Package ‘rock’

October 19, 2020
Title Reproducible Open Coding Kit

Version 0.1.1
Maintainer Gjalt-Jorn Ygram Peters <gjalt-jorn@behaviorchange.eu>

Description The Reproducible Open Coding Kit (‘(ROCK', and this package, 'rock’)
was developed to facilitate reproducible and open coding, specifically
geared towards qualitative research methods. Although it is a
general-purpose toolkit, three specific applications have been
implemented, specifically an interface to the TENA' package that
implements Epistemic Network Analysis (ENA'), means to process notes
from Cognitive Interviews ('CIs'), and means to work with decentralized
construct taxonomies ('DCTs').

BugReports https://gitlab.com/r-packages/rock/-/issues

URL https://r-packages.gitlab.io/rock
License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Depends R (>=3.0.0)

Imports data.tree (>= 0.7.8), dplyr (>=0.7.8), DiagrammeR (>= 1.0.0),
glue (>=1.3.0), graphics (>= 3.0.0), purrr (>= 0.2.5), stats
(>=3.0.0), utils (>=3.5.0), yam (>= 0.0.1)

Suggests covr, knitr, rENA (>= 0.1.6), rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no

Author Gijalt-Jorn Ygram Peters [aut, cre]
(<https://orcid.org/0000-0002-0336-9589>),
Szilvia Zorgo [ctb] (<https://orcid.org/0000-0002-6916-2097>)

Repository CRAN
Date/Publication 2020-10-18 22:10:02 UTC

https://gitlab.com/r-packages/rock/-/issues
https://r-packages.gitlab.io/rock

2

add_html_tags

R topics documented:

add_html_tags L 2
apply_graph_theme 3
base30toNUMeriC e e e 4
cat) . . L e e 5
clean_source 5
COAE_SOUICE v v o o e e e e e 8
collapsSe_OCCUITENCES v v v v e it e it e e e e e e 10
collect_coded_fragments 11
create_CoOOCCUITENCE _MALIIX . . . v v v v v o e e e e e e e e e e e e e e e e s 13
CSS v e i e e e e e e e e e 13
export_to_html e 14
extract_codings_by_coderld 15
generate_UidS 16
load_source e e 16
METZE_SOUICES .« © « v v v v e e v e e e e e e e e e e e e e e e e e 17
ODPES . . o e 19
parsed_sources_to_ena_networko 21
PAISE_SOUICE . . . v v v v i i e et e e e e e e e e e e e e e e e 22
parse_source_by_coderld 24
prepend_ids_to_sourceol e 25
TEPEALSIT L e e 26
TOCK . . o e e 26
veCTXt . . o e e e e e e e e 27
Index 29
add_html_tags Add HTML tags to a source
Description

This function adds HTML tags to a source to allow pretty printing/viewing.

Usage

add_html_tags(x, codeClass = rock::opts$get(codeClass),

idClass = rock::opts$get(idClass),

sectionClass = rock::opts$get(sectionClass),
uidClass = rock: :opts$get(uidClass),
utteranceClass = rock::opts$get(utteranceClass))

apply_graph_theme 3

Arguments

X A character vector with the source

codeClass, idClass, sectionClass, uidClass, utteranceClass
The classes to use for, respectively, codes, identifiers (such as case identifiers
or coder identifiers), section breaks, utterance identifiers, and full utterances.
All elements except for the full utterances, which are placed in <div>
elements.

Value

The character vector with the replacements made.

apply_graph_theme Apply multiple DiagrammeR global graph attributes

Description

Apply multiple DiagrammeR global graph attributes

Usage
apply_graph_theme(graph, ...)
Arguments
graph The DiagrammeR::DiagrammeR graph to apply the attributes to.
One or more character vectors of length three, where the first element is the
attribute, the second the value, and the third, the attribute type (graph, node, or
edge).
Value

The DiagrammeR::DiagrammeR graph.

Examples

1

exampleSource <-

codes:
id: parentCode
label: Parent code
children:

id: childCode1

id: childCode2

4 base30toNumeric

id: childCode3

label: Child Code

parentId: parentCode

children: [grandChild1l, grandChild2]

L
’

parsedSource <-
parse_source(text=exampleSource);
miniGraph <-
apply_graph_theme(data. tree: : ToDiagrammeRGraph (parsedSource$deductiveCodeTrees),
c("color”, "#00QQAA", "node"),
c("shape”, "triangle"”, "node"),
c("fontcolor”, "#FFQ000", "node"));
This line should be run when executing this example as test, because
rendering a DiagrammeR graph takes quite long
Not run:
DiagrammeR: :render_graph(miniGraph);

End(Not run)

base30toNumeric Conversion between basel0 and base30

Description
The conversion functions from base10 to base30 and vice versa are used by the generate_uids()
functions.

Usage

base30toNumeric(x)

numericToBase30(x)

Arguments

X The vector to convert (numeric for numericToBase30, character for base3@toNumeric).

Details

The symbols to represent the 'base 30’ system are the 0-9 followed by the alphabet without vowels
but including the y. This vector is available as base30.

Value

The converted vector (numeric for base3@toNumeric, character for numericToBase30).

Examples

numericToBase30(654321);
base30toNumeric(numericToBase30(654321));

cat0 5

cato Concatenate to screen without spaces

Description

The cat0 function is to cat what paste(is to paste; it simply makes concatenating many strings
without a separator easier.

Usage
cato(..., sep = "")
Arguments
The character vector(s) to print; passed to cat.
sep The separator to pass to cat, of course, "" by default.
Value

Nothing (invisible NULL, like cat).

Examples
cato("The first variable is '", names(mtcars)[1], "'.");
clean_source Cleaning & editing sources

Description

These function can be used to ’clean’ one or more sources or perform search and replace taks.
Cleaning consists of two operations: splitting the source at utterance markers, and conducting search
and replaces using regular expressions.

Usage

clean_source(input, output = NULL,
replacementsPre = rock::opts$get(replacementsPre),
replacementsPost = rock::opts$get(replacementsPost),
extraReplacementsPre = NULL, extraReplacementsPost = NULL,
removeNewlines = FALSE,
utteranceSplits = rock::opts$get(utteranceSplits),
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock::opts$get(encoding), silent = rock::opts$get(silent))

nn

clean_sources(input, output, filenamePrefix = "", filenameSuffix = s

6 clean_source

recursive = TRUE, filenameRegex = ".*",

replacementsPre = rock::opts$get(replacementsPre),

replacementsPost = rock::opts$get(replacementsPost),
extraReplacementsPre = NULL, extraReplacementsPost = NULL,
removeNewlines = FALSE,

utteranceSplits = rock::opts$get(utteranceSplits),

preventOverwriting = rock::opts$get(preventOverwriting),

encoding = rock: :opts$get(encoding), silent = rock::opts$get(silent))

search_and_replace_in_source(input, replacements = NULL, output = NULL,
preventOverwriting = TRUE, encoding = "UTF-8", silent = FALSE)

search_and_replace_in_sources(input, output, replacements = NULL,

filenamePrefix = "", filenameSuffix = "_postReplacing”,
preventOverwriting = rock::opts$get(preventOverwriting),
recursive = TRUE, filenameRegex = ".*",

encoding = rock::opts$get(encoding), silent = FALSE)

Arguments
input For clean_source and search_and_replace_in_source, either a character
vector containing the text of the relevant source or a path to a file that contains
the source text; for clean_sources and search_and_replace_in_sources, a
path to a directory that contains the sources to clean.
output For clean_source and search_and_replace_in_source, if not NULL, this is

the name (and path) of the file in which to save the processed source (if it is NULL,
the result will be returned visibly). For clean_sources and search_and_replace_in_sources,
output is mandatory and is the path to the directory where to store the processed
sources. This path will be created with a warning if it does not exist. An excep-
tion is if "same" is specified - in that case, every file will be written to the same
directory it was read from.

replacementsPre, replacementsPost
Each is a list of two-element vectors, where the first element in each vector
contains a regular expression to search for in the source(s), and the second el-
ement contains the replacement (these are passed as perl regular expressions;
see regex for more information). Instead of regular expressions, simple words
or phrases can also be entered of course (since those are valid regular expres-
sions). replacementsPre are executed before the utteranceSplits are ap-
plied; replacementsPost afterwards.

extraReplacementsPre, extraReplacementsPost
To perform more replacements than the default set, these can be conveniently
specified in extraReplacementsPre and extraReplacementsPost. This pre-
vents you from having to manually copypaste the list of defaults to retain it.

removeNewlines Whether to remove all newline characters from the source before starting to
clean them.

utteranceSplits
This is a vector of regular expressions that specify where to insert breaks be-
tween utterances in the source(s). Such breakes are specified using utteranceMarker.

clean_source

preventOverwriting

encoding

silent
filenamePrefix,

recursive

filenameRegex

replacements

Details

Whether to prevent overwriting of output files.
The encoding of the source(s).

Whether to suppress the warning about not editing the cleaned source.
filenameSuffix

The prefix and suffix to add to the filenames when writing the processed files to
disk.

Whether to search all subdirectories (TRUE) as well or not.

A regular expression to match against located files; only files matching this reg-
ular expression are processed.

The strings to search & replace, as a list of two-element vectors, where the
first element in each vector contains a regular expression to search for in the
source(s), and the second element contains the replacement (these are passed as
perl regular expressions; see regex for more information). Instead of regular
expressions, simple words or phrases can also be entered of course (since those
are valid regular expressions).

The cleaning functions, when called with their default arguments, will do the following:

* Double periods (. .) will be replaced with single periods (.)

* Four or more periods (... or) will be replaced with three periods

* Three or more newline characters will be replaced by one newline character (which will be-
come more, if the sentence before that character marks the end of an utterance)

» All sentences will become separate utterances (in a semi-smart manner; specifically, breaks in
speaking, if represented by three periods, are not considered sentence ends, wheread ellipses
("..." or unicode 2026, see the example) are.

* If there are comma’s without a space following them, a space will be inserted.

Value

A character vector for clean_source, or a list of character vectors, for clean_sources.

Examples

exampleSource <-

"Do you like icecream?

Well, that depends\u2026 Sometimes, when it's..... Nice. Then I do,

but otherwise...

not really, actually.”

#i## Default settings:
cat(clean_source(exampleSource));

First remove

existing newlines:

cat(clean_source(exampleSource,

8 code_source

removeNewlines=TRUE));

exampleSource <-
"Do you like icecream?

Well, that depends\u2026 Sometimes, when it's..... Nice. Then I do,
but otherwise... not really, actually.”

Simple text replacements:
cat(search_and_replace_in_source(exampleSource,
replacements=list(c("”\u2026", "..."),
c("Nice", "Great"))));

Using a regular expression to capitalize all words following
a period:
cat(search_and_replace_in_source(exampleSource,
replacements=list(c("\\.(\\s*)([a-z1)", " A\\1\\U\\2"))));

code_source Add one or more codes to one or more sources

Description

These functions add codes to one or more sources that were read with one of the loading_sources
functions.

Usage

code_source(input, codes, indices = NULL, codeDelimiters = c("[[",
"11"), silent = TRUE)

code_sources(input, codes, silent = FALSE)

Arguments
input The source, or list of sources, as produced by one of the loading_sources
functions.
codes A named character vector, where each element is the code to be added to the

matching utterance, and the corresponding name is either an utterance identifier
(in which case the utterance with that identifier will be coded with that code), a
code (in which case all utterances with that code will be coded with the new code
as well), a digit (in which case the utterance at that line number in the source will
be coded with that code), or a regular expression, in which case all utterances
matching that regular expression will be coded with that source. If specifying an
utterance ID or code, make sure that the code delimiters are included (normally,
two square brackets).

code_source 9

indices A logical vector of the same length as input that indicates to which utterance
the code in codes should be applied. Note that if indices is provided, only the
first element of codes is used, and its name is ignored.

codeDelimiters A character vector of two elements specifying the opening and closing delimiters
of codes (conform the default ROCK convention, two square brackets). The
square brackets will be escaped; other characters will not, but will be used as-is.

silent Whether to be chatty or quiet.

Value

Invisibly, the coded source object.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock");

Parse single example source
loadedExample <- rock::load_source(exampleFile);

Show line 71
cat(loadedExample[71]);

#i## Specify the rules to code all utterances
containing "Ipsum” with the code 'ipsum' and
all utterances containing the code
codeSpecs <-
c("(?i)ipsum” = "ipsum”,
"BC|AD [\\d\\d\\d\\ds" = "timeRef");

#i## Apply rules
codedExample <- code_source(loadedExample,
codeSpecs);

Show line 71
cat(codedExample[71]);

Also add code "foo” to utterances with code 'ipsum'
moreCodedExample <- code_source(codedExample,
c("[[ipsum]]” = "foo0"));

Show line 71
cat(moreCodedExample[71]);

Use the 'indices' argument to add the code 'bar' to
line 71
overCodedExample <- code_source(moreCodedExample,

10 collapse_occurrences

Ilbar.ll ,
indices=71);

cat(overCodedExample[71]);

collapse_occurrences Collapse the occurrences in utterances into groups

Description

This function collapses all occurrences into groups sharing the same identifier, by default the
stanzald identifier ([[sid=..]]).

Usage

collapse_occurrences(parsedSource, collapseBy = "stanzald”,
columns = NULL, logical = FALSE)

Arguments

parsedSource The parsed sources as provided by parse_source().

collapseBy The column in the sourceDf (in the parsedSource object) to collapse by (i.e.
the column specifying the groups to collapse).

columns The columns to collapse; if unspecified (i.e. NULL), all codes stored in the code
object in the codings object in the parsedSource object are taken (i.e. all used
codes in the parsedSource object).

logical Whether to return the counts of the occurrences (FALSE) or simply whether any
code occurreded in the group at all (TRUE).

Value

A dataframe with one row for each value of of collapseBy and columns for collapseBy and each
of the columns, with in the cells the counts (if logical is FALSE) or TRUE or FALSE (if logical is
TRUE).

Examples

Get path to example source
exampleFile <-
system.file("extdata"”, "example-1.rock”, package="rock");

Parse example source
parsedExample <-
rock: :parse_source(exampleFile);

Collapse logically, using a code (either occurring or not):
collapsedExample <-

collect_coded_fragments 11

rock: :collapse_occurrences(parsedExample,
collapseBy = 'childCodel');

Show result: only two rows left after collapsing,
because 'childCodel' is either @ or 1:
collapsedExample;

Collapse using weights (i.e. count codes in each segment):
collapsedExample <-
rock: :collapse_occurrences(parsedexample,
collapseBy = 'childCodel',
logical=FALSE);

collect_coded_fragments
Create an overview of coded fragments

Description

Collect all coded utterances and optionally add some context (utterances before and utterances after)
to create ann overview of all coded fragments per code.

Usage

collect_coded_fragments(x, codes = ".x", context = @, heading = NULL,
headinglLevel = 2, add_html_tags = TRUE, cleanUtterances = FALSE,
output = NULL, template = "default”, rawResult = FALSE,
preventOverwriting = rock::opts$get(preventOverwriting),
silent = rock::opts$get(silent))

Arguments
X The parsed source(s) as provided by rock: : parse_source or rock: : parse_sources.
codes The regular expression that matches the codes to include
context How many utterances before and after the target utterances to include in the
fragments.
heading Optionally, a title to include in the output. The title will be prefixed with

headingLevel hashes (#), and the codes with headinglLevel+1 hashes. If NULL
(the default), a heading will be generated that includes the collected codes if
those are five or less. If a character value is specified, that will be used. To omit
a heading, set to anything that is not NULL or a character vector (e.g. FALSE).
If no heading is used, the code prefix will be headinglLevel hashes, instead of
headinglLevel+1 hashes.

headinglevel = The number of hashes to insert before the headings.
add_html_tags Whether to add HTML tags to the result.

12 collect_coded_fragments

cleanUtterances
Whether to use the clean or the raw utterances when constructing the fragments
(the raw versions contain all codes). Note that this should be set to FALSE to
have add_html_tags be of the most use.

output Here, a path and filename can be provided where the result will be written. If
provided, the result will be returned invisibly.

template The template to load; either the name of one of the ROCK templates (currently,
only ’default’ is available), or the path and filename of a CSS file.

rawResult Whether to return the raw result, a list of the fragments, or one character value
in markdown format.

preventOverwriting
Whether to prevent overwriting of output files.

silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.

Details

By default, the output is optimized for inclusion in an R Markdown document. To optimize output
for the R console or a plain text file, without any HTML codes, set add_html_tags to FALSE, and
potentially set cleanUtterances to only return the utterances, without the codes.

Value

Either a list of character vectors, or a single character value.

Examples

#i## Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock");

Parse single example source
parsedExample <- rock::parse_source(exampleFile);

Show organised coded fragments in Markdown
cat(collect_coded_fragments(parsedExample));

Only for the codes containing 'Code2'
cat(collect_coded_fragments(parsedExample,
'Code2'));

create_cooccurrence_matrix 13

create_cooccurrence_matrix
Create a co-occurrence matrix

Description
This function creates a co-occurrence matrix based on one or more coded sources. Optionally, it
plots a heatmap, simply by calling the stats: :heatmap() function on that matrix.

Usage

create_cooccurrence_matrix(x, codes = x$convenience$codinglLeaves,
plotHeatmap = FALSE)

Arguments
X The parsed source(s) as provided by rock: : parse_source or rock: : parse_sources.
codes The codes to include; by default, takes all codes.

plotHeatmap Whether to plot the heatmap.

Value

The co-occurrence matrix; a matrix.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Create cooccurrence matrix
rock: :create_cooccurrence_matrix(parsedExamples);

css Create HTML fragment with CSS styling

Description

Create HTML fragment with CSS styling

Usage

css(template = "default")

14 export_to_html

Arguments
template The template to load; either the name of one of the ROCK templates (currently,
only ’default’ is available), or the path and filename of a CSS file.
Value

A character vector with the HTML fragment.

export_to_html Export parsed sources to HTML or Markdown

Description

These function can be used to convert one or more parsed sources to HTML, or to convert all sources
to tabbed sections in Markdown.

Usage

export_to_html(input, output = NULL, template = "default”,
fragment = FALSE,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding), silent = rock::opts$get(silent))

export_to_markdown(input, heading = "Sources”, headinglLevel = 2,
template = "default”, silent = rock::opts$get(silent))

Arguments

input An object of class rockParsedSource (as resulting from a call to parse_source)
or of class rockParsedSources (as resulting from a call to parse_sources.

output For export_to_html, either NULL to not write any files, or, if input is a single
rockParsedSource, the filename to write to, and if input is a rockParsedSources
object, the path to write to. This path will be created with a warning if it does
not exist.

template The template to load; either the name of one of the ROCK templates (currently,
only ’default’ is available), or the path and filename of a CSS file.

fragment Whether to include the CSS and HTML tags (FALSE) or just return the frag-
ment(s) with the source(s) (TRUE).

preventOverwriting
For export_to_html, whether to prevent overwriting of output files.

encoding For export_to_html, the encoding to use when writing the exported source(s).

silent Whether to suppress messages.

heading, headinglLevel
For

extract_codings_by_coderld 15

Value

A character vector or a list of character vectors.

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Export results to a temporary directory
tmpDir <- tempdir(check = TRUE);
prettySources <-
export_to_html(input = parsedExamples,
output = tmpDir);

Show first one
print(prettySources[[1]11);

extract_codings_by_coderId
Extract the codings by each coder using the coderld

Description

Extract the codings by each coder using the coderld

Usage

extract_codings_by_coderId(input, recursive = TRUE,
filenameRegex = ".*", postponeDeductiveTreeBuilding = TRUE,
ignoreOddDelimiters = FALSE, encoding = rock::opts$get(encoding),
silent = rock::opts$get(silent))

Arguments
input The directory with the sources.
recursive Whether to also process subdirectories.

filenameRegex Only files matching this regular expression will be processed.
postponeDeductiveTreeBuilding
Whether to build deductive code trees, or only store YAML fragments.

ignoreOddDelimiters
Whether to throw an error when encountering an odd number of YAML delim-
iters.

encoding The encoding of the files to read.

silent Whether to be chatty or silent.

16 load_source

Value

An object with the read sources.

generate_uids Generate utterance identifiers (UIDs)

Description

This function generated utterance identifiers.

Usage

generate_uids(x, origin = Sys.time())

Arguments
X The number of identifiers te generate.
origin The origin to use when generating the actual identifiers. These identifiers are the
present UNIX timestamp (i.e. the number of seconds elapsed since the UNIX
epoch, the first of january 1970), accurate to two decimal places (i.e. to centisec-
onds), converted to the base 30 system using numericToBase3@(). By default,
the present time is used as origin, one one centisecond is added for every identi-
fiers to generate. origin can be set to other values to work with different origins
(of course, don’t use this unless you understand very well what you’re doing!).
Value
A vector of UIDs.
Examples

generate_uids(5);

load_source Load a source from a file or a string

Description

These functions load one or more source(s) from a file or a string and store it in memory for
further processing. Note that you’ll probably want to clean the sources first, using one of the
clean_sources() functions, and you’ll probably want to add utterance identifiers to each utter-
ance using one of the prepending_uids() functions.

merge_sources 17

Usage
load_source(input, encoding = "UTF-8", silent = FALSE)
load_sources(input, encoding = "UTF-8", filenameRegex = ".x"

ignoreRegex = NULL, recursive = TRUE, full.names = FALSE,
silent = FALSE)

’

Arguments
input The filename or contents of the source for load_source and the directory con-
taining the sources for load_sources.
encoding The encoding of the file(s).
silent Whether to be chatty or quiet.

filenameRegex A regular expression to match against located files; only files matching this reg-
ular expression are processed.

ignoreRegex Regular expression indicating which files to ignore.

recursive Whether to search all subdirectories (TRUE) as well or not.

full.names Whether to store source names as filenames only or whether to include paths.
Value

Invisibly, an R character vector of classes rock_source and character.

merge_sources Merge source files by different coders

Description

This function takes sets of sources and merges them using the utterance identifiers (UIDs) to match
them.

Usage

merge_sources(input, output, outputPrefix = "",
outputSuffix = "_merged”, primarySourcesRegex = ".*",
primarySourcesIgnoreRegex = outputSuffix, primarySourcesPath = input,
recursive = TRUE, primarySourcesRecursive = recursive,
filenameRegex = ".*", postponeDeductiveTreeBuilding = TRUE,
ignoreOddDelimiters = FALSE,
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding), silent = rock::opts$get(silent),
inheritSilence = FALSE)

18 merge_sources

Arguments
input The directory containing the input sources.
output The path to the directory where to store the merged sources. This path will be

created with a warning if it does not exist. An exception is if "same" is specified
- in that case, every file will be written to the same directory it was read from.

outputPrefix, outputSuffix
A pre- and/or suffix to add to the filename when writing the merged sources
(especially useful when writing them to the same directory).

primarySourcesRegex
A regular expression that specifies how to recognize the primary sources (i.e.
the files used as the basis, to which the codes from other sources are added).

primarySourcesIgnoreRegex
A regular expression that specifies which files to ignore as primary files.

primarySourcesPath
The path containing the primary sources.

recursive, primarySourcesRecursive
Whether to read files from sub-directories (TRUE) or not.
filenameRegex Only files matching this regular expression are read.

postponeDeductiveTreeBuilding
Whether to imediately try to build the deductive tree(s) based on the information
in this file (FALSE) or whether to skip that. Skipping this is useful if the full tree
information is distributed over multiple files (in which case you should probably
call parse_sources instead of parse_source).

ignoreOddDelimiters
If an odd number of YAML delimiters is encountered, whether this should result
in an error (FALSE) or just be silently ignored (TRUE).

preventOverwriting
Whether to prevent overwriting existing files or not.

encoding The encoding of the file to read (in file).
silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.

inheritSilence If not silent, whether to let functions called by merge_sources inherit that set-
ting.

Value

Invisibly, a list of the parsed, primary, and merged sources.

opts 19

opts Options for the rock package

Description

The rock: : opts object contains three functions to set, get, and reset options used by the rock pack-
age. Use rock: :opts$set to set options, rock: :opts$get to get options, or rock: :opts$reset
to reset specific or all options to their default values.

Usage

opts

Format

An object of class 1ist of length 4.

Details

It is normally not necessary to get or set rock options. The defaults implement the Reproducible
Open Coding Kit (ROCK) standard, and deviating from these defaults therefore means the pro-
cessed sources and codes are not compatible and cannot be processed by other software that imple-
ments the ROCK. Still, in some cases this degree of customization might be desirable.

The following arguments can be passed:

... For rock: :opts$set, the dots can be used to specify the options to set, in the format option =
value, for example, utteranceMarker = "\n". For rock: :opts$reset, a list of options to
be reset can be passed.

option For rock: :opts$set, the name of the option to set.

default For rock: :optss$get, the default value to return if the option has not been manually spec-
ified.

The following options can be set:

codeRegexes A named character vector with one or more regular expressions that specify how to
extract the codes (that were used to code the sources). These regular expressions must each
contain one capturing group to capture the codes.

idRegexes A named character vector with one or more regular expressions that specify how to
extract the different types of identifiers. These regular expressions must each contain one
capturing group to capture the identifiers.

sectionRegexes A named character vector with one or more regular expressions that specify how
to extract the different types of sections.

autoGeneratelds The names of the idRegexes that, if missing, should receive autogenerated iden-
tifiers (which consist of *autogenerated_’ followed by an incrementing number).

20 opts

persistentlds The names of the idRegexes for the identifiers which, once attached to an utterance,
should be attached to all following utterances as well (until a new identifier with the same
name is encountered, after which that identifier will be attached to all following utterances,
etc).

noCodes This regular expression is matched with all codes after they have been extracted using the
codeRegexes regular expression (i.e. they’re matched against the codes themselves without,
for example, the square brackets in the default code regex). Any codes matching this noCodes
regular expression will be ignored, i.e., removed from the list of codes.

inductiveCodingHierarchyMarker For inductive coding, this marker is used to indicate hierar-
chical relationships between codes. The code at the left hand side of this marker will be
considered the parent code of the code on the right hand side. More than two levels can be
specified in one code (for example, if the inductiveCodingHierarchyMarker is’>’, the code
grandparent>child>grandchild would indicate codes at three levels.

attributeContainers The name of YAML fragments containing case attributes (e.g. metadata,
demographic variables, quantitative data about cases, etc).

codesContainers The name of YAML fragments containing (parts of) deductive coding trees.
delimiterRegEx The regular expression that is used to extract the YAML fragments.

ignoreRegex The regular expression that is used to delete lines before any other processing. This
can be used to enable adding comments to sources, which are then ignored during analysis.

utteranceMarker How to specify breaks between utterances in the source(s). The ROCK conven-
tion is to use a newline (\n).

coderld A regular expression specifying the coder identifier, specified similarly to the codeRegexes.

idForOmittedCoderlds The identifier to use for utterances that do not have a coder id (i.e. utter-
ance that occur in a source that does not specify a coder id, or above the line where a coder id
is specified).

Two Second item

Examples

Get the default utteranceMarker
rock: :opts$get (utteranceMarker);

Set it to a custom version, so that every line starts with a pipe
rock: :opts$set(utteranceMarker = "\n|");

Check that it worked
rock: :opts$get(utteranceMarker);

Reset this option to its default value
rock: :opts$reset (utteranceMarker);

Check that the reset worked, too
rock: :opts$get (utteranceMarker);

parsed_sources_to_ena_network 21
parsed_sources_to_ena_network
Create an ENA network out of one or more parsed sources
Description
Create an ENA network out of one or more parsed sources
Usage
parsed_sources_to_ena_network(x, unitCols,
conversationCols = "originalSource”,
codes = x$convenience$codinglLeaves,
metadata = x$convenience$metadataVars)
Arguments
X The parsed source(s) as provided by rock: : parse_source or rock: : parse_sources.
unitCols The columns that together define units (e.g. utterances in each source that belong
together, for example because they’re about the same topic).
conversationCols
The columns that together define conversations (e.g. separate sources, but can
be something else, as well).
codes The codes to include; by default, takes all codes.
metadata The columns in the merged source dataframe that contain the metadata. By
default, takes all read metadata.
Value

The result of a call to rENA: :ena.plot.network().

Examples

#i## Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

Add something to indicate which units belong together; normally,
these would probably be indicated using one of the identifier,
for example the stanza identifiers, the sid's

nChunks <- nrow(parsedExamples$mergedSourceDf) %/% 10;
parsedExamples$mergedSourceDf$units <-

c(rep(1:nChunks, each=10), rep(max(nChunks), nrow(parsedExamples$mergedSourceDf) - (10*nChunks)));

22 parse_source

#i## Generate ENA plot
enaPlot <-
rock: :parsed_sources_to_ena_network(parsedExamples,
unitCols="units');

Show the resulting plot
print(enaPlot);

parse_source Parsing sources

Description

These function parse one (parse_source) or more (parse_sources) sources and the contained
identifiers, sections, and codes.

Usage

parse_source(text, file, ignoreOddDelimiters = FALSE,
postponeDeductiveTreeBuilding = FALSE,
encoding = rock: :opts$get(encoding), silent = rock::opts$get(silent))

S3 method for class 'rockParsedSource'
print(x, prefix = "##t ", ...)

parse_sources(path, extension = "rock|dct”, regex = NULL,
recursive = TRUE, ignoreOddDelimiters = FALSE,
encoding = rock::opts$get(encoding), silent = rock::opts$get(silent))

S3 method for class 'rockParsedSources'
print(x, prefix = "### ", ...)

S3 method for class 'rockParsedSources'
plot(x, ...)

Arguments

text, file As text or file, you can specify a file to read with encoding encoding,
which will then be read using base: :readLines(). If the argument is named
text, whether it is the path to an existing file is checked first, and if it is, that
file is read. If the argument is named file, and it does not point to an existing
file, an error is produced (useful if calling from other functions). A text should
be a character vector where every element is a line of the original source (like
provided by base: : readLines()); although if a character vector of one element
and including at least one newline character (\n) is provided as text, it is split
at the newline characters using base::strsplit(). Basically, this behavior
means that the first argument can be either a character vector or the path to a

parse_source 23

file; and if you’re specifying a file and you want to be certain that an error is
thrown if it doesn’t exist, make sure to name it file.
ignoreOddDelimiters
If an odd number of YAML delimiters is encountered, whether this should result
in an error (FALSE) or just be silently ignored (TRUE).
postponeDeductiveTreeBuilding
Whether to imediately try to build the deductive tree(s) based on the information
in this file (FALSE) or whether to skip that. Skipping this is useful if the full tree
information is distributed over multiple files (in which case you should probably
call parse_sources instead of parse_source).

encoding The encoding of the file to read (in file).
silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.
X The object to print.
prefix The prefix to use before the "headings’ of the printed result.
Any additional arguments are passed on to the default print method.
path The path containing the files to read.
extension The extension of the files to read; files with other extensions will be ignored.

Multiple extensions can be separated by a pipe (]).

regex Instead of specifing an extension, it’s also possible to specify a regular expres-
sion; only files matching this regular expression are read. If specified, regex
takes precedece over extension,

recursive Whether to also process subdirectories (TRUE) or not (FALSE).

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock"”);

Parse single example source
parsedExample <- rock::parse_source(exampleFile);

Show inductive code tree for the codes

extracted with the regular expression specified with
the name 'codes':
parsedExample$inductiveCodeTrees$codes;

If you want ‘rock‘ to be chatty, use:
parsedExample <- rock::parse_source(exampleFile,
silent=FALSE);

#i## Parse all example sources in that directory
parsedExamples <- rock::parse_sources(examplePath);

24

parse_source_by_coderld

Show combined inductive code tree for the codes

extracted with the regular expression specified with
the name 'codes':
parsedExamples$inductiveCodeTrees$codes;

parse_source_by_coderId

Parsing sources separately for each coder

Description

Parsing sources separately for each coder

Usage

Arguments
input For parse_source_by_coderId, either a character vector containing the text of
the relevant source or a path to a file that contains the source text; for parse_sources_by_coderId,
a path to a directory that contains the sources to parse.
ignoreOddDelimiters

parse_source_by_coderId(input, ignoreOddDelimiters = FALSE,
postponeDeductiveTreeBuilding = TRUE, encoding = "UTF-8",
silent = TRUE)

parse_sources_by_coderId(input, recursive = TRUE, filenameRegex = ".x",
ignoreOddDelimiters = FALSE, postponeDeductiveTreeBuilding = TRUE,
encoding = rock: :opts$get(encoding), silent = rock::opts$get(silent))

If an odd number of YAML delimiters is encountered, whether this should result
in an error (FALSE) or just be silently ignored (TRUE).

postponeDeductiveTreeBuilding
Whether to imediately try to build the deductive tree(s) based on the information
in this file (FALSE) or whether to skip that. Skipping this is useful if the full tree
information is distributed over multiple files (in which case you should probably
call parse_sources instead of parse_source).

encoding The encoding of the file to read (in file).
silent Whether to provide (FALSE) or suppress (TRUE) more detailed progress updates.
recursive Whether to search all subdirectories (TRUE) as well or not.

filenameRegex A regular expression to match against located files; only files matching this reg-
ular expression are processed.

prepend_ids_to_source 25

Examples

Get path to example source
examplePath <-
system.file("extdata”, package="rock");

Get a path to one example file
exampleFile <-
file.path(examplePath, "example-1.rock");

Parse single example source
parsedExample <- rock: :parse_source_by_coderId(exampleFile);

prepend_ids_to_source Prepending unique utterance identifiers

Description

This function prepending unique utterance identifiers to each utterance (line) in a source. Note that
you’ll probably want to clean the sources using clean_sources() first.

Usage

prepend_ids_to_source(input, output = NULL, origin = Sys.time(),
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock: :opts$get(encoding), silent = rock::opts$get(silent))

prepend_ids_to_sources(input, output = NULL, origin = Sys.time(),
preventOverwriting = rock::opts$get(preventOverwriting),
encoding = rock::opts$get(encoding), silent = rock::opts$get(silent))

Arguments
input The filename or contents of the source for prepend_ids_to_source and the
directory containing the sources for prepend_ids_to_sources.
output The filename where to write the resulting file for prepend_ids_to_source and
the directory where to write the resulting files for prepend_ids_to_sources
origin The time to use for the first identifier.
preventOverwriting
Whether to overwrite existing files (FALSE) or prevent that from happening
(TRUE).
encoding The encoding of the file(s).
silent Whether to be chatty or quiet.
Value

The source with prepended uids, either invisible (if output if specified) or visibly (if not).

26 rock

Examples
prepend_ids_to_source(input = "brief\nexample\nsource");
repeatStr Repeat a string a number of times
Description

Repeat a string a number of times

Usage
repeatStr(n = 1, str =" ")
Arguments
n, str Normally, respectively the frequency with which to repeat the string and the
string to repeat; but the order of the inputs can be switched as well.
Value

A character vector of length 1.

Examples

10 spaces:
repStr(10);

Three euro symbols:
repStr(”\u20ac”, 3);

rock rock: A Reprocucible Open Coding Kit

Description

This package implements an open standard for working with qualitative data, as such, it has two
parts: a file format/convention and this R package that facilitates working with .rock files.

vecTxt 27

The ROCK File Format

The .rock files are plain text files where a number of conventions are used to add metadata. Normally
these are the following conventions:

* The smallest ’codeable unit’ is called an utterance, and utterances are separated by newline
characters (i.e. every line of the file is an utterance);

* Codes are in between double square brackets: [[code1]] and [[code2]];

* Hierarchy in inductive code trees can be indicated using the greater than sign (>): [[parent1>child1]];

o Utterances can have unique identifiers called ’utterance identifiers’ or *UIDs’, which are
unique short alphanumeric strings placed in between double square brackets after "uid:’, e.g.
[Luid:73xk2q0717;

* Deductive code trees can be specified using YAML

The rock R Package Functions

The most important functions are parse_source() to parse one source and parse_sources() to
parse multiple sources simultaneously. clean_source() and clean_sources() can be used to
clean sources, and prepend_ids_to_source() and prepend_ids_to_sources() can be used to
quickly generate UIDs and prepend them to each utterance in a source.

For analysis, create_cooccurrence_matrix(), collapse_occurrences(), and collect_coded_fragments()
can be used.

vecTxt Easily parse a vector into a character value

Description

Easily parse a vector into a character value

Usage

n n nn

vecTxt(vector, delimiter = ", ", useQuote = ,
firstDelimiter = NULL, lastDelimiter = " & ", firstElements = 0,
lastElements = 1, lastHasPrecedence = TRUE)

vecTxtQ(vector, useQuote = "'", ...)
Arguments
vector The vector to process.

delimiter, firstDelimiter, lastDelimiter
The delimiters to use for respectively the middle, first firstElements, and last
lastElements elements.

28

useQuote

vecTxt

This character string is pre- and appended to all elements; so use this to quote
all elements (useQuote="""), doublequote all elements (useQuote="'""), or
anything else (e.g. useQuote='|"). The only difference between vecTxt and
vecTxtQ is that the latter by default quotes the elements.

firstElements, lastElements

The number of elements for which to use the first respective last delimiters

lastHasPrecedence

Value

If the vector is very short, it’s possible that the sum of firstElements and lastEle-
ments is larger than the vector length. In that case, downwardly adjust the num-
ber of elements to separate with the first delimiter (TRUE) or the number of ele-
ments to separate with the last delimiter (FALSE)?

Any addition arguments to vecTxtQ are passed on to vecTxt.

A character vector of length 1.

Examples

vecTxtQ(names(mtcars));

Index

x datasets
opts, 19

add_html_tags, 2
apply_graph_theme, 3

base30@conversion (base3@toNumeric), 4
base30toNumeric, 4

base: :readlLines(), 22

base: :strsplit(), 22

cat, 5

cato, 5

clean_source, 5
clean_source(), 27
clean_sources (clean_source), 5
clean_sources(), 16, 25, 27
code_source, 8

code_sources (code_source), 8
collapse_occurrences, 10
collapse_occurrences(), 27
collect_coded_fragments, 11
collect_coded_fragments(), 27
create_cooccurrence_matrix, 13
create_cooccurrence_matrix(), 27
css, 13

DiagrammeR: :DiagrammeR, 3

export_to_html, 14
export_to_markdown (export_to_html), 14
extract_codings_by_coderlId, 15

generate_uids, 16
generate_uids(), 4
get (opts), 19

load_source, 16
load_sources (load_source), 16

merge_sources, 17

29

numericToBase30 (base3@toNumeric), 4
numericToBase30(), 16

opts, 19

parse_source, 22
parse_source(), 10, 27
parse_source_by_coderlId, 24
parse_sources (parse_source), 22
parse_sources(), 27
parse_sources_by_coderId
(parse_source_by_coderlId), 24
parsed_sources_to_ena_network, 21
parsing_sources (parse_source), 22
plot.rockParsedSources (parse_source),
22
prepend_ids_to_source, 25
prepend_ids_to_source(), 27
prepend_ids_to_sources
(prepend_ids_to_source), 25
prepend_ids_to_sources(), 27
prepending_uids
(prepend_ids_to_source), 25
prepending_uids(), 16
print.rockParsedSource (parse_source),
22
print.rockParsedSources (parse_source),
22

regex, 6, 7

reNA: :ena.plot.network(), 2/
repeatStr, 26

repStr (repeatStr), 26

reset (opts), 19

rock, 26

rock-package (rock), 26

search_and_replace_in_source
(clean_source), 5

search_and_replace_in_sources
(clean_source), 5

30 INDEX

set (opts), 19
stats: :heatmap(), I3

vecTxt, 27
vecTxtQ (vecTxt), 27

	add_html_tags
	apply_graph_theme
	base30toNumeric
	cat0
	clean_source
	code_source
	collapse_occurrences
	collect_coded_fragments
	create_cooccurrence_matrix
	css
	export_to_html
	extract_codings_by_coderId
	generate_uids
	load_source
	merge_sources
	opts
	parsed_sources_to_ena_network
	parse_source
	parse_source_by_coderId
	prepend_ids_to_source
	repeatStr
	rock
	vecTxt
	Index

