roptim: An R Package for General Purpose Optimization with C++

Yi Pan
University of Birmingham

Jianxin Pan
The University of Manchester

Abstract

In R environment, users can solve general-purpose optimization problems easily using the optim function in package stats which is provided by default R installation. Although the implementations of five core algorithms in optim(), namely "Nelder-Mead", "BFGS" (Broyden-Fletcher-Goldfarb-Shanno), "CG" (conjugate gradients), "L-BFGS-B" (limited-memory BFGS with box constraints) and "SANN" (simulated annealing), are converted to native machine code, the user-provided objective function and gradient are usually evaluated using the R interpreter which may result in performance penalty. This paper describes a user-friendly C++ class Roptim from roptim package which provides a unified wrapper interface to the C codes of the five optimization algorithms underlying optim function and enables users performing general purpose optimization tasks using C++ without reimplementing the optimization routines. More advanced features for optimization tasks, such as checking gradient/Hessian of the objective function and specifying fixed parameters while allowing the rest to be adjusted to minimize the objective function, will also be discussed in this paper.

Keywords: Nelder-Mead, BFGS, CG, L-BFGS-B, SANN, C++, R.

1. Introduction

Optimization algorithms are frequently used in mathematics, statistics, computer science and operations research. Most statistical tools (e.g., R, Stata, SAS), as well as mathematical software such as Mathematica, Maple and MATLAB, provide optimization and nonlinear modelling packages. The R environment (R Core Team 2017) has included build-in optimization algorithms since its early days where stats::optim(), or optim() in package stats, is one of most widely used functions for conducting basic optimization tasks. Here by basic optimization, we mean minimization of functions that are mostly smooth without any constraints, or at most bounds-constrained. Within the same package, stats::nlm() (Schnabel, Koonatz, and Weiss 1985) is used for solving nonlinear unconstrained minimization problems and stats::nlminb() offers unconstrained and constrained optimization using PORT routines (Fox 1997). Outside the stats package, the package optimx (Nash, Varadhan et al. 2011) and its successor package optimr (Nash, Varadhan, Grothendieck, Nash, and Yes 2016) offers a replacement and extension of the optim function to unify and streamline optimization capabilities in R. Note this paper is not an exhaustive survey of all recent R developments for optimization, and more complete discussion of functions and packages that perform optimization tasks can be found in the task view on Optimization and Mathematical Programming.
While the R language provides a stable statistical environment for fast prototyping and easy data visualization, code implemented in R is interpreted at its core which may result in a much longer execution time when compared to the equivalent program in native machine code. Although the five core implementations of algorithms in `optim()`, namely "Nelder-Mead", "BFGS" (Broyden-Fletcher-Goldfarb-Shanno), "CG" (conjugate gradients), "L-BFGS-B" (limited-memory BFGS with box constraints) and "SANN" (simulated annealing), are converted to high performance machine code, the user-provided objective function and gradient implemented in R requires intensive evaluations during the optimization process. With the increase of function complexity and data size, the execution time can be a potential issue. To overcome this problem, most experienced R package developers, who use C++ for the core computation, may have to use the C interface for the five aforementioned methods directly (much harder to use when compared to `optim`), or even write their own implementation of algorithms to do the optimization tasks.

In this paper, we focus on the basic function minimization problems using the five aforementioned algorithms, and present a user-friendly C++ class `Roptim` in R package `roptim` (freely available from CRAN at http://CRAN.R-project.org/package=roptim) as a wrapper for the C codes underlying optim to perform optimization tasks. The new approach makes it straight-forward for R users, who are familiar with `optim` function, to convert their existing code or write new code of optimization tasks in C++ by using the Rcpp (Eddelbuettel, François, Allaire, Chambers, Bates, and Ushey 2011) extension package in conjunction with the RcppArmadillo C++ matrix library (Eddelbuettel and Sanderson 2014) for numerical linear algebra. The main objective of this paper is to serve as the document of our package (since package `roptim` is not a conventional package with pure R function interface and it only provides wrapper classes defined in C++ header files) and introduce the `Roptim` class to wide audiences of statisticians and practitioners who needs to perform optimization in R using C++ for faster speed while still want to get consistent results with the `optim` function.

The rest of this paper is organized as follows. In Section 2 we briefly introduce the basic optimization problems and five algorithms used in `optim`, then present both the internal C interface provided by R and the newly proposed C++ interface provided by package `roptim`. Section 3 provides three optimization problems as examples to illustrate the use of package and discusses some advanced techniques used in performing the optimization tasks. Section 4 concludes the paper with some further discussions.

2. Design of package roptim

2.1. Overview of optimization task

In the simplest case, an optimization problem is about finding the minimization of general nonlinear smooth functions of n parameters where the values of parameters may subject to constraints. The task can be formulated as

\[x^* = \arg \min_x f(x) \quad \text{subject to } L \leq x \leq U \] \hspace{1cm} (1)

where \(x, L, U \in \mathbb{R}^n \) and \(f : \mathbb{R}^n \to \mathbb{R} \). Note that optimization problem with non-smooth objective function is ongoing research which is beyond the scope of this paper. To solve the
Table 1: Optimization algorithms included in \texttt{optim}

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>C interface</th>
<th>Method type</th>
<th>Box constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nelder-Mead</td>
<td>\texttt{nmmin}</td>
<td>Derivative-free</td>
<td>No</td>
</tr>
<tr>
<td>BFGS</td>
<td>\texttt{vmmin}</td>
<td>Quasi-Newton</td>
<td>No</td>
</tr>
<tr>
<td>CG</td>
<td>\texttt{cgmin}</td>
<td>Gradient</td>
<td>No</td>
</tr>
<tr>
<td>L-BFGS-B</td>
<td>\texttt{lbfgsb}</td>
<td>Quasi-Newton</td>
<td>Yes</td>
</tr>
<tr>
<td>SANN</td>
<td>\texttt{samin}</td>
<td>Simulated-annealing</td>
<td>No</td>
</tr>
</tbody>
</table>

problem in Equation (1), we focus on the five algorithms and their corresponding implementations which are internally used in \texttt{optim} function of \texttt{stats} package (Table 1).

The "Nelder-Mead" method (Nelder and Mead 1965) is from the second edition of Nash (1990) which uses only function values (i.e., derivative-free) and is robust but relatively slow. It works reasonably well for non-differentiable functions.

The "BFGS" (Fletcher 1970) and "L-BFGS-B" (Byrd, Lu, Nocedal, and Zhu 1995) are quasi-Newton methods (also called variable metric algorithms) which require both function values and gradients to perform the optimization task. In "BFGS", the inverse Hessian is approximated by the Broyden-Fletcher-Goldfarb-Shanno formula at each iteration using updates specified by gradient evaluations (or approximate gradient evaluation) and a "backtrack to acceptable point" line search is used to the resulting newton step for a new trial solution; while in "L-BFGS-B", the approximation of inverse Hessian is stored implicitly by keeping a few vectors as needed and box optimization is allowed for bounds constraints on parameters.

The "CG" is a conjugate gradients method (Fletcher and Reeves 1964) which also requires both function value and gradient for minimization task and three strategies are included from Nash (1990). When compared to BFGS, conjugate gradient methods will generally be more fragile, but as they do not store a matrix they may be successful in much larger optimization problems. More detailed discussion for "BFGS", "L-BFGS-B" and "CG" can be found in Wright and Nocedal (1999).

The "SANN" is by default a variant of simulated annealing (Bélisle 1992) which belongs to the class of stochastic global optimization methods. This method uses only function values but is relatively slow since it does not have a termination test and always evaluates the function for the specified maximum number of iterations. It will also work for non-differentiable functions. This implementation uses the Metropolis function for the acceptance probability. By default the next candidate point is generated from a Gaussian Markov kernel with scale proportional to the actual temperature.

2.2. The C interface

To avoid the performance penalty when the optimization tasks (i.e., both objective function and the corresponding gradient) are implemented in \texttt{R} using \texttt{optim}, one possible solution is to make use of the following C interface of five algorithms directly (Team 1999):

- Nelder-Mead:

 \begin{verbatim}
 void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,
 int *fail, double abstol, double intol, void *ex,
 \end{verbatim}
double alpha, double beta, double gamma, int trace,
int *fncount, int maxit);

- BFGS:

 void vmmin(int n, double *x, double *Fmin,
 optimfn fn, optimgr gr, int maxit, int trace,
 int *mask, double abstol, double reltol, int nREPORT,
 void *ex, int *fncount, int *grcount, int *fail);

- Conjugate gradients:

 void cgmin(int n, double *xin, double *x, double *Fmin,
 optimfn fn, optimgr gr, int *fail, double abstol,
 double inttol, void *ex, int type, int trace,
 int *fncount, int *grcount, int maxit);

- Limited-memory BFGS with bounds:

 void lbfgsb(int n, int lmm, double *x, double *lower,
 double *upper, int *nbd, double *Fmin, optimfn fn,
 optimgr gr, int *fail, void *ex, double factr,
 double pgtol, int *fncount, int *grcount,
 int maxit, char *msg, int trace, int nREPORT);

- Simulated annealing:

 void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,
 int tmax, double temp, int trace, void *ex);

where users need to supply an objective function and the corresponding gradient separately
in C with the types of

typedef double optimfn(int n, double *par, void *ex);
typedef void optimgr(int n, double *par, double *gr, void *ex);

respectively when needed. Many of the arguments are common to the various aforementioned
methods — n is the number of parameters, x or xin is the starting parameters on entry
while x is also the final parameters on exit, with final value returned in Fmin. Most of the
other parameters can be found from the help page for optim. However the interface for the
C language proves hard to use and debug for even advanced users which makes it much less
popular when compared to optim function.

We also need to note that, at the time of writing, the provided implementation of "SANN"
actually requires evaluation of an user provided R function internally through argument ex for
generating a new candidate point which makes it almost impossible to use in C language. To
solve this issue, we manually changes the original codes for "SANN" to remove the requirement
for R function evaluation and provided it using same interface within our package roptim.

2.3. The C++ interface: class Roptim

The Roptim class is designed to provide a single, unified interface for performing general
purpose optimization in a similar fashion to optim() so that users of optim function can
easily convert their existing code or implement their optimization tasks in C++ by employing Rcpp package and RcppArmadillo package which provide a bidirectional interface between R and C++ at the object level.

The implementation is provided as a template class within the roptim namespace and can be defined as

```cpp
Roptim<YourTask> opt(method);
```

where implementation of YourTask will be discussed shortly in next section and method should be chosen from "Nelder-Mead", "BFGS", "CG", "L-BFGS-B" and "SANN". For an instance of Roptim class named as opt, its member functions and variables are listed below.

- **opt.set_method(method)**
 Specifies the method to be used. Again, method should be chosen from "Nelder-Mead", "BFGS", "CG", "L-BFGS-B" and "SANN".

- **opt.set_lower(vec)/opt.set_upper(vec)**
 Sets bounds on the variables for the "L-BFGS-B" method where vec is a arma::vec.

- **opt.set_hessian(flag)**
 Logical. Should a numerically differentiated Hessian matrix be computed?

- **opt.minimize(task, par)**
 Performs the optimization task. Here task is an instance of YourTask and par is the vector of starting values with type arma::vec. Once the optimization is finished, par will be overwritten by the optimized points.

- **opt.control.var**
 control is a public data member of type RoptimControl. Here RoptimControl is an internal member class (or nested class) of Roptim and defines all control parameters with public access. Control parameter var can be one of the following variable:

 - **trace**
 Non-negative integer. If positive, tracing information on the progress of the optimization is produced. Higher values may produce more tracing information: for method "L-BFGS-B" there are six levels of tracing. (To understand exactly what these do see the source code: higher levels give more detail.)

 - **fnscale**
 An overall scaling to be applied to the value of objective function and gradient during optimization. If negative, turns the problem into a maximization problem. Optimization is performed on task(par)/fnscale.

 - **parscale**
 A vector of scaling values for the parameters. Optimization is performed on par/parscale and these should be comparable in the sense that a unit change in any element produces about a unit change in the scaled value.

 - **ndeps**
 A vector of step sizes for the finite-difference approximation to the gradient, on par/parscale scale. Defaults to 1e-3.
- `maxit`
 The maximum number of iterations. Defaults to 100 for the derivative-based methods, and 500 for "Nelder-Mead".
 For "SANN", `maxit` gives the total number of function evaluations: there is no other stopping criterion. Defaults to 10000.

- `abstol`
 The absolute convergence tolerance. Only useful for non-negative functions, as a tolerance for reaching zero.

- `reltol`
 Relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a factor of `reltol * (abs(val) + reltol)` at a step. Defaults to `1e-8`.

- `alpha`, `beta`, `gamma`
 Scaling parameters for the "Nelder-Mead" method. `alpha` is the reflection factor (default 1.0), `beta` the contraction factor (0.5) and `gamma` the expansion factor (2.0).

- `REPORT`
 The frequency of reports for the "BFGS", "L-BFGS-B" and "SANN" methods if `opt.control.trace` is positive. Defaults to every 10 iterations for "BFGS" and "L-BFGS-B", or every 100 temperatures for "SANN".

- `warn_1d_NelderMead`
 a logical indicating if the (default) "Nelder-Mead" method should signal a warning when used for one-dimensional minimization. As the warning is sometimes inappropriate, you can suppress it by setting this option to `false`.

- `type`
 for the conjugate-gradients method. Takes value 1 for the Fletcher-Reeves update, 2 for Polak-Ribiere and 3 for Beale-Sorenson.

- `lmm`
 is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method, It defaults to 5.

- `factr`
 controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduction in the objective is within this factor of the machine tolerance. Default is `1e7`, that is a tolerance of about `1e-8`.

- `pgtol`
 helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected gradient in the current search direction. This defaults to zero, when the check is suppressed.

- `temp`
 controls the "SANN" method. It is the starting temperature for the cooling schedule. Defaults to 10.

- `tmax`
 is the number of function evaluations at each temperature for the "SANN" method. Defaults to 10.
Once the optimization task is done by using `opt.minimize()`, some remaining member functions of Roptim class, for printing or extracting the results, can be used safely.

- `opt.print()`
 prints all relevant results of the optimization task.

- `opt.par()`
 returns the best set of parameters found and has the same values with `par` which is updated after we called `opt.minimize(task, par)`.

- `opt.value()`
 returns the corresponding value of function being optimized (i.e., `task(par)`).

- `opt.fcount()`
 returns the number of objective function evaluation times.

- `opt.grcount()`
 returns the number of gradient evaluation times.

- `opt.convergence()`
 An integer code. 0 indicates successful completion (which is always the case for "SANN"). Possible error codes are

 - 1 indicates that the iteration limit maxit had been reached.
 - 10 indicates degeneracy of the Nelder-Mead simplex.
 - 51 indicates a warning from the "L-BFGS-B" method; see `message` for further details.
 - 52 indicates an error from the "L-BFGS-B" method; see `message` for further details.

- `opt.message()`
 returns a character string giving any additional information returned by the optimizer, or `NULL`.

- `opt.hessian()`
 returns a numerically differentiated hessian matrix.

2.4. The C++ interface: class Functor

In contrast to `optim`, both objective function and gradient should be stored within a single class when using `class Roptim`. This design may bring additional benefit since it is common for the objective function and gradient to have some shared computational part, and we will discuss it in Section 3.3. The pseudo code below shows how to define a class for your optimization task with `Functor`.
struct YourTask : public Functor {
 public:
 double operator()(const vec &par) override; // objective function
 void Gradient(const vec &par, vec &grad) override; // gradient
 void Hessian(const vec &par, mat &hess) override; // hessian

 double YourTask::operator()(const vec &par){
 // code for evaluating objective function
 }

 void YourTask::Gradient(const vec &par, vec &grad){
 // code for evaluating gradient
 }

 void YourTask::Hessian(const vec &par, mat &hess){
 // code for evaluating hessian
 }

} YourTask

YourTask should be defined as a class derived from an abstract template base class named Functor within namespace roptim. It is helpful to know the fact that when our own version of Gradient() and Hessian() are not defined in class YourTask, we will automatically have the inherited version of Gradient() and Hessian() from class Functor instead which provide forward-difference approximation of gradient (through task.ApproximateGradient(par, grad)) and Hessian (through task.ApproximateHessian(par, grad)) respectively. In other words, numerical gradient will be generated if a non-derivative-free algorithm is employed. The only exception is that when we use "SANN", the member function Gradient() (which specifies the function to generate a new candidate point) will never be used in the optimization process unless we explicit tell it to; See an example in Section 3.2.

Obviously, we need to implement the objective function as it is always needed for optimization tasks and the call operator is defined as a pure virtual member function in its base class Functor. We also need to note that the implementation of member function Gradient() is usually required and is only optional for "Nelder-Mead" (it is a derivative-free method) and "SANN" (a default Gaussian Markov kernel is used for generating a new candidate point when Gradient() is not defined) while Hessian() is always optional since none of five algorithms require the evaluation of Hessian matrix during optimization process.

3. Examples

3.1. Rosenbrock function

In this section, we will take Rosenbrock function, which is a non-convex function and used as an example in help page of optim function, to illustrate the use of Roptim class.

The Rosenbrock function is defined by

\[f(x_1, x_2) = (1 - x_1)^2 + 100(x_2 - x_1^2)^2 \] \hspace{1cm} (2)
and obviously it has a global minimum of 0 at the point (1,1). The corresponding class for this function can be defined as follows.

```cpp
class Rosen : public Functor {
public:
  double operator()(const arma::vec &x) override {
    double x1 = x(0);
    double x2 = x(1);
    return 100 * std::pow((x2 - x1 * x1), 2) + std::pow(1 - x1, 2);
  }

  void Gradient(const arma::vec &x, arma::vec &gr) override {
    gr = arma::zeros<arma::vec>(2);
    double x1 = x(0);
    double x2 = x(1);
    gr(0) = -400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1);
    gr(1) = 200 * (x2 - x1 * x1);
  }

  void Hessian(const arma::vec &x, arma::mat &he) override {
    he = arma::zeros<arma::mat>(2, 2);
    double x1 = x(0);
    double x2 = x(1);
    he(0, 0) = -400 * x2 + 1200 * x1 * x1 + 2;
    he(0, 1) = -400 * x1;
    he(1, 0) = he(0, 1);
    he(1, 1) = 200;
  }
};
```

Given the starting values (-1.2, 1), the following C++ function `example1_rosen_bfgs()` is used to apply the BFGS algorithm for the minimization of Rosenbrock function.

```cpp
// [[Rcpp::export]]
void example1_rosen_bfgs()
{
  Rosen rb;
  Roptim<Rosen> opt("BFGS");
  opt.control.trace = 1;
  opt.set_hessian(true);

  arma::vec x = {-1.2, 1};
  opt.minimize(rb, x);

  Rcpp::Rcout << "-------------------------" << std::endl;
}
```
By calling the function above in R environment, we have the outputs for tracing information (reported every 10 iterations) on the progress of BFGS optimization as follows where each line prints the iteration number and the value for objective function. Complete results of minimization are also printed after the dashed line. In this case, the expected global minimum point (1.0000, 1.0000) is obtained after roughly 40 iterations with 110 function and 43 gradient evaluations in BFGS algorithms.

```
R> example1_rosen_bfgs()

initial value 24.200000
iter 10 value 1.367383
iter 20 value 0.134560
iter 30 value 0.001978
iter 40 value 0.000000
final value 0.000000
converged

-------------------------
.par()
 1.0000 1.0000

.value()
9.59496e-18

.fcount()
110

.grcount()
43

.convergence()
0

.message()
NULL

.hessian()
  8.0200e+02 -4.0000e+02
 -4.0000e+02  2.0000e+02
```

As the member functions for objective function, gradient and Hessian are all implemented in class Rosen, we can easily try other algorithms by explicitly providing the method name (Note: if we leave it as blank, then "Nelder-Mead" will be used by default) when we create an object for Roptim. By default, the implemented member function Gradient() will not be used to generate a new candidate point in "SANN" and we will illustrate how to explicitly allow Gradient() generating new point in Section 3.2.
The gradient and Hessian computation proves to be notoriously difficult to debug and get them right with the increased complexity of functions. Sometimes a subtly buggy implementation will manage to learn something that can look surprisingly reasonable while performing less well than the correct one. It is possible (but not recommended) to define a class RosenNoGrad without the implementation for gradient and still apply the non-gradient-free algorithms (e.g. BFGS).

class RosenNoGrad : public Functor {
public:
double operator()(const arma::vec &x) override {
 double x1 = x(0);
 double x2 = x(1);
 return 100 * std::pow((x2 - x1 * x1), 2) + std::pow(1 - x1, 2);
}

void example1_rosen_grad_hess_check() {
 Rosen rb;
 arma::vec x = {1.2, 1};
 rb.Gradient(x, grad1);
 rb.ApproximateGradient(x, grad2);
 arma::mat hess1, hess2;
 rb.Hessian(x, hess1);
 rb.ApproximateHessian(x, hess2);
}

In this case, numerical approximation of gradient will be used when needed for BFGS algorithm as we indicated in Section 2.4. The R output for the function above indicates that the optimized parameters found is (0.9998, 0.9996) which is not as good as the class Rosen with explicit gradient implementation.

R> example1_rosen_nograd_bfgs()

par =
 0.9998 0.9996

The gradient/Hessian checking is critical for ensuring the correctness of any optimization task that apply algorithms with gradient/Hessian evaluations. At the time of writing, there is no standard way to perform a gradient/Hessian checking. We suggest simply compare the analytic and numerically approximated results for gradient/Hessian, and for each value, they should agree to at least 4 significant digits (and often many more).
Rcpp::Rcout << "Gradient checking" << std::endl;
 grad1.t().print("analytic: ");
 grad2.t().print("approximate: ");

Rcpp::Rcout << "-------------------------" << std::endl;

Rcpp::Rcout << "Hessian checking" << std::endl;
 hess1.print("analytic: ");
 hess2.print("approximate: ");
}

The R output for function example1_rosen_grad_hess_check() indicates that our implementations for gradient and Hessian of Rosenbrock function are probably correct.

R> example1_rosen_grad_hess_check()

Gradient checking
analytic:
-2.1560e+02 -8.8000e+01
approximate:
-2.1560e+02 -8.8000e+01

Hessian checking
analytic:
 1.3300e+03 4.8000e+02
 4.8000e+02 2.0000e+02
approximate:
 1.3300e+03 4.8000e+02
 4.8000e+02 2.0000e+02

3.2. The travelling salesman problem

In this section, we apply the simulated annealing ("SANN") to solve the travelling salesman problem using eurodist data which gives the road distances (in km) between 21 cities in Europe and has been previously analysed using optim function (presented on optim’s help page).

The travelling salesman problem (TSP) is a Non-deterministic Polynomial-time hard (NP-hard) problem in combinatorial optimization, and is important in operations research and theoretical computer science. It presents the task of finding the most efficient route through a set of given cities where each city should be passed only once. For n cites, we define a distance matrix \(D = (d_{i,j})_{n \times n} \) to store distances between all pair of cites, where each element \(d_{i,j} \) of matrix \(D \) represents the distance between city \(i \) and \(j \). We use a set of permutations \(\pi \) of integers from 1 to \(n \), which contains all the possible tours of the problem. The goal is to find a permutation \(\pi = (\pi(1), \pi(2), \cdots, \pi(n), \pi(n+1)) \) that minimizes

\[
f(\pi) = \sum_{i=1}^{n} d_{\pi(i), \pi(i+1)}. \tag{3}
\]
where $\pi(n+1) = \pi(1)$ so that the route ends with the starting city. The class for this objective function and the corresponding function for generating new candidate points can be defined as follows. Note that by default "SANN" always uses Gaussian Markov kernel to generate a new candidate point (even if member function $\text{Gradient}()$ is implemented), and we need to explicitly set $\text{os.sann}_\text{use_custom_function}$ as true so that "SANN" will use $\text{Gradient}()$ for generating new points internally.

class TSP : public Functor {
 public:
 // Constructor
 TSP(const arma::mat &distmat) : distmat_(distmat) {
 // Allows "SANN" using $\text{Gradient}()$ to generate new candidate point
 os.sann_use_custom_function_ = true;
 }

 double operator()(const arma::vec &sq) override {
 arma::uvec idx1(sq.size() - 1);
 arma::uvec idx2(sq.size() - 1);

 std::copy(sq.cbegin(), sq.cend() - 1, idx1.begin());
 std::copy(sq.cbegin() + 1, sq.cend(), idx2.begin());

 arma::vec distvec(sq.size() - 1);
 for (std::size_t idx = 0; idx != distmat_.n_rows; ++idx) {
 distvec(idx) = distmat_(idx1(idx), idx2(idx));
 }

 return arma::sum(distvec);
 }

 // Generates a new candidate point for "SANN".
 // (Actually it has nothing to do with "gradient")
 void Gradient(const arma::vec &sq, arma::vec &grad) override {
 grad = sq;

 arma::vec idx = arma::linspace(2, distmat_.n_rows - 1, distmat_.n_rows - 2);

 arma::vec changepoints = Rcpp::RcppArmadillo::sample(idx, 2, false);
 changepoints.for_each([](arma::vec::elem_type &val) { val -= 1.0; });

 grad(changepoints(0)) = sq(changepoints(1));
 grad(changepoints(1)) = sq(changepoints(0));
 }
}
private:
 arma::mat distmat_;
};

We present in Figure 1 the initial solution of travelling salesman problem where the sequence is generated according to the alphabetic orders of 21 cities:

```R
R> sq <- c(1:nrow(eurodistmat), 1) # Initial sequence: alphabetic
R> distance(sq)
R> # rotate for conventional orientation
R> x <- loc[,1]; y <- loc[,2]
R> s <- seq_len(nrow(eurodistmat))
R> tspinit <- loc[sq,]
R> plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", axes = FALSE)
R> arrows(tspinit[s,1], tspinit[s,2], tspinit[s+1,1], tspinit[s+1,2],
    + angle = 10, col = "green")
R> text(x, y, labels(eurodist), cex = 0.8)
```

and obviously it is not the best route for TSP.

Given the `eurodist` data and initial solution (i.e., stating values), the following C++ function `example2_tsp_sann()` is used to apply the simulated annealling algorithm for solving the travelling salesman problem.

```C++
// [[Rcpp::export]]
Rcpp::List example2_tsp_sann(arma::mat eurodistmat, arma::vec x) {

    TSP dist(eurodistmat);
    Roptim<TSP> opt("SANN");
    opt.control.maxit = 30000;
    opt.control.temp = 2000;
    opt.control.trace = true;
    opt.control.REPORT = 500;

    opt.minimize(dist, x);

    Rcpp::Rcout << "-------------------------" << std::endl;
    opt.print();

    return Rcpp::List::create(Rcpp::Named("par") = x);
}
```

By calling the function above in R environment, we can obtain the optimized parameters to plot the new route which is presented in Figure 2.
Figure 1: Initial solution of travelling salesman problem (TSP) for eurodist data.

\begin{verbatim}
R> set.seed(4) # chosen to get a good soln relatively quickly
R> res <- example2_tsp_sann(eurodistmat, sq)
R> tspres <- loc[res$par,]
R> plot(x, y, type = "n", asp = 1, xlab = "", ylab = "", axes = FALSE)
R> arrows(tspres[s,1], tspres[s,2], tspres[s+1,1], tspres[s+1,2],
+ angle = 10, col = "red")
R> text(x, y, labels(eurodist), cex = 0.8)
\end{verbatim}

3.3. Joint mean-covariance models
In this section, we use modified Cholesky decomposition (MCD) based joint mean-covariance model (Pan and Mackenzie 2003) as a more advanced example to illustrate how to perform optimization tasks by using Roptim. MCD is one of the three Cholesky decomposition based methods used in R package jmcm for joint modelling of mean and covariance structures in longitudinal data that follows a Gaussian distribution, where the other two are based on alternative Cholesky decomposition (ACD) and hyper-spherical parametrization of Cholesky factor (HPC). Following Pan and Pan (2017), BFGS algorithm will be used for the optimization in joint mean-covariance modelling. As this example is much more complex than the first two, pseudo code will be used instead so that we can explain the techniques used in the implementation more clearly. Complete implementation can be found in source code of latest jmcm package (Pan and Pan 2018).
Let \(y_i \) be a \(m_i \times 1 \) vector representing measurements on the \(i \)th of \(n \) subjects and \(m_i \) will be subject-specific so that both balanced and unbalanced longitudinal data can be modelled. It is assumed that \(y_i \sim N_{m_i}(\mu_i, \Sigma_i) \), where \(\mu_i \) and \(\Sigma_i \) is an \(m_i \times 1 \) vector and an \(m_i \times m_i \) positive definite matrix, respectively. Since the subject-specific covariance matrix \(\Sigma_i \) is positive definite, there exists a unique lower triangular matrix \(T_i \) with 1’s as main diagonal entries and a unique diagonal matrix \(D_i \) with positive diagonal entries such that \(T_i \Sigma_i T_i^\top = D_i \). Without understanding the technical details, three regression based models are proposed to model the elements in \(\mu_i \), \(D_i (\zeta_i) \) and \(T_i (\phi_i) \),

\[
\mu_i = X_i \beta, \quad \zeta_i = Z_i \lambda, \quad \phi_i = W_i \gamma
\]

(4)

where \(\zeta_i \) and \(\phi_i \) are vectors of unknown elements in \(D_i \) and \(T_i \) accordingly, \(X_i \), \(Z_i \) and \(W_i \) denotes the three pre-specified model matrices, \(\beta \), \(\lambda \) and \(\gamma \) are the corresponding regression coefficient vectors. Then the objective function, minus twice the log-likelihood function, except for a constant, is given by

\[
-2l = \sum_{i=1}^{n} \log |T_i^{-1}D_i^2T_i^{-\top}| + \sum_{i=1}^{n} r_i^\top T_i^\top D_i^{-2}T_ir_i,
\]

(5)

where \(r_i = y_i - X_i \beta \) is the vector of residuals for the \(i \)th subject. The corresponding gradient for \(\beta \), \(\lambda \) and \(\gamma \) becomes

\[
\begin{align*}
U_1(\beta) &= \sum_{i=1}^{n} X_i^\top \Sigma_i^{-1} (y_i - X_i \beta), \\
U_2(\lambda) &= \frac{1}{2} \sum_{i=1}^{n} Z_i^\top (D_i^{-2} e_i - 1_{m_i}), \\
U_3(\gamma) &= \sum_{i=1}^{n} G_i^\top D_i^{-2} (r_i - G_i \gamma),
\end{align*}
\]

(6)

where both the matrix \(G_i \) and vector \(e_i \) rely on the updates of first regression model \(\mu_i = X_i \beta \) for the mean structure and their complete definitions can be found in Pan and Pan (2017).

To obtain the maximum likelihood estimation (MLE) of three parameters \(\beta \), \(\lambda \) and \(\gamma \), it is quite straightforward to follow the Rosenbrock example by implementing both the objective function (i.e., \(-2l(\theta)\)) and gradient (i.e., \(U(\theta) = (U_1(\beta)^\top, U_2(\lambda)^\top, U_3(\gamma)^\top)^\top \)), then with the starting values for parameters \(\theta = (\beta^\top, \lambda^\top, \gamma^\top)^\top \) we can apply the BFGS optimization algorithms provided in Roptim. It is not hard to find that for any given values of \(\theta \), both objective function and gradient depend on the updates of three models in Equation (4) and we will present shortly how to avoid unnecessary computation for updating these models in member functions for objective function and gradient with the same \(\theta \) by using cached values.

As suggested in Pan and Mackenzie (2003), the actual algorithm is a bit more sophisticated since the three parameters are asymptotically independent. In other words, it is possible to update the parameter one by one in each iteration with the other two fixed. At the same time, two parameters \(\beta \) and \(\gamma \) have the following explicit updating forms,

\[
\begin{align*}
\beta &= (\sum_{i=1}^{n} X_i^\top \Sigma_i^{-1} X_i)^{-1} \sum_{i=1}^{n} X_i^\top \Sigma_i^{-1} y_i, \\
\gamma &= (\sum_{i=1}^{n} G_i^\top D_i^{-2} G_i)^{-1} \sum_{i=1}^{n} G_i^\top D_i^{-2} r_i,
\end{align*}
\]

(7)

roptim: General Purpose Optimization with C++
and \(\lambda \) is the only parameter that need to be updated by performing the numerical optimization. Ideally, we require a class \texttt{MCD} that is able to keep the value of \(\beta \) and \(\gamma \) fixed so that we can perform the BFGS optimization on \(\lambda \) easily. It is achieved by introducing a dummy variable named \texttt{free_param_} whose valid values and corresponding descriptions are listed in Table 2. Note that value 23 for \texttt{free_param_} is not used in our example since the two parameters \(\lambda \) and \(\gamma \) are asymptotically independent in MCD, but in ACD/HPC it is not the same case and these two parameters should be optimized together. A simplified version of class \texttt{MCD} is provided as follows.

```cpp
class MCD : public Functor {
public:
    double operator()(const arma::vec &x) override {
        UpdateMCD(x);
        // implementation of objective function
    }

    void Gradient(const arma::vec &x, arma::vec &grad) override {
        UpdateMCD(x);

        if (free_param_ == 0) {
            arma::vec grad1, grad2, grad3;
            GradientBeta(grad1);
            GradientLambda(grad2);
            GradientGamma(grad3);
            grad = concatenate(grad1, grad2, grad3);
        } else if (free_param_ == 1) {
            GradientBeta(grad);
        } else if (free_param_ == 2) {
            GradientLambda(grad);
        } else if (free_param_ == 3) {
            GradientGamma(grad);
        }
    }
}
```

\texttt{GradientBeta}, \texttt{GradientLambda}, and \texttt{GradientGamma} are implementation of \(U_1 \), \(U_2 \), and \(U_3 \), respectively.

<table>
<thead>
<tr>
<th>free_param_</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no parameters will be fixed.</td>
</tr>
<tr>
<td>1</td>
<td>(\beta) is the free parameter; (\lambda) and (\gamma) will be fixed.</td>
</tr>
<tr>
<td>2</td>
<td>(\lambda) is the free parameter; (\beta) and (\gamma) will be fixed.</td>
</tr>
<tr>
<td>3</td>
<td>(\gamma) is the free parameter; (\beta) and (\lambda) will be fixed.</td>
</tr>
<tr>
<td>23</td>
<td>((\lambda^\top, \gamma^\top)^\top) is the free parameter; (\beta) will be fixed.</td>
</tr>
</tbody>
</table>

Table 2: Valid values and description for a dummy variable.
void UpdateMCD(const arma::vec &x);

void UpdateBeta() {
 // implementation of updating form for beta
 set_free_param(1); // 1. fix values of lambda and gamma temporarily
 UpdateMCD(beta); // 2. update parameters and models in the cache
 set_free_param(0); // 3. set free_param_ back to default value 0
}

void UpdateGamma() {
 // implementation of updating form for gamma
 set_free_param(3); // 1. fix values of beta and lambda temporarily
 UpdateMCD(gamma); // 2. update parameters and models in the cache
 set_free_param(0); // 3. set free_param_ back to default value 0
}

void set_free_param(int val) { free_param_ = val; }

private:
 int free_param_ = 0;
 arma::mat X_, Z_, W_; // model matrices
 arma::vec theta_, beta_, lambda_, gamma_; // cached parameters
 arma::mat Xbta_, Zlmd_, Wgma_; // cache for three regression models
};

In contrast to class Rosen, both the member functions of call operator (i.e., objective function) and Gradient() in MCD called UpdateMCD() at the very beginning which is intended to check whether the supplied parameter x is different from its cached value, if yes, update the parameters and three regression models in the cache accordingly. Similarly, the member function UpdateMCD() is also used in UpdateBeta() and UpdateGamma() to keep values of parameters and models in the cache updated after updating the value of β and γ respectively. The internal behaviour of UpdateMCD() is largely controlled by the value of free_param_ and its full implementation should be as follows.

void MCD::UpdateMCD(const arma::vec &x) {
 // Step 1. Compare x with cached value for parameters
 // and decide if update is necessary
 bool update_flag = true;
 if (free_param_ == 0 && IsEqual(x, theta_)) {
 update_flag = false;
 } else if (free_param_ == 1 && IsEqual(x, beta_)) {
 update_flag = false;
 } else if (free_param_ == 2 && IsEqual(x, lambda_)) {
 update_flag = false;
 } else if (free_param_ == 3 && IsEqual(x, gamma_)) {
 update_flag = false;
 }
}
// Step 2. Update values in the cache when needed
if (update_flag) {
 // Step 2.1. Update cached parameters
 if (free_param_ == 0) {
 theta_ = x;
 // also update beta_, lambda_ & gamma_
 } else if (free_param_ == 1) {
 beta_ = x;
 // also update theta_
 } else if (free_param_ == 2) {
 lambda_ = x;
 // also update theta_
 } else if (free_param_ == 3) {
 gamma_ = x;
 // also update theta_
 }
}

// Step 2.2. Update three regression models in the cache
if (free_param_ == 0) {
 Xbta_ = X_ * beta_;
 Zlmd_ = Z_ * lambda_;
 Wgam_ = W_ * gamma_;
} else if (free_param_ == 1) {
 Xbta_ = X_ * beta_;
} else if (free_param_ == 2) {
 Zlmd_ = Z_ * lambda_;
} else if (free_param_ == 3) {
 Wgam_ = W_ * gamma_;
}

It is not unusual for objective function and gradient having some common computation parts, and defining them within the same class make it possible to avoid unnecessary computation by storing the results of common part in the cache and update them only when it is necessary. The use of dummy variable free_param_ enables us to change the behaviour of member functions for objective function and gradient so that we can optimize some parameters with others fixed. To minimize the objective function $-2l(\theta)$ and obtain the MLE of θ, we can easily apply the profile (i.e., estimating parameters one by one with other parameters fixed in each iteration) and non-profile approaches; See Appendix B for the comparison of these two approaches using two real datasets.

void mcdfit (...) {
 MCD mcd; // Create an instance of mcd
 // by default, free_param_ should be set to 0
 Roptim<MCD> opt("BFGS");
arma::vec x = start_value; // the starting values for theta

if (profile) {
 // Initializations
 for (std::size_t iter = 0; iter != kMaxIteration; ++iter) {
 // Update beta and values in the cache
 mcd.UpdateBeta();

 // Set parameter lambda from x

 // Optimize lambda and update values in the cache
 mcd.set_free_param(2); // 1. fix values of beta and gamma temporarily
 // by setting free_param_ to 2
 opt.minimize(mcd, lambda); // 2. perform the optimization on lambda
 mcd.UpdateMCD(lambda); // 3. update parameters and models in cache
 mcd.set_free_param(0); // 4. set free_param_ back to default value 0

 // Update gamma and values in the cache
 mcd.UpdateGamma();

 // Compare x with updated theta in mcd
 // If a pre-specified criterion is met, break the for loop
 // else update x with theta
 }
 else {
 opt.minimize(mcd, x);
 }
}

The actual implementation for class MCD, ACD, HPC and the utility function for model fitting are more complex as the three Cholesky based methods share quite a lot in common and we even created a base class named JmcmBase and a model fitting class named JmcmFit for them to avoid code duplication.

4. Conclusion

In this paper, we have illustrated the use of class Roptim and discussed some advanced techniques used in implementation for optimization tasks. By using this new approach, R users who are familiar with optim can easily convert their existing codes or write new codes of optimization tasks in C++ for much faster speed and still get consistent results.

References

A. Reimplementing two simple optimization tasks in C++

There are in total four examples given on the document page of optim() to demonstrate its usage of performing general optimization tasks. We have discussed the first and second example (i.e., minimizing Rosenbrock function and solving travelling salesman problem) using our new approach in Section 3.1 and 3.2 respectively. The remaining two problems will be illustrated here as simple examples of reimplementing R code of minimization tasks in C++.

The third example provided by roptim() is given as follows:

```R
R> flb <- function(x)
R>   { p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }
R> ## 25-dimensional box constrained
R> optim(rep(3, 25), flb, NULL, method = "L-BFGS-B",
R> lower = rep(2, 25), upper = rep(4, 25)) # par[24] is *not* at boundary
```

and same results can be obtained by calling the following C++ function in R environment:

```cpp
class Flb : public Functor {
public:
   double operator()(const arma::vec &x) override {
      int p = x.size();

      arma::vec part1 = arma::ones<arma::vec>(p) * 4;
      part1(0) = 1;

      arma::vec tmp = arma::ones<arma::vec>(p);
      std::copy(x.cbegin(), x.cend() - 1, tmp.begin() + 1);

      arma::vec part2 = arma::pow(x - arma::pow(tmp, 2), 2);

      return arma::dot(part1, part2);
   }
};

// [[Rcpp::export]]
void example3_flb_25_dims_box_con() {
   Flb f;
   arma::vec lower = arma::ones<arma::vec>(25) * 2;
   arma::vec upper = arma::ones<arma::vec>(25) * 4;

   Rcpp::Rcpp::roptim<Flb> opt("L-BFGS-B");
   opt.set_lower(lower);
   opt.set_upper(upper);
   opt.control.trace = 1;

   arma::vec x = arma::ones<arma::vec>(25) * 3;
```
opt.minimize(f, x);

Rcpp::Rcout << "---------------------------" << std::endl;
opt.print();
}

The fourth example provided by roptim() is given as follows:

R> ## "wild" function, global minimum at about -15.81515
R> fw <- function (x)
R> 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
R> res <- optim(50, fw, method = "SANN",
R> control = list(maxit = 20000, temp = 20, parscale = 20))
R> res
R> ## Now improve locally {typically only by a small bit}:
R> (r2 <- optim(res$par, fw, method = "BFGS"))

and similar results (as "SANN" is used) can be obtained by calling the following C++ function in R environment:

class Fw : public Functor {
public:
 double operator()(const arma::vec &xval) override {
 double x = arma::as_scalar(xval);

 return 10 * std::sin(0.3 * x) * std::sin(1.3 * std::pow(x, 2.0)) +
 0.00001 * std::pow(x, 4.0) + 0.2 * x + 80;
 }
};

// [[Rcpp::export]]
void example4_wild_fun() {
 Fw f;
 Roptim<Fw> opt("SANN");
 opt.control.maxit = 20000;
 opt.control.temp = 20;
 opt.control.parscale = 20;

 arma::vec x = {50};
 opt.minimize(f, x);
 x.print();

 Roptim<Fw> opt2("BFGS");
 opt2.minimize(f, x);
 x.print();
}
B. Profile vs Non-profile for joint mean-covariance models

For joint mean-covariance models, most publications suggest using a profile method – in each iteration, update the parameter one by one with other parameters fixed and only the parameter without explicit updating form should be numerically optimized. However, as we have presented in Section 3.3, it is actually more straightforward to implement a non-profile method for obtaining the maximum likelihood estimations (MLE) of the models where all parameters are updated together through a specific optimization algorithm. The performance of two aforementioned methods remain unclear and it is intuitive to assume they will simply get similar results.

Following Pan and Pan (2017), we applied both profile and non-profile approaches to Kenward’s cattle data (balanced longitudinal data) and CD4 cell data (unbalanced longitudinal data) using the three methods provided in package jmcm (i.e., MCD, ACD and HPC) respectively. For simplicity, detailed analysis of the two datasets with comparisons between three provided Cholesky decomposition based joint mean-covariance models will not be repeated here so that we can focus on comparing profile and non-profile approaches.

Results for analysing Kenward’s cattle data using profile and non-profile approach are reported in Table 3 and Table 4; and results for analysing CD4 cell data using profile and non-profile approach are reported in Table 5 and Table 6. For each table, order \((p,d,q)\) of three polynomials for constructing the three covariate matrices (i.e., \(X_i\), \(Z_i\) and \(W_i\) in three regression models), number of parameters, maximum likelihood \(l_{max}\), BIC value and execution time (in seconds) are reported. From Table 3 and Table 4, we find that both methods get really close results for \(l_{max}\) and BIC while non-profile method run much faster than profile method under the same condition; by comparing Table 5 and Table 6, we can draw similar conclusions. Our tests were conducted under macOS 10.13 on MacBook Pro (15-inch, 2017) equipped with an Intel(R) Core(TM) i7 2.8 GHz with 16 GB of RAM.

<table>
<thead>
<tr>
<th>((p,d,q))</th>
<th>No. of parms.</th>
<th>MCD (l_{max})</th>
<th>MCD BIC</th>
<th>MCD Time</th>
<th>ACD (l_{max})</th>
<th>ACD BIC</th>
<th>ACD Time</th>
<th>HPC (l_{max})</th>
<th>HPC BIC</th>
<th>HPC Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8,3,4)</td>
<td>18</td>
<td>-771.0008</td>
<td>53.44077</td>
<td>1.218</td>
<td>-747.6994</td>
<td>51.8834</td>
<td>0.849</td>
<td>-745.2789</td>
<td>51.7259</td>
<td>10.830</td>
</tr>
<tr>
<td>(8,2,2)</td>
<td>15</td>
<td>-789.6174</td>
<td>54.34176</td>
<td>0.856</td>
<td>-750.8567</td>
<td>51.7571</td>
<td>0.565</td>
<td>-746.9001</td>
<td>51.4939</td>
<td>2.358</td>
</tr>
<tr>
<td>(10,10,10)</td>
<td>33</td>
<td>-738.1605</td>
<td>52.95202</td>
<td>1.432</td>
<td>-759.2582</td>
<td>53.7853</td>
<td>4.238</td>
<td>-803.5077</td>
<td>57.3085</td>
<td>5.852</td>
</tr>
<tr>
<td>(6,1,1)</td>
<td>11</td>
<td>-823.8421</td>
<td>56.16991</td>
<td>0.222</td>
<td>-763.5859</td>
<td>52.1526</td>
<td>2.370</td>
<td>-759.5982</td>
<td>51.8869</td>
<td>9.081</td>
</tr>
<tr>
<td>(3,3,3)</td>
<td>12</td>
<td>-825.3406</td>
<td>56.38318</td>
<td>1.088</td>
<td>-800.8233</td>
<td>54.7480</td>
<td>4.185</td>
<td>-798.1548</td>
<td>54.5708</td>
<td>10.743</td>
</tr>
<tr>
<td>(4,4,3)</td>
<td>14</td>
<td>-791.1546</td>
<td>54.33087</td>
<td>1.103</td>
<td>-760.6864</td>
<td>52.2996</td>
<td>4.527</td>
<td>-760.2976</td>
<td>52.2737</td>
<td>10.870</td>
</tr>
<tr>
<td>(7,2,2)</td>
<td>14</td>
<td>-791.7968</td>
<td>54.37368</td>
<td>0.939</td>
<td>-755.7579</td>
<td>51.9710</td>
<td>3.567</td>
<td>-751.8171</td>
<td>51.7083</td>
<td>9.491</td>
</tr>
<tr>
<td>(8,7,4)</td>
<td>22</td>
<td>-769.3908</td>
<td>53.79626</td>
<td>1.275</td>
<td>-745.1183</td>
<td>52.1687</td>
<td>2.504</td>
<td>-743.1843</td>
<td>52.0393</td>
<td>5.371</td>
</tr>
<tr>
<td>(9,1,3)</td>
<td>16</td>
<td>-794.7426</td>
<td>54.79681</td>
<td>0.188</td>
<td>-750.0151</td>
<td>51.8149</td>
<td>0.324</td>
<td>-746.7737</td>
<td>51.5988</td>
<td>1.764</td>
</tr>
<tr>
<td>(9,4,3)</td>
<td>19</td>
<td>-783.2145</td>
<td>54.36839</td>
<td>0.447</td>
<td>-746.3733</td>
<td>51.9123</td>
<td>0.453</td>
<td>-744.9884</td>
<td>51.8199</td>
<td>2.364</td>
</tr>
<tr>
<td>(9,8,5)</td>
<td>25</td>
<td>-754.3490</td>
<td>53.12426</td>
<td>0.341</td>
<td>-743.2158</td>
<td>52.3820</td>
<td>0.781</td>
<td>-741.6881</td>
<td>52.2802</td>
<td>2.131</td>
</tr>
</tbody>
</table>

Table 3: Kenward’s cattle data. Profile approach is used for joint mean-covariance models fitting of MCD, ACD and HPC with different triples.
Table 4: Kenward’s cattle data. Non-profile approach is used for joint mean-covariance models fitting of MCD, ACD and HPC with different triples.

<table>
<thead>
<tr>
<th>(p,d,q)</th>
<th>No. of parms.</th>
<th>MCD l_{max} BIC Time</th>
<th>ACD l_{max} BIC Time</th>
<th>HPC l_{max} BIC Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8,3,4)</td>
<td>18</td>
<td>-771.008 53.44077 0.245</td>
<td>-747.7093 51.8800 0.438</td>
<td>-745.2910 51.72679 0.667</td>
</tr>
<tr>
<td>(8,2,2)</td>
<td>15</td>
<td>-789.6194 54.34189 0.165</td>
<td>-750.8625 51.78510 0.477</td>
<td>-746.9130 51.60742 2.596</td>
</tr>
<tr>
<td>(10,10,10)</td>
<td>33</td>
<td>-801.0659 57.14571 0.775</td>
<td>-884.8780 62.73318 1.507</td>
<td>-784.8915 56.06742 2.596</td>
</tr>
<tr>
<td>(6,1,1)</td>
<td>11</td>
<td>-823.8551 56.17078 0.129</td>
<td>-760.6863 52.29965 0.354</td>
<td>-760.2976 52.27373 0.794</td>
</tr>
<tr>
<td>(3,3,3)</td>
<td>12</td>
<td>-825.3397 56.38313 0.160</td>
<td>-800.8213 54.74857 0.373</td>
<td>-798.1533 54.57070 0.648</td>
</tr>
<tr>
<td>(4,4,3)</td>
<td>14</td>
<td>-791.1546 54.33087 0.139</td>
<td>-760.6863 52.29965 0.354</td>
<td>-760.2976 52.27373 0.794</td>
</tr>
<tr>
<td>(7,2,2)</td>
<td>14</td>
<td>-791.7973 54.37371 0.134</td>
<td>-755.7579 51.97109 0.399</td>
<td>-751.8874 51.71305 0.486</td>
</tr>
<tr>
<td>(8,7,4)</td>
<td>22</td>
<td>-769.5394 53.79684 0.237</td>
<td>-745.3062 52.18129 0.802</td>
<td>-743.5039 52.06114 2.150</td>
</tr>
<tr>
<td>(9,1,3)</td>
<td>16</td>
<td>-794.7449 54.79697 0.184</td>
<td>-750.0340 51.81624 0.529</td>
<td>-746.7799 51.59390 1.916</td>
</tr>
<tr>
<td>(9,4,3)</td>
<td>19</td>
<td>-783.2159 54.36849 0.330</td>
<td>-746.3798 51.91274 0.470</td>
<td>-744.9909 51.82015 0.993</td>
</tr>
<tr>
<td>(9,8,5)</td>
<td>25</td>
<td>-754.3426 53.12384 0.439</td>
<td>-743.2183 52.38222 0.781</td>
<td>-734.1342 52.37661 2.150</td>
</tr>
</tbody>
</table>

Table 5: CD4 cell data. Profile approach is used for joint mean-covariance models fitting of MCD, ACD and HPC with different triples.

<table>
<thead>
<tr>
<th>(p,d,q)</th>
<th>No. of parms.</th>
<th>MCD l_{max} BIC Time</th>
<th>ACD l_{max} BIC Time</th>
<th>HPC l_{max} BIC Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8,1,3)</td>
<td>15</td>
<td>-4979.193 27.22777 1.491</td>
<td>-4927.492 26.94755 66.443</td>
<td>-4890.396 26.74649 188.726</td>
</tr>
<tr>
<td>(6,1,1)</td>
<td>11</td>
<td>-5018.470 27.37658 1.050</td>
<td>-4937.227 26.93624 12.220</td>
<td>-4902.175 26.74626 110.366</td>
</tr>
<tr>
<td>(3,3,3)</td>
<td>12</td>
<td>-5006.177 27.32597 8.484</td>
<td>-4951.234 27.02818 67.200</td>
<td>-4919.522 26.74626 195.214</td>
</tr>
<tr>
<td>(9,1,3)</td>
<td>16</td>
<td>-4974.104 27.21621 1.640</td>
<td>-4918.684 26.91583 67.114</td>
<td>-4881.265 26.73022 189.024</td>
</tr>
<tr>
<td>(9,8,5)</td>
<td>25</td>
<td>-4962.657 27.29833 12.977</td>
<td>-4901.842 26.96871 92.393</td>
<td>-4871.582 26.80470 232.216</td>
</tr>
</tbody>
</table>

Table 6: CD4 cell data. Non-profile approach is used for joint mean-covariance models fitting of MCD, ACD and HPC with different triples.
Affiliation:
Yi Pan
Centre for Computational Biology
Haworth Building
University of Birmingham
Edgbaston
Birmingham, B15 2TT, United Kingdom
E-mail: Y.Pan@bham.ac.uk
URL: https://www.birmingham.ac.uk/staff/profiles/cancer-genomic/pan-yi.aspx