{n} x_i \right|,
\]
where \(\sigma \) is the square root of \(\sigma_2 \).
In case of a matrix the test statistic follows as
\[
\max_{k=1,\ldots,n} \frac{1}{n} \left(\sum_{i=1}^{k} X_i - \left(\frac{k}{n} \right) \sum_{i=1}^{n} X_i \right)^T \Sigma^{-1} \left(\sum_{i=1}^{k} X_i - \left(\frac{k}{n} \right) \sum_{i=1}^{n} X_i \right),
\]
where \(X_i \) denotes the \(i \)th row of \(x \) and \(\Sigma^{-1} \) is the inverse of \(\sigma_2 \).

Value
test statistic (numeric value).

See Also
psi, h_cumsum, teststat, pKdist, huber_cusum

Examples
Z <- c(rnorm(20), rnorm(20, 2))
sigma2(Z)
zeros

Author(s)
Sheila Görz

See Also
- `h_cumsum`
- `psi`

Examples

```r
# time series with structural break at t = 20
ts <- c(rnorm(20, 0), rnorm(20, 2))
teststat(ts)
```

Description
Contains the zeros of the Bessel function of first kind.

Usage
```r
data("zeros")
```

Format
A data frame where the ith column contains the first 50 zeros of the Bessel function of the first kind and ((i - 1) / 2)th order, i = 1, ..., 5001.

Source
The zeros are computed by the mathematical software octave.

References
Index

*Topic datasets
 zeros, 11

 h_cumsum, 3, 7, 8, 10, 11
 huber_cusum, 2, 7, 10

 modifChol, 4

 pbessel3 (pKSdist), 5
 pKSdist, 3, 5, 10
 psi, 2–4, 7, 7, 10, 11

 sigma2, 2, 3, 9

 teststat, 3, 7, 8, 10, 10

 zeros, 11