Package ‘rpartitions’

August 29, 2016

Title Code for integer partitioning
Description Provides algorithms for randomly sampling a feasible set defined
 by a given total and number of elements using integer partitioning.
Version 0.1
Author Ken Locey, Daniel McGlinn
Maintainer Daniel McGlinn <danmcglinn@gmail.com>
Depends R (>= 2.15.1), hash
Suggests testthat (>= 0.2)
NeedsCompilation yes
Repository CRAN
URL https://github.com/klocey/partitions
License MIT
LazyData true
Collate ‘rpartitions.R’ ‘rpartitions-package.r’
Date/Publication 2013-12-11 07:34:59

R topics documented:

 bottom_up ... 2
 conjugate ... 2
 divide_and_conquer .. 3
 get_multiplicity ... 3
 get_rand_int .. 4
 last ... 5
 multiplicity ... 5
 NrParts ... 6
 P ..------------- 6
 rand_partitions .. 7
 rpartitions ... 8
 top_down ... 8

Index 10
bottom_up

Bottom up method of generating uniform random partitions of Q having N parts.

Description

Bottom up method of generating uniform random partitions of Q having N parts.

Usage

```plaintext
bottom_up(part, Q, D, rand_int, use_c, use_hash)
```

Arguments

- **part**
 a list to hold the partition
- **Q**
 the total sum of the partition
- **D**
 a dictionary for the number of partitions of Q having N or less parts (or N or less as the largest part), i.e. $P(Q + N, N)$.
- **rand_int**
 a number representing a member of the feasible set
- **use_c**
 boolean if TRUE then compiled c code is used
- **use_hash**
 boolean, if TRUE then a hash table is used

Examples

```plaintext
bottom_up(c(5, 4), 4, list(), 1, TRUE, FALSE)
```

conjugate

Find the conjugate of an integer partition Recoded (originally on 24-Apr-2013) from the Sage source code:

http://www.sagenb.org/src/combinat/partition.py

Description

Find the conjugate of an integer partition Recoded (originally on 24-Apr-2013) from the Sage source code: http://www.sagenb.org/src/combinat/partition.py

Usage

```plaintext
conjugate(partition, use_c = TRUE)
```

Arguments

- **partition**
 a vector that represents an integer partition
- **use_c**
 logical, defaults to TRUE, the conjugate is computed in c
divide_and_conquer

Examples

```
conjugate(c(3,3,1,1), FALSE)
```

Description

Divide and conquer method of generating uniform random partitions of Q having N parts.

Usage

```
divide_and_conquer(part, Q, N, D, rand_int, use_c, use_hash)
```

Arguments

- **part**: a list to hold the partition
- **Q**: the total sum of the partition
- **N**: Number of parts to sum over
- **D**: a dictionary for the number of partitions of Q having N or less parts (or N or less as the largest part), i.e. $P(Q, Q + N)$.
- **rand_int**: a number representing a member of the feasible set
- **use_c**: boolean if TRUE then compiled c code is used
- **use_hash**: boolean, if TRUE then a hash table is used

Examples

```
divide_and_conquer(c(5, 4), 5, 4, hash(), 2, TRUE, FALSE)
```

get_multiplicity

Find the number of times a value k occurs in a partition that is being generated at random by the `multiplicity()` function. The resulting multiplicity is then passed back to the `multiplicity()` function along with an updated value of count and an updated dictionary D.

Description

Find the number of times a value k occurs in a partition that is being generated at random by the `multiplicity()` function. The resulting multiplicity is then passed back to the `multiplicity()` function along with an updated value of count and an updated dictionary D.
Usage

get_multiplicity(Q, k, D, rand_int, count, use_c, use_hash)

Arguments

Q the total sum of the partition
k the size of the largest (and also first) part
D a dictionary for the number of partitions of Q having N or less parts (or N or less as the largest part), i.e. P(Q, Q + N).
rand_int the random integer
count count < rand_int
use_c boolean if TRUE then compiled c code is used
use_hash boolean, if TRUE then a hash table is used

Examples

get_multiplicity(10, 5, hash(), 3, 2, TRUE, FALSE)

get_rand_int

Generate a random integer between two integers

Usage

get_rand_int(min = 0, max = 1)

Arguments

min minimum value
max maximum value

Examples

get_rand_int(min=0, max=10)
last

Returns the last element of a vector

Description

Returns the last element of a vector

Usage

last(x)

Arguments

x a vector

Examples

last(1:10)
last(letters[1:10])

multiplicity

multiplicity method of generating uniform random partitions of Q having N parts.

Description

multiplicity method of generating uniform random partitions of Q having N parts.

Usage

multiplicity(part, Q, D, rand_int, use_c, use_hash)

Arguments

part a vector to hold the partition
Q the total sum of the partition
D a dictionary for the number of partitions of Q having N or less parts (or N or less as the largest part), i.e. $P(Q, Q + N)$.
rand_int random integer
use_c boolean if TRUE then compiled c code is used
use_hash boolean, if TRUE then a hash table is used

Examples

multiplicity(c(5, 4), 4, hash(), 1, TRUE, FALSE)
NrParts

Find the number of partitions for a given total \(Q \) and number of parts \(N \).

Description

This function was recoded and modified from GAP source code: www.gap-system.org. Modifications for speed were based on the proposition that the number of partitions of \(Q \) having \(N \) parts is equal to the number of partitions of \(Q \) having \(N \) parts is equal to the number of partitions of \(Q - N \), if \(N > Q/2 \) (for odd \(Q \)) or if \(N \geq Q/2 \) (for even \(Q \)).

Usage

\[
\text{NrParts}(Q, N = \text{NULL}, \text{use}_c = \text{TRUE})
\]

Arguments

- **Q**
 - Total sum

- **N**
 - Number of items to sum across, if not specified than all possible values are considered

- **use_c**
 - logical, defaults to TRUE, the number of partitions is computed in c

Examples

\[
\text{NrParts}(100)
\]

\[
\text{NrParts}(100, 10)
\]

P

Number of partitions of \(Q \) with \(k \) or less parts.

Description

This function was derived using the following theorem and proposition. The number of partitions of \(Q \) with \(k \) or less parts equals the number of partitions of \(Q \) with \(k \) or less as the largest part (see Bona 2006). This is a mathematical symmetry, i.e. congruency. Additionally, the number of partitions of \(Q \) with \(k \) or less parts equals the number of partitions of \(Q+k \) with \(k \) as the largest part when \(k>0 \), i.e. \(P(Q + k, k) \). We do not have a source for this proposition, but it can be shown when enumerating the entire feasible set or using the Sage computing environment.

Usage

\[
P(D, Q, k, \text{use}_c, \text{use}_\text{hash})
\]
Arguments

- `D`: lookup table for numbers of partitions of `Q` having `k` or less parts (or `k` or less as the largest part), i.e. \(P(Q, Q + k) \)
- `Q`: total (i.e., sum across all `k` or `n` parts)
- `k`: the number of parts and also the size of the largest part (congruency)
- `use_c`: boolean, if TRUE the number of partitions is computed in `c`
- `use_hash`: boolean, if TRUE then a hash table is used instead of R’s native list to store the information

Value

- a two element list, the first element is `D` the lookup table and the second element is the number of partitions for the specified `Q` and `k` value.

References

Examples

```r
p(list(), 100, 10, FALSE, FALSE)
```

Description

Generate uniform random partitions of `Q` having `N` parts.

Usage

```r
rand_partitions(Q, N, sample_size, method = "best",
               D = hash(), zeros = FALSE, use_c = TRUE,
               use_hash = FALSE)
```

Arguments

- `Q`: Total sum across parts
- `N`: Number of parts to sum over
- `sample_size`: number of random partitions to generate
- `method`: method to use for generating the partition, options include: 'bottom_up', 'top_down', 'divide_and_conquer', 'multiplicity', and 'best'. Defaults to 'best'
- `D`: a dictionary for the number of partitions of `Q` having `N` or less parts (or `N` or less as the largest part), i.e. \(P(Q, Q + N) \). Defaults to a blank dictionary.
top_down

zeros boolean if True partitions can have zero values, if False partitions have only positive values, defaults to False
use_c boolean if TRUE then compiled c code is used, defaults to TRUE
use_hash boolean, if TRUE then a hash table is used, defaults to FALSE

Value
A matrix where each column is a random partition

Note
method 'best' attempts to use the values of Q and N to infer what the fastest method to compute the partition.
if zeros are allowed, then we must ask whether Q >= N, if not, then the total Q is partitioned among a greater number of parts than there are, say, individuals. In which case, some parts must be zero.
A random partition would then be any random partition of Q with zeros appended at the end. But, if Q >= N, then Q is partitioned among less number of parts than there are individuals. In which case, a random partition would be any random partition of Q having N or less parts.

Examples
rand_partitions(100, 10, 5)

rpartitions
top_down

Description
rpartitions

Top down method of generating uniform random partitions of Q having N parts.

Usage
top_down(part, Q, D, rand_int, use_c, use_hash)
Arguments

- **part**: a list to hold the partition
- **Q**: the total sum of the partition
- **D**: a dictionary for the number of partitions of Q having N or less parts (or N or less as the largest part), i.e. \(P(Q + N, N) \).
- **rand_int**: a number representing a member of the feasible set
- **use_c**: boolean if TRUE then compiled c code is used
- **use_hash**: boolean, if TRUE then a hash table is used

Examples

```r
top_down(c(5, 4), 4, hash(), 1, TRUE, FALSE)
```
Index

bottom_up, 2
conjugate, 2
divide_and_conquer, 3
get_multiplicity, 3
get_rand_int, 4
last, 5
multiplicity, 5
NrParts, 6
P, 6
rand_partitions, 7
rpartitions, 8
rpartitions-package (rpartitions), 8
top_down, 8