Package ‘rolypoly’

March 16, 2017

Type Package
Title Identifying Trait-Relevant Functional Annotations
Version 0.1.0
Date 2017-3-15
Author Diego Calderon
Maintainer Diego Calderon <dcal@stanford.edu>
Description Using enrichment of genome-wide association summary statistics to identify trait-relevant cellular functional annotations.
Depends R (>= 3.1.3),
Imports data.table (>= 1.9.6), dplyr (>= 0.4.3), foreach (>= 1.4.3),
ggplot2 (>= 1.0.1), glmnet (>= 2.0-5), MASS (>= 7.3-45), Matrix
(>= 1.2-6), matrixcalc (>= 1.0-3),
LinkingTo
Suggests CompQuadForm (>= 1.4.1), knitr, testthat, rmarkdown
License GPL-3
VignetteBuilder knitr
LazyData TRUE

URL https://github.com/dcalderon/rolypoly

BugReports https://github.com/dcalderon/rolypoly/issues
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-03-16 08:44:35
bootstrap_estimator

Bootstrap parameter estimates for confidence intervals.

Description

Bootstrap parameter estimates for confidence intervals.

Usage

`bootstrap_estimator(rolopoly, bootstrap_iters, run_light, run_parallel)`
calculate_annotation_block_heritability

Arguments

- **rolypoly** rolypoly object
- **bootstrap_iters** number of bootstrap iterations to run
- **run_light** if we throw away bootstrap data
- **run_parallel** if we want to collect bootstrap data in parallel

Examples

```r
## not run: bootstrap_estimator(rolypoly)
```

calculate_annotation_block_heritability

Calculate the contribution of block annotations to the heritability of a trait.

Description

A vector of independent heritability contributions of block annotations is returned. Sum the vector to get total explained heritability and divide by sum to get proportion.

Usage

```r
calculate_annotation_block_heritability(block_data, params)
```

Arguments

- **block_data** functional information of blocks
- **params** parameter fit

Examples

```r
## not run: calculate_annotation_block_heritability(block_data, params)
```
calculate_block_values

Calculate predicted block values based on block information and model fit.

Description

From a model fit we can predict expected variance of a block based on information we have about the block. In the example of gene expression this would equate to predicting the importance of a gene based on its signature of expression.

Usage

```r
calculate_block_values(block_data, params)
```

Arguments

- `block_data`: block_data
- `params`: parameter fit

Value

returns block values

Examples

```r
## Not run: calculate_gene_values(block_data, params)
```

calculate_expected_block_values_given_ld

Calculate predicted block values based on block information and model fit.

Description

From a model fit we can predict expected variance of a block based on information we have about the block. In the example of gene expression this would equate to predicting the importance of a gene based on its signature of expression.

Usage

```r
calculate_expected_block_values_given_ld(rolopoly, block_values)
```
cv_regularized_parameter_estimator

Arguments
rolopply rolopply object
block_values estimated block values.

Examples
not run: calculate_expected_block_values_given_ld(rolopply, block_values)

cv_regularized_parameter_estimator

Perform regularization inference.

Description
Use CV to find appropriate values of lambda for either feature selection or for prediction.

Usage
cv_regularized_parameter_estimator(vectorized_rolopply_data, n_folds = 10,
...)

Arguments
vectorized_rolopply_data rolopply data used for inference
n_folds number of folds for cross validation
... other arguments to pass to cv.glmnet

Value
results from cross validation

Examples
Not run: cv_regularized_parameter_estimator(vectorized_rolopply_data)

data_io

Functions for opening and organizing data.

Description
We must open block annotation data, gwas data, snp annotations, gene annotations. Here, you’ll find functions that to this and organize these data into a rolopply object.
Inference

Description

Functions for inferring relevant annotations using the polyTest model.

Main wrapper

Description

The main endpoint user functions.

make_ld_matrix

Helper function to pull LD data from NCBI.

Description

Given the path of a gwas file open it into a data.table object

Usage

make_ld_matrix(all_snps, ld_data)

Arguments

all_snps The snps that were queried
ld_data A returned LD matrix with SNP, Proxy, and RSquared columns

Value

an LD matrix where query snps will be the first columns in the correct order

Examples

Not run: make_ld_matrix(all_snps, ld_data)
make_results_df

Helper function to make a summary table of results from bootstrap data.

Description

Helper function to make a summary table of results from bootstrap data.

Usage

```r
make_results_df(value_collection, annotations, model_estimates)
```

Arguments

- `value_collection`
 - collection of bootstrapped value estimates
- `annotations`
 - vector of annotation names
- `model_estimates`
 - estimates for bias parameter estimates

Value

data frame with results summary

Examples

```r
## Not run: make_results_df(value_collection)
```

parameter_estimator

Find parameter estimates for the data.

Description

Find parameter estimates for the data.

Usage

```r
parameter_estimator(vectorized_rolypoly_data)
```

Arguments

- `vectorized_rolypoly_data`
 - rolypoly data that has been vectorized

Value

results of inference
Examples

```r
## Not run: parameter_estimator(rolypoly)
```

plot_rolypoly_annotation_estimates

Description

Visualize parameter estimates after running inference

Usage

```r
plot_rolypoly_annotation_estimates(rolypoly)
```

Arguments

- `rolypoly`: a rolypoly object

Value

ggplot2 object

Examples

```r
## Not run: plot_rolypoly_annotation_estimates(rolypoly)
```

plot_rolypoly_annotation_ranking

Description

Rank annotations by p-value after running inference

Usage

```r
plot_rolypoly_annotation_ranking(rolypoly)
```

Arguments

- `rolypoly`: a rolypoly object

Value

ggplot2 object
regularized_inference

Examples

```r
## Not run: plot_rolypoly_annotation_ranking(rolpoly)
```

regularized_inference *Inference functions that include regularization*

Description

Functions for inferring relevant annotations using the polyTest model.

robust_parameter_estimator

Find robust parameter estimates for the data.

Description

Find robust parameter estimates for the data.

Usage

```r
robust_parameter_estimator(vectorized_rolypoly_data, outlier_threshold = 10)
```

Arguments

- `vectorized_rolypoly_data`
 - vectorized rolypoly data
- `outlier_threshold`
 - outlier threshold for robust inference

Examples

```r
## Not run: parameter_estimator(rolpoly)
```

rollypoly *The rolypoly package for identifying annotations associated with complex traits.*

Description

The rolypoly package for identifying annotations associated with complex traits.
rolypoly_add_ld_corrected_gwas_block_scores

Add LD corrected block scores to rolypoly.

Description

Add LD corrected block scores to rolypoly.

Usage

```r
rolypoly_add_ld_corrected_gwas_block_scores(rolypoly, fast_calculation = T)
```

Arguments

- `rolypoly`: rolypoly data
- `fast_calculation`: if F then LD deconvolution else quadratic form.

Value

rolypoly object with LD corrected gwas scores attached

Examples

```r
# Not run: rolypoly_add_ld_corrected_gwas_block_scores(rolypoly)
```

rolypoly_link_blocks_and_gwas

Link blocks and gwas

Description

Takes block information, potentially independent LD blocks or gene blocks, and gwas data and organizes the data for internal processing.

Usage

```r
rolypoly_link_blocks_and_gwas(rolypoly, ld_folder, r2_threshold = 0.2, run_parallel = F)
```

Arguments

- `rolypoly`: a rolypoly object
- `ld_folder`: path to a folder with ld data
- `r2_threshold`: LD threshold to look at data
- `run_parallel`: check if user wants to run in parallel
rolypoly_load_block_annotation

Value

rolypoly object with data attached

Examples

```r
## not run: rolypoly_link_blocks_and_gwas(rolypoly, ld_folder, r2_threshold)
```

rolypoly_load_block_annotation

Load annotations for blocks of LD, in some cases this is a gene annotation with a window around a gene.

Description

Load annotations for blocks of LD, in some cases this is a gene annotation with a window around a gene.

Usage

```r
rolypoly_load_block_annotation(rolypoly, block_annotation, genes = T)
```

Arguments

- `rolypoly`: rolypoly data object
- `block_annotation`: annotation information for block
- `genes`: if these are genes

Value

rolypoly data with block annotations attached

Examples

```r
## Not run: rolypoly_load_block_annotation(rolypoly, block_annotation)
```
rolypoly_load_block_data

Block annotations, usually gene model.

Description

Block annotations, usually gene model.

Usage

```r
rolypoly_load_block_data(rolypoly, block_data)
```

Arguments

- `rolypoly`: a rolypoly object
- `block_data`: a data frame of block information, usually gene expression. Requires rownames that are identical to block labels loaded previously.

Value

a rolypoly object with block information loaded

Examples

```r
## Not run: rolypoly_load_block_data(rolypoly, block_data)
```

rolypoly_load_gwas

Load gwas data

Description

Load gwas data

Usage

```r
rolypoly_load_gwas(rolypoly, gwas_data, snp_annotations = NULL,
                   gwas_z_filter = -1, add_spline = F, n_knots = 1, add_poly = F,
                   n_degree = 2)
```
Arguments

rolypoly rolypoly data
gwas_data gwas data
snp_annotations if there are additional snp annotations included
gwas_z_filter if we want to remove large effect SNPs
add_spline for fitting a spline to maf
n_knots number of knots for spline
add_poly for fitting a polynomial to maf
n_degree degree of polynomial to fit

Value

rolypoly object with gwas data loaded

Examples

Not run: rolypoly_load_gwas(rolypoly, gwas_data)

rolypoly_perform_inference

Run inference.

Description

Coordinates running inference.

Usage

rolypoly_perform_inference(rolypoly, bootstrap_iters = 50, outlier_threshold = -1, run_light = F, run_parallel = F)

Arguments

rolypoly rolypoly object
bootstrap_iters number of bootstrap iterations to perform
outlier_threshold threshold for performing robust regression, still experimental.
run_light if we throw out bootstrap data
run_parallel if we collect bootstraps in parallel

Value

rolypoly object with inference information attached
Examples

```r
## Not run: rolypoly_perform_regularized_inference(rolypoly)
```

rolypoly_perform_regularized_inference

Run inference with added regularization.

Description

If p-values are desired use the other inference function. This for prediction purposes.

Usage

```r
rolypoly_perform_regularized_inference(rolypoly, ...)
```

Arguments

- `rolypoly`: a rolypoly object
- `...`: other arguments to pass to cv.glmnet

Value

rolypoly object with regularization results

Examples

```r
## Not run: rolypoly_perform_regularized_inference(rolypoly)
```

rolypoly_plots

Plot functions.

Description

Functions for rolypoly results.
rolypoly_roll

Main rolypoly wrapper function.

Description

The entry point for rolypoly analysis. If no expression data, we assume that we are running just the vegas score processing.

Usage

rolypoly_roll(rolypoly = NULL, gwas_data = NULL, block_annotation = NULL, block_data = NULL, ld_folder = NULL, bootstrap_iters = 50, outlier_threshold = -1, perform_cv = F, n_folds = 10, gwas_z_filter = -1, add_spline = F, n_knots = 1, add_poly = F, n_degree = 2, run_light = T, gwas_link_parallel = F, bootstrap_parallel = F, keep_model = F, keep_gwas = F, ...)

Arguments

rolypoly Previous rolypoly run to parts of pipeline.
gwas_data Gwas data for a trait, including snp annotations.
block_annotation Start and end points for blocks
block_data Information about blocks.
ld_folder Folder with LD information.
bootstrap_iters Number bootstrap iterations to perform for inference.
outlier_threshold Set to positive if we want to run robusted regression.
perform_cv If we want to interpret annotation effects do not set this to T. However, if our goal is prediction accuracy then set this to T.
n_folds number of folds for cross validation
gwas_z_filter Z-score filter for SNPs, helps prevent large effects biasing inference.
add_spline If we want to fit a spline to maf.
n_knots number of knots to add to the spline.
add_poly If we want to fit a polynomial to maf.
n_degree the degree of the polynomial.
run_light if we want to throw away bootstrap data, and save memory
gwas_link_parallel if user wants to run in gwas linking in parallel, registerDoParallel must have been run in advance.
if user wants to run in bootstraps in parallel, registerDoParallel must have been run in advance.

if we should keep the regression model, can be large.

set to T if we want to include gwas in returned rolypoly object.

other arguments to pass to cv.glmnet

rolypoly object

not run: rolypoly_roll(rolpoly)

sim_block_annotation Simulated block data annotation.

A dataset containing simulated block data annotation for use in the rolypoly vignette.

sim_block_annotation

A data frame with 1000 rows and 4 variables:

chrom chromosome, we only use autosomes
start base pair position of variant
derid rsid identifier of variant
label effect size, univariate regression coefficient

I generated these fields to link with SNP positions
sim_expression_data_normalized

Simulated expression data.

Description

A dataset containing simulated expression data for use in the rolypoly vignette.

Usage

```r
sim_expression_data_normalized
```

Format

A data frame with 1000 rows and 5 variables:

- **Liver** simulated expression data for tissue. This tissue has a significant effect on the simulated gwas.
- **Adrenal.Gland** simulated expression data for tissue
- **Blood** simulated expression data for tissue. This tissue has a significant effect on the simulated gwas.
- **Heart** simulated expression data for tissue
- **Lung** simulated expression data for tissue

Source

I generated this dataset

sim_gwas_data

Simulated GWAS summary statistics

Description

A dataset containing simulated genome-wide association summary statistics for use in the rolypoly vignette.

Usage

```r
sim_gwas_data
```
vectorize_rolypoly

Format
A data frame with 14934 rows and 6 variables:

chrom chromosome, we only use autosomes
pos base pair position of variant
rsid rsid identifier of variant
beta effect size, univariate regression coefficient
se standard error of effect size
maf minor allele frequency

Source
rsids were from 1000g and I generated the other fields

vectorize_rolypoly Take a list of rolypoly data and vectorize it for inference.

Description
Take a list of rolypoly data and vectorize it for inference.

Usage
vectorize_rolypoly(data)

Arguments
data the list of block information from rolypoly object

Value
list of necessary information for inference

Examples
Not run: vectorize_rolypoly(data)
Index

*Topic datasets
 sim_block_annotation, 16
 sim_expression_data_normalized, 17
 sim_gwas_data, 17

bootstrap_estimator, 2

calculate_annotation_block_heritability, 3
calculate_block_values, 4
calculate_expected_block_values_given_ld, 4
cv_regularized_parameter_estimator, 5
data_io, 5

inference, 6

main_wrapper, 6
make_ld_matrix, 6
make_results_df, 7

parameter_estimator, 7
plot_rolypoly_annotation_estimates, 8
plot_rolypoly_annotation_ranking, 8

regularized_inference, 9
robust_parameter_estimator, 9
rolypoly, 9
rolypoly-package (rolypoly), 9
rolypoly_add_ld_corrected_gwas_block_scores, 10
rolypoly_link_blocks_and_gwas, 10
rolypoly_load_block_annotation, 11
rolypoly_load_block_data, 12
rolypoly_load_gwas, 12
rolypoly_perform_inference, 13
rolypoly_perform_regularized_inference, 14
rolypoly_plots, 14
rolypoly_roll, 15

sim_block_annotation, 16
sim_expression_data_normalized, 17
sim_gwas_data, 17
vectorize_rolypoly, 18