Package ‘robmixglm’

May 9, 2022

Type Package

Title Robust Generalized Linear Models (GLM) using Mixtures

Version 1.2-3

Date 2022-05-08

Maintainer Ken Beath <ken@kjbeath.com.au>

Contact Ken Beath <ken@kjbeath.com.au>

Author Ken Beath [aut, cre]

Description Robust generalized linear models (GLM) using a mixture method, as described in Beath (2018) <doi:10.1080/02664763.2017.1414164>. This assumes that the data are a mixture of standard observations, being a generalised linear model, and outlier observations from an overdispersed generalized linear model. The overdispersed linear model is obtained by including a normally distributed random effect in the linear predictor of the generalized linear model.

Depends R(>= 3.2.0)

Suggests R.rsp, robustbase, lattice, forward

VignetteBuilder R.rsp

Imports fastGHQuad, stats, bbmle, VGAM, actuar, Rcpp (>= 0.12.15), methods, boot, numDeriv, parallel, doParallel, foreach, doRNG, MASS

LazyLoad yes

LazyData yes

NeedsCompilation yes

License GPL (>= 2)

LinkingTo Rcpp

Repository CRAN

Date/Publication 2022-05-09 09:00:02 UTC

The robmixglm function

This is the main function that allows fitting the models. The robmixglm objects may be tested for outliers using outlierTest. The results of test.outliers may also be plotted.

Author(s)

Ken Beath <ken.beath@mq.edu.au>

References

Examples

for the following cores is set to 1 to satisfy the CRAN testing requirements
removing will reduce the time taken depending on number of cores available
animal brain vs body weight
library(MASS)
data(Animals)
Animals$logbrain <- log(Animals$brain)
Animals$logbody <- log(Animals$body)
lm1 <- lm(logbrain~logbody, data = Animals)
lm2 <- robmixglm(logbrain~logbody, data = Animals, cores = 1)
plot(Animals$logbody, Animals$logbrain)
abline(lm1, col = "red")
abline(lm2, col = "green")
plot(outlierProbs(lm2))
outlierTest(lm2, cores = 1)

Forbes data on relationship between atmospheric pressure and boiling point of water
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(100*log10(pres)-bp, data = MASS::forbes, cores = 1)
summary(forbes.robustmix)
plot(outlierProbs(forbes.robustmix))
outlierTest(forbes.robustmix, cores = 1)

diabetes
diabdata.robustmix <- robmixglm(glyhb~age+gender+bmi+wasthip+frame,
data = diabdata, cores = 1)
summary(diabdata.robustmix)
this will take about 5-10 minutes
diabdata.step <- step(diabdata.robustmix, glyhb~age+gender+bmi+wasthip+frame)
summary(diabdata.step)
plot(outlierProbs(diabdata.step))
outlierTest(diabdata.step, cores = 1)

Hawkins' data
library(forward)
data(hawkins)
hawkins.robustmix <- robmixglm(y~x1+x2+x3+x4+x5+x6+x7+x8,
cores = 1, data=hawkins)
summary(hawkins.robustmix)
plot(outlierProbs(hawkins.robustmix))
outlierTest(hawkins.robustmix, cores = 1)

carrot damage
library(robustbase)
data(carrots)
carrots.robustmix <- robmixglm(cbind(success, total-success)~logdose+factor(block),
family = "binomial", data = carrots, cores = 1)
summary(carrots.robustmix)
plot(outlierProbs(carrots.robustmix))
outlierTest(carrots.robustmix, cores = 1)
train derailment
library(forward)
data(derailme)
derailme$cYear <- derailme$Year-mean(derailme$Year)
derailme$TrainKm100 <- derailme$TrainKm*100.0
derailme.robustmix <- robmixglm(y~cYear+factor(Type), offset = log(TrainKm100),
 family = "truncpoisson", quadpoints = 51, data = derailme, cores = 1)
summary(derailme.robustmix)
plot(outlierProbs(derailme.robustmix))
outlierTest(derailme.robustmix, cores = 1)

hospital costs
hospcosts.robustmix <- robmixglm(costs~adm+age+dest+ins+loglos+sex, family = "gamma",
 data = hospcosts, cores = 1)
summary(hospcosts.robustmix)
plot(outlierProbs(hospcosts.robustmix))
outlierTest(hospcosts.robustmix, cores = 1)

AIC

AIC for robmixglm object

Description

Returns AIC for a robmixglm object.

Usage

```r
## S3 method for class 'robmixglm'
AIC(object, ...,
    k = 2)
```

Arguments

- `object`: robmixglm object
- `...`: additional argument; currently none is used.
- `k`: penalty per parameter

Value

AIC

Author(s)

Ken Beath
BIC

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
AIC(forbes.robustmix)
```

BIC *BIC for robmixglm object*

Description

Returns BIC for a robmixglm object.

Usage

```r
## S3 method for class 'robmixglm'
BIC(object, ...)
```

Arguments

- **object** robmixglm object
- **...** additional argument; currently none is used.

Value

BIC

Author(s)

Ken Beath

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
BIC(forbes.robustmix)
```
Description

Returns coefficients for a robmixglm object. Only the coefficients for the linear part of the model are returned. Additional coefficients may be obtained using summary().

Usage

```r
## S3 method for class 'robmixglm'
coef(object, ...)
```

Arguments

- `object`: robmixglm object
- `...`: additional argument; currently none is used.

Value

`coef`

Author(s)

Ken Beath

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
coef(forbes.robustmix)
```

diabdata

Diabetes data

Description

Data from Heritier et al (2009), originally from Harrell (2001, p379). This data was from a study of the prevalence of cardiovascular risk factors such as obesity and diabetes for African Americans. (Willems et al, 19997) Data was available for 403 subjects screened for diabetes, reduced to 372 after removal of cases with missing data.

Usage

```
diabdata
```
extractAIC

Format
A data frame with 372 observations on the following 8 variables.

glyhb Glycosated haemoglobin (values above 7.0 are usually taken as a positive diagnosis of diabetes)
age age in years
gender male or female
bmi body mass index in kg/m^2
waisthip ratio of waist to hip measurement
frame body frame, small, medium or large
stab.glu glucose
location location, Buckingham or Louisa

Source
Heritier et al (2009)

References

Examples

diabdata.robustmix <- robmixglm(glyhb~age+gender+bmi+waisthip+frame+location,
 data = diabdata, cores = 1)
summary(diabdata.robustmix)

diabdata.step <- step(diabdata.robustmix, glyhb~age+gender+bmi+waisthip+frame+location, cores = 1)
summary(diabdata.step)

extractAIC

Extract AIC from a Fitted Model

Description
Computes the (generalized) AIC for a fitted robmixglm model. Used in step, otherwise use AIC.
Usage

```r
## S3 method for class 'robmixglm'
extractAIC(fit, scale, k = 2, ...)
```

Arguments

- `fit`
 fitted `robmixglm` model.
- `scale`
 ignored.
- `k`
 numeric specifying the ‘weight’ of the equivalent degrees of freedom (≡ edf) part in the AIC formula.
- `...`
 further arguments (currently unused).

Author(s)

Ken Beath

See Also

`extractAIC`, `step`

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = MASS::forbes, cores = 1)
extractAIC(forbes.robustmix)
```

Description

Calculates the fitted values.

Usage

```r
## S3 method for class 'robmixglm'
fitted(object, ...)
```

Arguments

- `object`
 A `robmixglm` object with a mixture (robust) random effects distribution.
- `...`
 Other parameters. (not used)

Value

A vector of the fitted values.
hospcosts

Author(s)

Ken Beath <ken.beath@mq.edu.au>

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
BIC(forbes.robustmix)
plot(fitted(forbes.robustmix), residuals(forbes.robustmix))

hospcosts

Hospital Costs data

Description

Data for the analysis in Beath (2018), previously analysed in Marazzi and Yohai (2004), Cantoni and Ronchetti (2006) and Heritier et al. (2009). The data is for 100 patients hospitalised at the Centre Hospitalier Universitaire Vaudois in Lausanne, Switzerland for "medical back problems" (APDRG 243).

Usage

hospcosts

Format

A data frame with 100 observations on the following 9 variables.

id patient id
costs cost of stay in Swiss francs
los length of stay in days
adm admission type, 0 = planned, 1 = emergency
ins insurance type, 0 = regular, 1 = private
age age in years
sex sex, 0 = female, 1 = male
dest discharge destination, 0 = another health institution, 1 = home
loglos log of length of stay

Source

Heritier et al (2009)
References

Examples

hospcosts.robustmix <- robmixglm(costs~adm+age+dest+ins+loglos+sex, family = "gamma", data = hospcosts, cores = 1)
summary(hospcosts.robustmix)

logLik(hospcosts.robustmix)

logLik

log Likelihhood for robmixglm object

Description

Returns log Likelihood for a robmixglm object.

Usage

S3 method for class 'robmixglm'
logLik(object, ...)

Arguments

object robmixglm object

... additional argument; currently none is used.

Value

The loglikelihood.

Author(s)

Ken Beath

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
logLik(forbes.robustmix)
outlierProbs

Calculate outlier probabilities for each observation.

Description

For the normal mixture random effect calculates the probability that each observation is an outlier based on the posterior probability of it being an outlier.

Usage

outlierProbs(object)

Arguments

object A metaplus object with a mixture (robust) random effects distribution.

Details

The outlier probabilities are obtained as the posterior probabilities of each observation being an outlier based on the fitted mixture model.

Value

outlier.prob Posterior probability that each observation is an outlier

Author(s)

Ken Beath <ken.beath@mq.edu.au>

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
outlierProbs(forbes.robustmix)
outlierTest Test for the presence of outliers.

Description

Uses the parametric bootstrap to test for the presence of outliers.

Usage

outlierTest(object, \(R = 999 \), \(\text{cores} = \max(\text{detectCores}() \%\% 2, 1) \))

Arguments

- **object**: A robmixglm object with a mixture (robust) random effects distribution.
- **R**: number of bootstrap replications
- **cores**: Number of cores to be used in parallel. Default is one less than available.

Details

Performs a parametric bootstrap to compare models with and without outliers.

Value

An outlierTest object which is the object of class “boot” returned by the call to boot.

Author(s)

Ken Beath <ken.beath@mq.edu.au>

Examples

hospcosts.robustmix <- robmixglm(costs~adm+age+dest+ins+loglos+sex, family = "gamma",
data = hospcosts, cores = 1)
summary(hospcosts.robustmix)
summary(outlierTest(hospcosts.robustmix, cores = 1))
plot.outlierProbs

Plot outlier probabilities.

Description

Plots the outlier probability for each observation, from an outlierProbs object.

Usage

```R
## S3 method for class 'outlierProbs'
plot(x, ...)
```

Arguments

- `x`: outlierProbs object to be plotted
- `...`: additional parameters to plot

Value

Plot

Author(s)

Ken Beath <ken.beath@mq.edu.au>

Examples

```R
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
plot(outlierProbs(forbes.robustmix))
```

predict.robmixglm

Predict Method for robmixglm

Description

Obtains predictions from a fitted robust mixture generalized linear model object.

Usage

```R
## S3 method for class 'robmixglm'
predict(object, newdata = NULL,
        type = c("link", "response"), ...)
```
Arguments

- **object**: a fitted object of class inheriting from `robmixglm`.
- **newdata**: optionally, a data frame in which to look for variables with which to predict. If omitted, the fitted linear predictors are used.
- **type**: the type of prediction required. The default link is on the scale of the linear predictors, while the alternative response is on the scale of the response variable.
- **...**: Other parameters. (not used)

Details

If `newdata` is omitted the predictions are based on the data used for the fit. In that case how cases with missing values in the original fit is determined by the `na.action` argument of that fit. If `na.action = na.omit` omitted cases will not appear in the residuals, whereas if `na.action = na.exclude` they will appear (in predictions and standard errors), with residual value NA. See also `napredict`.

Value

A vector predicted linear predictors or response. For binomial the response is the predicted proportion.

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(100*log10(pres)~bp, data = forbes, cores = 1)
plot(forbes$bp, forbes$pres)
preddata <- data.frame(bp = seq(from = min(forbes$bp), to = max(forbes$bp), by = 0.01))
# convert to original scale
preddata$predpres <- 10^(predict(forbes.robustmix, newdata = preddata)/100)
lines(preddata$bp, preddata$predpres, col = "red")
```

print.outlierTest

Print an outlierTest object

Description

Print an outlierTest object.

Usage

```r
## S3 method for class 'outlierTest'
print(x, ...)
```
Arguments

- `x` outlierTest object
- `...` further arguments (not currently used)

Author(s)

Ken Beath

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
summary(forbes.robustmix)
print(outlierTest(forbes.robustmix, cores = 1))
```

residuals.robmixglm
Extract Model Residuals

Description

Extracts model residuals from objects returned by modeling functions.

Usage

```r
## S3 method for class 'robmixglm'
residuals(object, type = c("deviance", "pearson"), ...)
```

Arguments

- `object` an object for which the extraction of model residuals is meaningful.
- `type` Type of residual where valid types are deviance and pearson.
- `...` other arguments.

Value

Residuals extracted from the object object.

Examples

```r
library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp~pres, data = forbes, cores = 1)
BIC(forbes.robustmix)
plot(fitted(forbes.robustmix), residuals(forbes.robustmix))
```
robmixglm Fits a Robust Generalized Linear Model and Variants

Description
Fits robust generalized linear models and variants described in Beath (2018).

Usage

robmixglm(formula, family = c("gaussian", "binomial", "poisson", "gamma", "truncpoisson", "nbinom"), data, offset = NULL, quadpoints = 21, notrials = 50, EMTol = 1.0e-4, cores = max(detectCores() %/% 2, 1), verbose = FALSE)

Arguments

 formula Model formula
 family Distribution of response
 data Data frame from which variables are obtained
 offset Offset to be incorporated in the linear predictor.
 quadpoints Number of quadrature points used in the Gauss-Hermite integration.
 notrials Number of random starting values to be used for EM
 EMTol Relative change in likelihood for completion of EM algorithm before switching to quasi-Newton
 cores Number of cores to be used for parallel evaluation of starting values
 verbose Print out diagnostic information? This includes the likelihood and parameter estimates for each EM run.

Details
Fits robust generalized models assuming that data is a mixture of standard observations and outlier observations, which belong to an overdispersed model (Beath, 2018). For binomial, Poisson, truncated Poisson and gamma, the overdispersed component achieved through including a random effect as part of the linear predictor, as described by Aitkin (1996). For gaussian and negative binomial data the outlier component is also a gaussian and negative binomial model, respectively but with a higher dispersion. For gaussian this corresponds to a higher value of σ^2 but for negative binomial this is a lower value of θ.

The method used is a generalised EM. Random starting values are determined by randomly allocating observations to either the standard or outlier class for the first iteration of the EM. The EM is then run to completion for all sets of starting values. The best set of starting values is then used to obtain the final results using a quasi-Newton method. Where the overdispersed data is obtained using a random effect, the likelihood is obtained by integrating out the random effect using Gauss-Hermite quadrature.
Value

robmixglm object. This contains

- **fit**: Final model fit from quasi-Newton
- **prop**: Posterior probability of observation in each class
- **logLik**: Final log likelihood
- **np**: Number of parameters
- **nobs**: Number of observations
- **coef.names**: Coefficient names
- **call**: Call to function
- **family**: Family of model to be fitted
- **model**: Model
- **terms**: Terms
- **xlevels**: Levels for factors.
- **quadpoints**: Number of quadrature points used in the Gauss-Hermite integration.
- **notrials**: Number of random starting values to be used for EM
- **EMTol**: Relative change in likelihood for completion of EM algorithm before switching to quasi-Newton
- **verbose**: Was verbose output requested?

Author(s)

Ken Beath

References

Examples

```r
if (requireNamespace("MASS", quietly = TRUE)) {
  library(MASS)
  data(forbes)
  forbes.robustmix <- robmixglm(100*log10(pres)-bp, data = forbes, cores = 1)
}
```
summary.robmixglm

summary.robmixglm

Description

Returns summary for a robmixglm object.

Usage

S3 method for class 'robmixglm'
summary(object, ...)

Arguments

object robmixglm object

... additional argument; currently none is used.

Value

summary

Author(s)

Ken Beath

Examples

library(MASS)
data(forbes)
forbes.robustmix <- robmixglm(bp ~ pres, data = forbes, cores = 1)
summary(forbes.robustmix)
Index

* datasets
 diabdata, 6
 hospcosts, 9
* methods
 AIC, 4
 BIC, 5
 coef, 6
 logLik, 10
 print.outlierTest, 14
 summary.robmixglm, 18
* method
 fitted.robmixglm, 8
 outlierProbs, 11
 outlierTest, 12
 plot.outlierProbs, 13
* models
 extractAIC, 7
 predict.robmixglm, 13
 residuals.robmixglm, 15
* multivariate
 robmixglm, 16

AIC, 4
BIC, 5
coef, 6
diabdata, 6
extractAIC, 7, 8
fitted.robmixglm, 8
hospcosts, 9
logLik, 10
napredict, 14
outlierProbs, 11

outlierTest, 12
plot.outlierProbs, 13
predict.robmixglm, 13
print.outlierTest, 14
print.summary.outlierTest
 (print.outlierTest), 14
residuals.robmixglm, 15
robmixglm, 16
robmixglm-package, 2
step, 8
summary.outlierTest
 (print.outlierTest), 14
summary.robmixglm, 18