Package ‘roistats’

March 10, 2021

Title Convenience Functions for Applying Basic Stats to Sub-Groups
Version 0.1.1
Description Easily applying same t-tests/basic data description across several sub-
groups, with the output as a nice arranged data.frame. Multiple comparison and the signifi-
cance symbols are also provided.
License MIT + file LICENSE
Depends R (>= 3.5.0)
URL https://github.com/Irisfee/roistats
BugReports https://github.com/Irisfee/roistats/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports dplyr, tidyr, magrittr, purrr, stats, rlang
Suggests testthat (>= 3.0.0), covr, knitr, rmarkdown
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation no
Author Yufei Zhao [aut, cre] (<https://orcid.org/0000-0002-6511-8507>),
 Daniel Anderson [ctb] (<https://orcid.org/0000-0003-4699-4680>)
Maintainer Yufei Zhao <fay.zz0213@gmail.com>
Repository CRAN
Date/Publication 2021-03-10 17:20:02 UTC

R topics documented:

color_index ... 2
color_index_two_sample .. 2
df_sem ... 3
p_range ... 4
t_test_one_sample .. 4
t_test_two_sample ... 5
Index

<table>
<thead>
<tr>
<th>color_index</th>
<th>Color index</th>
</tr>
</thead>
</table>

Description

The pre-processed data for identifying which brain regions is sensitive to the color memory of learned objects.

Usage

```r
color_index
```

Format

A tibble with 232 rows and 3 variables with one group attribute:

- **subj_id**: Subject identity number
- **roi_id**: Brain sub-region that of interest for the analysis. Served as the grouping variable here.
- **color_index**: A value we want to test if it is significantly different from 0 across subjects.

References

Examples

```r
color_index
```

color_index_two_sample

Description

The pre-processed data for identifying which brain regions is sensitive to the color memory of learned objects.

Usage

```r
color_index_two_sample
```

Description

The pre-processed data for identifying which brain regions is sensitive to the color memory of learned objects.

Usage

```r
color_index_two_sample
```
Format

A tibble with 464 rows and 4 variables with one group attribute:

- **subj_id**: Subject identity number
- **roi_id**: Brain sub-region that of interest for the analysis. Served as the grouping variable here.
- **group**: A within-group variable for each subject. Indicating whether the color effect value is for the Paired or Control condition
- **color_effect**: A value we want to test between the two groups (Paired vs Control).

References

Examples

```r
color_index_two_sample
```

Description

Generate standard error of mean

Usage

```r
df_sem(data, x)
```

Arguments

- **data**: A data frame, generally grouped by the intended sub-groups which you want to compare for the same t-test.
- **x**: A (bare) column name of the variable which you want to get the mean, sd, and standard error of the mean (SEM).

Value

A data frame with consisting of characters. The columns that are always present are: group variable(s), mean, sd, n, and se(SEM).

Examples

```r
df_sem(color_index, color_index)
```

library(magrittr)
color_index %>%
 df_sem(color_index)
p_range

Create significant symbols for p-values

Description

Create significant symbols for p-values

Usage

```r
p_range(p)
```

Arguments

- `p` A numeric p value (usually yielded from a statistical test).

Value

A character significant symbol. * represents the p is within the range of (0.05, 0.01], ** for (0.01, 0.001], and *** for (0.001, +inf]

Examples

```r
p_range(0.02)
library(dplyr)
t_test_one_sample(color_index, "color_index", mu = 0) %>% mutate(sig = p_range(p))
```

t_test_one_sample

Generate one-sample t-test results for multiple sub-groups

Description

This function produce one-sample t-test (two-tailed with confident interval at 0.95) results for multiple sub-groups and provides with a nice output in a table format. It can also add adjusted p values for multiple comparison issue.

Usage

```r
t_test_one_sample(data, x, mu = 0, p_adjust = "bonferroni")
```
t_test_two_sample

Arguments

- **data**
 A grouped data frame. It should be grouped by the intended sub-groups which you want to do the same t-test.

- **x**
 Column name of the variable which contains data values that you want to test (see t.test and details).

- **mu**
 A number indicating the true value of the mean (or difference in means if you are performing a two sample test).

- **p_adjust**
 Character indicating which method should be used for adjusting multiple comparisons (see p.adjust and details). The default "bonferroni" corresponds to Bonferroni adjustment.

Value

A data.frame with the t-statistics table consisting of characters. The columns that are always present are: group variable(s), tvalue, df (degrees of freedom), p, and p_adjustmethod(s).

Examples

```r
# use bonferroni and fdr method for adjusted p values.
t_test_one_sample("color_index", mu = 0, p_adjust = c("bonferroni","fdr"))
```

Description

This function produce two-sample t-test (two-tailed with confident interval at 0.95) results for multiple sub-groups and provides with a nice output in a table format. It can also add adjusted p values for multiple comparison issue.

Usage

```r
t_test_two_sample(data, x, y, paired = FALSE, p_adjust = "bonferroni")
```
paired a logical indicating whether you want a paired t-test.
p_adjust character indicating which method should be used for adjusting multiple comparisons (see p.adjust and details). The default "bonferroni" corresponds to Bonferroni adjustment.

Value
A data.frame with the t-statistics table consisting of characters. The columns that are always present are: group variable(s), tvalue, df (degrees of freedom), p, and p_adjustmethod(s).

Examples
t_test_two_sample(color_index_two_sample, x = "color_effect", y = "group", paired = TRUE)

use bonferroni and fdr method for adjusted p values.
library(magrittr)
color_index_two_sample %>%
t_test_two_sample(
 x = "color_effect", y = "group", paired = TRUE, p_adjust = c("bonferroni","fdr")
)
Index

* datasets
 color_index, 2
 color_index_two_sample, 2

color_index, 2
color_index_two_sample, 2

df_sem, 3
p.adjust, 5, 6
p_range, 4

t.test, 5
t_test_one_sample, 4
t_test_two_sample, 5