Package ‘rpf’

May 6, 2020

Type Package
Title Response Probability Functions
Version 1.0.4
Date 2020-05-06
Maintainer Joshua Pritikin <jpritikin@pobox.com>
Description The purpose of this package is to factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IRT packages to build upon. Complete access to optimized C functions are made available with R_RegisterCCallable().
License GPL (>= 3)
URL https://github.com/jpritikin/rpf
Depends methods, parallel,
 R (>= 2.14.0)
Imports Rcpp (>= 1.0.2),
 mvtnorm,
 lifecycle
Suggests testthat,
 roxygen2,
 ggrepplot2,
 reshape2,
 gridExtra,
 numDeriv,
 knitr,
 mirt
LinkingTo Rcpp,
 RcppEigen
VignetteBuilder knitr
RdMacros lifecycle
Encoding UTF-8
LazyData yes
LazyDataCompression bzip2
RoxygenNote 7.0.2
SystemRequirements GNU make

Collate 'init.R'
 'classes.R'
 'fit.R'
 'drm.R'
 'nrm.R'
 'mcm.R'
 'grm.R'
 'LSAT.R'
 'sample.R'
 'dataframe.R'
 'diagnose.R'
 'science.R'
 'kct.R'
 'openmx.R'
 'flexmirt.R'
 'util.R'
 'Imp.R'
 'grmp.R'
 'gpcmp.R'
 'RcppExports.R'

R topics documented:

An introduction .. 4
as.IFAgroup ... 5
bestToOmit ... 6
ChenThissen1997 ... 7
Class rpf.1dim .. 9
Class rpf.1dim.drm .. 10
Class rpf.1dim.gpcmp .. 10
Class rpf.1dim.graded ... 10
Class rpf.1dim.grm ... 10
Class rpf.1dim.grmp .. 10
Class rpf.1dim.lmp ... 11
Class rpf.base .. 11
Class rpf.mdim ... 11
Class rpf.mdim.drm ... 11
Class rpf.mdim.graded .. 11
Class rpf.mdim.grm .. 12
Class rpf.mdim.mcm ... 12
Class rpf.mdim.nrm ... 12
collapseCategoricalCells .. 12
An introduction

rpf - Response Probability Functions

Description

Factor out logic and math common to Item Factor Analysis fitting, diagnostics, and analysis. It is envisioned as core support code suitable for more specialized IFA packages to build upon.

Details

This package provides optimized, low-level functions to map parameters to response probabilities for dichotomous (1PL, 2PL and 3PL) rpf.drm and polytomous (graded response rpf.grm, partial credit/generalized partial credit (via the nominal model), and nominal rpf.nrm items.

Item model parameters are passed around as a numeric vector. A 1D matrix is also acceptable. Regardless of model, parameters are always ordered as follows: discrimination/slope ("a"), difficulty/intercept ("b"), and pseudo guessing/upper-bound ("g"/"u"). If person ability ranges from negative to positive then probabilities are output from incorrect to correct. That is, a low ability person (e.g., ability = -2) will be more likely to get an item incorrect than correct. For example, a dichotomous model that returns [.25, .75] indicates a probability of .25 for incorrect and .75 for correct. A polytomous model will have the most incorrect probability at index 1 and the most correct probability at the maximum index.

All models are always in the logistic metric. To obtain normal ogive discrimination parameters, divide slope parameters by rpf.ogive. Item models are estimated in slope-intercept form. Input/output matrices arranged in the way most convenient for low-level processing in C. The maximum absolute logit is 35 because f(x) := 1-exp(x) loses accuracy around f(-35) and equals 1 at f(-38) due to the limited accuracy of double precision floating point.

This package could also accrete functions to support plotting (but not the actual plot functions).

References

as.IFAgroup

See Also

See rpf.rparam to create item parameters.

as.IFAgroup

Convert an OpenMx MxModel object into an IFA group

Description

When “minItemsPerScore” is passed, EAP scores will be computed from the data and stored. Scores are required for some diagnostic tests. See discussion of “minItemsPerScore” in EAPscores.

Usage

as.IFAgroup(
 mxModel,
 data = NULL,
 container = NULL,
 ...,
 minItemsPerScore = NULL
)

Arguments

- **mxModel**: MxModel object
- **data**: observed data (otherwise the data will be taken from the mxModel)
- **container**: an MxModel in which to search for the latent distribution matrices
- **...**: Not used. Forces remaining arguments to be specified by name.
- **minItemsPerScore**: minimum number of items required to compute a score (also see description)

Value

a groups with item parameters and latent distribution

Format of a group

A model, or group within a model, is represented as a named list.

- **spec**: list of response model objects
- **param**: numeric matrix of item parameters
- **free**: logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- **mean**: numeric vector giving the mean of the latent distribution
- **cov**: numeric matrix giving the covariance of the latent distribution
- **data**: data.frame containing observed item responses, and optionally, weights and frequencies
score factors scores with response patterns in rows

weightColumn name of the data column containing the numeric row weights (optional)

freqColumn name of the data column containing the integral row frequencies (optional)

qwidth width of the quadrature expressed in Z units

qpoints number of quadrature points

minItemsPerScore minimum number of non-missing items when estimating factor scores

The **param** matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in **spec** and order of columns in **param** are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by **param** colnames.

Currently only a multivariate normal distribution is available, parameterized by the **mean** and **cov**. If **mean** and **cov** are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, **qwidth=2** and **qpoints=5** would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by **EAPscores**.

See Also

- **ifaTools**

bestToOmit

Identify the columns with most missing data

Description

If a reference column is given then only rows that are not missing on the reference column are considered. Otherwise all rows are considered.

Usage

```r
bestToOmit(grp, omit, ref = NULL)
```

Arguments

- **grp** a list containing the model and data. See the details section.
- **omit** the maximum number of items to omit
- **ref** the reference column (optional)
Format of a group

A model, or group within a model, is represented as a named list.

- **spec**: list of response model objects
- **param**: numeric matrix of item parameters
- **free**: logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- **mean**: numeric vector giving the mean of the latent distribution
- **cov**: numeric matrix giving the covariance of the latent distribution
- **data**: data.frame containing observed item responses, and optionally, weights and frequencies
- **score**: factors scores with response patterns in rows
- **weightColumn**: name of the data column containing the numeric row weights (optional)
- **freqColumn**: name of the data column containing the integral row frequencies (optional)
- **qwidth**: width of the quadrature expressed in Z units
- **qpoints**: number of quadrature points
- **minItemsPerScore**: minimum number of non-missing items when estimating factor scores

The `param` matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in `spec` and order of columns in `param` are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by `param` colnames.

Currently only a multivariate normal distribution is available, parameterized by the `mean` and `cov`. If `mean` and `cov` are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, `qwidth=2` and `qpoints=5` would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.

See Also

Other scoring: `EAPscores()`, `itemOutcomeBySumScore()`, `observedSumScore()`, `omitItems()`, `omitMostMissing()`, `sumScoreEAP()`

Computes local dependence indices for all pairs of items

Description

Item Factor Analysis makes two assumptions: (1) that the latent distribution is reasonably approximated by the multivariate Normal and (2) that items are conditionally independent. This test examines the second assumption. The presence of locally dependent items can inflate the precision of estimates causing a test to seem more accurate than it really is.
Usage

ChenThissen1997(
 grp,
 ...,
 data = NULL,
 inames = NULL,
 qwidth = 6,
 qpoints = 49,
 method = "pearson",
 .twotier = TRUE,
 .parallel = TRUE
)

Arguments

- **grp** a list containing the model and data. See the details section.
- **...** Not used. Forces remaining arguments to be specified by name.
- **data** data **Deprecated**
- **inames** a subset of items to examine
- **qwidth** **Deprecated**
- **qpoints** **Deprecated**
- **method** method to use to calculate P values. The default is the Pearson X^2 statistic. Use "lr" for the similar likelihood ratio statistic.
- **.twotier** whether to enable the two-tier optimization
- **.parallel** whether to take advantage of multiple CPUs (default TRUE)

Details

Statically significant entries suggest that the item pair has local dependence. Since log(.01)=-4.6, an absolute magnitude of 5 is a reasonable cut-off. Positive entries indicate that the two item residuals are more correlated than expected. These items may share an unaccounted for latent dimension. Consider a redesign of the items or the use of testlets for scoring. Negative entries indicate that the two item residuals are less correlated than expected.

Value

a list with raw, pval and detail. The pval matrix is a lower triangular matrix of log P values with the sign determined by relative association between the observed and expected tables (see ordinal.gamma)

Format of a group

A model, or group within a model, is represented as a named list.

- **spec** list of response model objects
- **param** numeric matrix of item parameters
The base class for 1 dimensional response probability functions.

Description

The base class for 1 dimensional response probability functions.

References

See Also

* ifaTools
* Other diagnostic: *SitemFit1(), SitemFit(), multinomialFit(), rpf.1dim.fit(), sumScoreEAPTest()*
Class `rpf.1dim.drm`
Unidimensional dichotomous item models (1PL, 2PL, and 3PL).

Description

Unidimensional dichotomous item models (1PL, 2PL, and 3PL).

Class `rpf.1dim.gpcmp`
Unidimensional generalized partial credit monotonic polynomial.

Description

Unidimensional generalized partial credit monotonic polynomial.

Class `rpf.1dim.graded`
The base class for 1 dimensional graded response probability functions.

Description

This class contains methods common to both the generalized partial credit model and the graded response model.

Class `rpf.1dim.grm`
The unidimensional graded response item model.

Description

The unidimensional graded response item model.

Class `rpf.1dim.grmp`
Unidimensional graded response monotonic polynomial.

Description

Unidimensional graded response monotonic polynomial.
Class `rpf.1dim.lmp`
Unidimensional logistic function of a monotonic polynomial.

Description

Unidimensional logistic function of a monotonic polynomial.

Class `rpf.base`
The base class for response probability functions.

Description

Item specifications should not be modified after creation.

Class `rpf.mdim`
The base class for multi-dimensional response probability functions.

Description

The base class for multi-dimensional response probability functions.

Class `rpf.mdim.drm`
Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).

Description

Multidimensional dichotomous item models (M1PL, M2PL, and M3PL).

Class `rpf.mdim.graded`
The base class for multi-dimensional graded response probability functions.

Description

This class contains methods common to both the generalized partial credit model and the graded response model.
Class rpf.mdim.grm
The multidimensional graded response item model.

Description

The multidimensional graded response item model.

Class rpf.mdim.mcm
The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).

Description

The multiple-choice response item model (both unidimensional and multidimensional models have the same parameterization).

Class rpf.mdim.nrm
The nominal response item model (both unidimensional and multidimensional models have the same parameterization).

Description

The nominal response item model (both unidimensional and multidimensional models have the same parameterization).

collapseCategoricalCells

Collapse small sample size categorical frequency counts

Description

Collapse small sample size categorical frequency counts

Usage

collapseCategoricalCells(observed, expected, minExpected = 1)
Arguments

- observed: the observed frequency table
- expected: the expected frequency table
- minExpected: the minimum expected cell frequency

Pearson’s X^2 test requires some minimum frequency per cell to avoid an inflated false positive rate. This function will merge cells with the lowest frequency counts until all the counts are above the minimum threshold. Cells that have been merged are filled with NAs. The resulting tables and number of merged cells is returned.

Examples

```r
O = matrix(c(7,31,42,20,0), 1,5)
E = matrix(c(3,39,50,8,0), 1,5)
collapseCategoricalCells(O,E,9)
```

compressDataFrame

Compress a data frame into unique rows and frequencies

Description

Compress a data frame into unique rows and frequency counts.

Usage

```r
compressDataFrame(tabdata, freqColName = "freq", .asNumeric = FALSE)
```

Arguments

- tabdata: An object of class `data.frame`
- freqColName: Column name to contain the frequencies
- .asNumeric: logical. Whether to cast the frequencies to the numeric type

Value

Returns a compressed data frame

Examples

```r
df <- as.data.frame(matrix(c(sample.int(2, 30, replace=TRUE)), 10, 3))
compressDataFrame(df)
```
crosstabTest

Monte-Carlo test for cross-tabulation tables

Description

Experimental This is for developers.

Usage

```r
crosstabTest(ob, ex, trials)
```

Arguments

- `ob`: observed table
- `ex`: expected table
- `trials`: number of Monte-Carlo trials

EAPscores

Compute Expected A Posteriori (EAP) scores

Description

If you have missing data then you must specify `minItemsPerScore`. This option will set scores to NA when there are too few items to make an accurate score estimate. If you are using the scores as point estimates without considering the standard error then you should set `minItemsPerScore` as high as you can tolerate. This will increase the amount of missing data but scores will be more accurate. If you are carefully considering the standard errors of the scores then you can set `minItemsPerScore` to 1. This will mimic the behavior of most other IFA software wherein scores are estimated if there is at least 1 non-NA item for the score. However, it may make more sense to set `minItemsPerScore` to 0. When set to 0, all NA rows are scored to the prior distribution.

Usage

```r
EAPscores(grp, ..., compressed = FALSE)
```

Arguments

- `grp`: a list containing the model and data. See the details section.
- `...`: Not used. Forces remaining arguments to be specified by name.
- `compressed`: output one score per observed data row even when `freqColumn` is set (default FALSE)

Details

Output is not affected by the presence of a `weightColumn`.
Format of a group

A model, or group within a model, is represented as a named list.

spec list of response model objects

param numeric matrix of item parameters

free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)

mean numeric vector giving the mean of the latent distribution

cov numeric matrix giving the covariance of the latent distribution

data data.frame containing observed item responses, and optionally, weights and frequencies

score factors scores with response patterns in rows

weightColumn name of the data column containing the numeric row weights (optional)

freqColumn name of the data column containing the integral row frequencies (optional)

qwidth width of the quadrature expressed in Z units

qpoints number of quadrature points

minItemsPerScore minimum number of non-missing items when estimating factor scores

The **param** matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in **spec** and order of columns in **param** are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by **param** colnames.

Currently only a multivariate normal distribution is available, parameterized by the **mean** and **cov**. If **mean** and **cov** are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, **qwidth=2** and **qpoints=5** would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by **EAPscores**.

See Also

Other scoring: `bestToOmit()`, `itemOutcomeBySumScore()`, `observedSumScore()`, `omitItems()`, `omitMostMissing()`, `sumScoreEAP()`

Examples

```r
spec <- list()
spec[1:3] <- list(rpf.grm(outcomes=3))
param <- sapply(spec, rpf.rparam)
data <- rpf.sample(5, spec, param)
colnames(param) <- colnames(data)
grp <- list(spec=spec, param=param, data=data, minItemsPerScore=1L)
EAPscores(grp)
```
expandDataFrame

Expand summary table of patterns and frequencies

Description
Expand a summary table of unique response patterns to a full sized data-set.

Usage
```r
expandDataFrame(tabdata, freqName = NULL)
```

Arguments
- **tabdata**: An object of class `data.frame` with the unique response patterns and the number of frequencies
- **freqName**: Column name containing the frequencies

Value
Returns a data frame with all the response patterns

Author(s)
Based on code by Phil Chalmers <rphilip.chalmers@gmail.com>

Examples
```r
data(LSAT7)
expandDataFrame(LSAT7, freqName="freq")
```

fromFactorLoading

Convert factor loadings to response function slopes

Description
Convert factor loadings to response function slopes

Usage
```r
fromFactorLoading(loading, ogive = rpf.ogive)
```

Arguments
- **loading**: a matrix with items in the rows and factors in the columns
- **ogive**: the ogive constant (default `rpf.ogive`)
fromFactorThreshold

Value
a slope matrix with items in the columns and factors in the rows

See Also
Other factor model equivalence: *fromFactorThreshold()*, *toFactorLoading()*, *toFactorThreshold()*

fromFactorThreshold
convert factor thresholds to response function intercepts

Description
Convert factor thresholds to response function intercepts

Usage
```r
fromFactorThreshold(threshold, loading, ogive = rpf.ogive)
```

Arguments
- `threshold`: a matrix with items in the columns and thresholds in the rows
- `loading`: a matrix with items in the rows and factors in the columns
- `ogive`: the ogive constant (default `rpf.ogive`)

Value
an item intercept matrix with items in the columns and intercepts in the rows

See Also
Other factor model equivalence: *fromFactorLoading()*, *toFactorLoading()*, *toFactorThreshold()*

itemOutcomeBySumScore
produce an item outcome by observed sum-score table

Description
Produce an item outcome by observed sum-score table

Usage
```r
itemOutcomeBySumScore(grp, mask, interest)
```
Arguments

- **grp**: a list containing the model and data. See the details section.
- **mask**: a vector of logicals indicating which items to include
- **interest**: index or name of the item of interest

Format of a group

A model, or group within a model, is represented as a named list.

- **spec**: list of response model objects
- **param**: numeric matrix of item parameters
- **free**: logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- **mean**: numeric vector giving the mean of the latent distribution
- **cov**: numeric matrix giving the covariance of the latent distribution
- **data**: data.frame containing observed item responses, and optionally, weights and frequencies
- **score**: factors scores with response patterns in rows
- **weightColumn**: name of the data column containing the numeric row weights (optional)
- **freqColumn**: name of the data column containing the integral row frequencies (optional)
- **qwidth**: width of the quadrature expressed in Z units
- **qpoints**: number of quadrature points
- **minItemsPerScore**: minimum number of non-missing items when estimating factor scores

The **param** matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in **spec** and order of columns in **param** are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by **param** colnames.

Currently only a multivariate normal distribution is available, parameterized by the **mean** and **cov**. If **mean** and **cov** are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, **qwidth=2** and **qpoints=5** would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.

See Also

Other scoring: EAPscores(), bestToOmit(), observedSumScore(), omitItems(), omitMostMissing(), sumScoreEAP()

Examples

```r
set.seed(1)
spec <- list()
spec[1:3] <- rpf.grm(outcomes=3)
param <- sapply(spec, rpf.rparam)
```
data <- rpf.sample(5, spec, param)
colnames(param) <- colnames(data)
grp <- list(spec=spec, param=param, data=data)
itemOutcomeBySumScore(grp, c(FALSE,TRUE,TRUE), 1L)

kct

Knox Cube Test dataset

Description

These data from Wright & Stone (1979, p. 31) were fit with Winsteps 3.73 using a 1PL model (slope fixed to 1).

References

Examples

```r
data(kct)
```

logit

Transform from $[0,1]$ to the reals

Description

The logit function is a standard transformation from $[0,1]$ (such as a probability) to the real number line. This function is exactly the same as `qlogis`.

Usage

```r
logit(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
```

Arguments

- `p`: a number between 0 and 1
- `location`: see `qlogis`
- `scale`: see `qlogis`
- `lower.tail`: see `qlogis`
- `log.p`: see `qlogis`

See Also

`qlogis`, `plogis`
Examples

logit(.5) # 0
logit(.25) # -1.098
logit(0) # -Inf

LSAT6 Description of LSAT6 data

Description

Data from Thissen (1982); contains 5 dichotomously scored items obtained from the Law School Admissions Test, section 6.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

data(LSAT6)

LSAT7 Description of LSAT7 data

Description

Data from Bock & Lieberman (1970); contains 5 dichotomously scored items obtained from the Law School Admissions Test, section 7.

Author(s)

Phil Chalmers <rphilip.chalmers@gmail.com>

References

Examples

data(LSAT7)
multinomialFit

Description

For degrees of freedom, we use the number of observed statistics (incorrect) instead of the number of possible response patterns (correct) (see Bock, Gibbons, & Muraki, 1998, p. 265). This is not a huge problem because this test becomes poorly calibrated when the multinomial table is sparse. For more accurate p-values, you can conduct a Monte-Carlo simulation study (see examples).

Usage

multinomialFit(
 grp,
 independenceGrp,
 ...,
 method = "lr",
 log = TRUE,
 .twotier = TRUE
)

Arguments

 grp a list containing the model and data. See the details section.
 independenceGrp the independence group
 ... Not used. Forces remaining arguments to be specified by name.
 method lr (default) or pearson
 log whether to report p-value in log units
 .twotier whether to use the two-tier optimization (default TRUE)

Details

Rows with missing data are ignored.

The full information test is described in Bartholomew & Tzamourani (1999, Section 3). For CFI and TLI, you must provide an independenceGrp.

Format of a group

A model, or group within a model, is represented as a named list.

 spec list of response model objects
 param numeric matrix of item parameters
 free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
 mean numeric vector giving the mean of the latent distribution
cov numeric matrix giving the covariance of the latent distribution
data data.frame containing observed item responses, and optionally, weights and frequencies
score factors scores with response patterns in rows
weightColumn name of the data column containing the numeric row weights (optional)
freqColumn name of the data column containing the integral row frequencies (optional)
qwidth width of the quadrature expressed in Z units
qpoints number of quadrature points
minItemsPerScore minimum number of non-missing items when estimating factor scores

The param matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in spec and order of columns in param are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by param colnames.

Currently only a multivariate normal distribution is available, parameterized by the mean and cov. If mean and cov are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, qwidth=2 and qpoints=5 would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.

References

See Also
Other diagnostic: ChenThissen1997(), SitemFit1(), SitemFit(), rpf.1dim.fit(), sumScoreEAPTest()

Examples
Create an example IFA group
grp <- list(spec=list())
grp$spec[1:10] <- rpf.grm()
grp$param <- sapply(grp$spec, rpf.rparam)
colnames(grp$param) <- paste("i", 1:10, sep="")
grp$mean <- 0
grp$cov <- diag(1)
grp$uniqueFree <- sum(grp$param != 0)
grp$data <- rpf.sample(1000, grp=grp)

Monte-Carlo simulation study
mcReps <- 3 # increase this to 10,000 or so
stat <- rep(NA, mcReps)
for (rx in 1:mcReps) {
observedSumScore

```r
t1 <- grp
t1$data <- rpf.sample(grp=grp)
  stat[rx] <- multinomialFit(t1)$statistic
}
sum(multinomialFit(grp)$statistic > stat)/mcReps  # better p-value
```

observedSumScore
Compute the observed sum-score

Description

When `summary=TRUE`, tabulation uses row frequency multiplied by row weight.

Usage

```r
observedSumScore(grp, ..., mask, summary = TRUE)
```

Arguments

- `grp`: a list containing the model and data. See the details section.
- `...`: Not used. Forces remaining arguments to be specified by name.
- `mask`: a vector of logicals indicating which items to include
- `summary`: whether to return a summary (default) or per-row scores

Format of a group

A model, or group within a model, is represented as a named list.

- **spec**: list of response model objects
- **param**: numeric matrix of item parameters
- **free**: logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- **mean**: numeric vector giving the mean of the latent distribution
- **cov**: numeric matrix giving the covariance of the latent distribution
- **data**: data.frame containing observed item responses, and optionally, weights and frequencies
- **score**: factors scores with response patterns in rows
- **weightColumn**: name of the data column containing the numeric row weights (optional)
- **freqColumn**: name of the data column containing the integral row frequencies (optional)
- **qwidth**: width of the quadrature expressed in Z units
- **qpoints**: number of quadrature points
- **minItemsPerScore**: minimum number of non-missing items when estimating factor scores
The `param` matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in `spec` and order of columns in `param` are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by `param colnames`.

Currently only a multivariate normal distribution is available, parameterized by the `mean` and `cov`. If `mean` and `cov` are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, `qwidth=2` and `qpoints=5` would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by `EAPscores`.

See Also

Other scoring: `EAPscores()`, `bestToOmit()`, `itemOutcomeBySumScore()`, `omitItems()`, `omitMostMissing()`, `sumScoreEAP()`

Examples

```r
spec <- list()
spec[1:3] <- rpf.grm(outcomes=3)
param <- sapply(spec, rpf.rparam)
data <- rpf.sample(5, spec, param)
colnames(param) <- colnames(data)
grp <- list(spec=spec, param=param, data=data)
observedSumScore(grp)
```

omitItems

Omit the given items

Description

Omit the given items

Usage

`omitItems(grp, excol)`

Arguments

- `grp` a list containing the model and data. See the details section.
- `excol` vector of column names to omit
Format of a group

A model, or group within a model, is represented as a named list.

- `spec` list of response model objects
- `param` numeric matrix of item parameters
- `free` logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- `mean` numeric vector giving the mean of the latent distribution
- `cov` numeric matrix giving the covariance of the latent distribution
- `data` data.frame containing observed item responses, and optionally, weights and frequencies
- `score` factors scores with response patterns in rows
- `weightColumn` name of the data column containing the numeric row weights (optional)
- `freqColumn` name of the data column containing the integral row frequencies (optional)
- `qwidth` width of the quadrature expressed in Z units
- `qpoints` number of quadrature points
- `minItemsPerScore` minimum number of non-missing items when estimating factor scores

The `param` matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in `spec` and order of columns in `param` are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by `param` colnames.

Currently only a multivariate normal distribution is available, parameterized by the `mean` and `cov`. If `mean` and `cov` are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, `qwidth=2` and `qpoints=5` would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by `EAPscores`.

See Also

Other scoring: `EAPscores()`, `bestToOmit()`, `itemOutcomeBySumScore()`, `observedSumScore()`, `omitMostMissing()`, `sumScoreEAP()`

omitMostMissing

Omit items with the most missing data

Description

Items with no missing data are never omitted, regardless of the number of items requested.

Usage

`omitMostMissing(grp, omit)`
Arguments

```r
grp a list containing the model and data. See the details section.
omit the maximum number of items to omit
```

Format of a group

A model, or group within a model, is represented as a named list.

- **spec** list of response model objects
- **param** numeric matrix of item parameters
- **free** logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- **mean** numeric vector giving the mean of the latent distribution
- **cov** numeric matrix giving the covariance of the latent distribution
- **data** data.frame containing observed item responses, and optionally, weights and frequencies
- **score** factors scores with response patterns in rows
- **weightColumn** name of the data column containing the numeric row weights (optional)
- **freqColumn** name of the data column containing the integral row frequencies (optional)
- **qwidth** width of the quadrature expressed in Z units
- **qpoints** number of quadrature points
- **minItemsPerScore** minimum number of non-missing items when estimating factor scores

The **param** matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in **spec** and order of columns in **param** are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by **param** colnames.

Currently only a multivariate normal distribution is available, parameterized by the **mean** and **cov**. If **mean** and **cov** are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, `qwidth=2` and `qpoints=5` would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by `EAPscores`.

See Also

Other scoring: `EAPscores()`, `bestToOmit()`, `itemOutcomeBySumScore()`, `observedSumScore()`, `omitItems()`, `sumScoreEAP()`
orderCompletely

Order a data.frame by missingness and all columns

Description

Completely order all rows in a data.frame.

Usage

orderCompletely(observed)

Arguments

observed a data.frame holding ordered factors in every column

Value

the sorted order of the rows

Examples

df <- as.data.frame(matrix(c(sample.int(2, 30, replace=TRUE)), 10, 3))
mask <- matrix(c(sample.int(3, 30, replace=TRUE)), 10, 3) == 1
df[mask] <- NA
df[orderCompletely(df),]

ordinal.gamma

Compute the ordinal gamma association statistic

Description

Compute the ordinal gamma association statistic

Usage

ordinal.gamma(mat)

Arguments

mat a cross tabulation matrix

References

Examples

Example data from Agresti (1990, p. 21)
jobsat <- matrix(c(20, 22, 13, 7, 24, 38, 28, 18, 80, 104, 81, 54, 82, 125, 113, 92), nrow=4, ncol=4)
ordinal.gamma(jobsat)

ptw2011.gof.test (Compute the P value that the observed and expected tables come from the same distribution)

Description

Experimental This test is an alternative to Pearson’s X^2 goodness-of-fit test. In contrast to Pearson’s X^2, no ad hoc cell collapsing is needed to avoid an inflated false positive rate in situations of sparse cell frequencies. The statistic rapidly converges to the Monte-Carlo estimate as the number of draws increases.

Usage

ptw2011.gof.test(observed, expected)

Arguments

observed observed matrix
expected expected matrix

Value

The P value indicating whether the two tables come from the same distribution. For example, a significant result (P < alpha level) rejects the hypothesis that the two matrices are from the same distribution.

References

Examples

draws <- 17
observed <- matrix(c(.294, .176, .118, .411), nrow=2) * draws
expected <- matrix(c(.235, .235, .176, .353), nrow=2) * draws
ptw2011.gof.test(observed, expected) # not significant
read.flexmirt

Read a flexMIRT PRM file

Description

Experimental This was last updated in 2017 and may no longer work.

Usage

read.flexmirt(fname)

Arguments

fname file name

Details

Load the item parameters from a flexMIRT PRM file.

Value

a list of groups as described in the details

Format of a group

A model, or group within a model, is represented as a named list.

spec list of response model objects
param numeric matrix of item parameters
free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
mean numeric vector giving the mean of the latent distribution
cov numeric matrix giving the covariance of the latent distribution
data data.frame containing observed item responses, and optionally, weights and frequencies
score factors scores with response patterns in rows
weightColumn name of the data column containing the numeric row weights (optional)
freqColumn name of the data column containing the integral row frequencies (optional)
qwidth width of the quadrature expressed in Z units
qpoints number of quadrature points
minItemsPerScore minimum number of non-missing items when estimating factor scores

The param matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in spec and order of columns in param are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by param colnames.
Currently only a multivariate normal distribution is available, parameterized by the mean and cov. If mean and cov are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, qwidth=2 and qpoints=5 would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.

rpf.1dim.fit Calculate item and person Rasch fit statistics

Description

Note: These statistics are only appropriate if all discrimination parameters are fixed equal and items are conditionally independent (see ChenThissen1997). A best effort is made to cope with missing data.

Usage

rpf.1dim.fit(
 spec,
 params,
 responses,
 scores,
 margin,
 group = NULL,
 wh.exact = TRUE
)

Arguments

spec list of item response models Deprecated
params matrix of item parameters, 1 per column Deprecated
responses persons in rows and items in columns Deprecated
scores model derived person scores Deprecated
margin for people 1, for items 2
group spec, params, data, and scores can be provided in a list instead of as arguments
wh.exact whether to use the exact Wilson-Hilferty transformation

Details

Exact distributional properties of these statistics are unknown (Masters & Wright, 1997, p. 112). For details on the calculation, refer to Wright & Masters (1982, p. 100).

The Wilson-Hilferty transformation is biased for less than 25 items. Consider wh.exact=FALSE for less than 25 items.
Format of a group

A model, or group within a model, is represented as a named list.

spec list of response model objects
param numeric matrix of item parameters
free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
mean numeric vector giving the mean of the latent distribution
cov numeric matrix giving the covariance of the latent distribution
data data.frame containing observed item responses, and optionally, weights and frequencies
score factors scores with response patterns in rows
weightColumn name of the data column containing the numeric row weights (optional)
freqColumn name of the data column containing the integral row frequencies (optional)
qwidth width of the quadrature expressed in Z units
qpoints number of quadrature points
minItemsPerScore minimum number of non-missing items when estimating factor scores

The **param** matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in **spec** and order of columns in **param** are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by **param** colnames.

Currently only a multivariate normal distribution is available, parameterized by the **mean** and **cov**. If **mean** and **cov** are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, **qwidth=2** and **qpoints=5** would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by **EAPscores**.

A model, or group within a model, is represented as a named list.
The `param` matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in `spec` and order of columns in `param` are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting `rownames`. Item names are assigned by `param` `colnames`.

Currently only a multivariate normal distribution is available, parameterized by the `mean` and `cov`. If `mean` and `cov` are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, `qwidth=2` and `qpoints=5` would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by `EAPscores`.

References

See Also

Other diagnostic: `ChenThissen1997()`, `SitemFit1()`, `SitemFit()`, `multinomialFit()`, `sumScoreEAPTest()`

Examples

```r
data(kct)
responses <- kct.people[,paste("V",2:19, sep="")]
rownames(responses) <- kct.people$NAME
colnames(responses) <- kct.items$NAME
scores <- kct.people$MEASURE
params <- cbind(1, kct.items$MEASURE, logit(0), logit(1))
rownames(params) <- kct.items$NAME
items <- list()
items[1:18] <- rpf.drm()
params[,2] <- -params[,2]
rpf.1dim.fit(items, t(params), responses, scores, 2, wh.exact=TRUE)
```

Description

Popular central moments include 2 (variance) and 4 (kurtosis).

Usage

```r
rpf.1dim.moment(spec, params, scores, m)
```
rpf.1dim.residual

Arguments

- **spec**: list of item models
- **params**: data frame of item parameters, 1 per row
- **scores**: model derived person scores
- **m**: which moment

Value

- moment matrix

rpf.1dim.residual
Calculate residuals

Description

Calculate residuals

Usage

`rpf.1dim.residual(spec, params, responses, scores)`

Arguments

- **spec**: list of item models
- **params**: data frame of item parameters, 1 per row
- **responses**: persons in rows and items in columns
- **scores**: model derived person scores

Value

- residuals
rpf.1dim.stdresidual Calculate standardized residuals

Description
Calculate standardized residuals

Usage
rpf.1dim.stdresidual(spec, params, responses, scores)

Arguments
- spec list of item models
- params data frame of item parameters, 1 per row
- responses persons in rows and items in columns
- scores model derived person scores

Value
standardized residuals

rpf.dLL Item parameter derivatives

Description
Evaluate the partial derivatives of the log likelihood with respect to each parameter at where with weight.

Usage
rpf.dLL(m, param, where, weight)

Arguments
- m item model
- param item parameters
- where location in the latent space
- weight per outcome weights (typically derived by observation)
It is not easy to write an example for this function. To evaluate the derivative, you need to sum the derivatives across a quadrature. You also need response outcome weights at each quadrature point. It is not anticipated that this function will be often used in R code. It’s mainly to expose a C-level function for occasional debugging.

Value

first and second order partial derivatives of the log likelihood evaluated at \(\theta \). For \(p \) parameters, the first \(p \) values are the first derivative and the next \(p(p+1)/2 \) columns are the lower triangle of the second derivative.

See Also

The numDeriv package.

Description

For slope vector \(a \), intercept \(c \), pseudo-guessing parameter \(g \), upper bound \(u \), and latent ability vector \(\theta \), the response probability function is

\[
P(\text{pick} = 0 | a, c, g, u, \theta) = 1 - P(\text{pick} = 1 | a, c, g, u, \theta)
\]

\[
P(\text{pick} = 1 | a, c, g, u, \theta) = g + (u - g) \frac{1}{1 + \exp(-(a\theta + c))}
\]

Usage

\(\text{rpf.drm}(\text{factors} = 1, \text{multidimensional} = \text{TRUE}, \text{poor} = \text{FALSE}) \)

Arguments

- **factors** the number of factors
- **multidimensional** whether to use a multidimensional model. Defaults to \text{TRUE}.
- **poor** if \text{TRUE}, use the traditional parameterization of the 1d model instead of the slope-intercept parameterization

Details

The pseudo-guessing and upper bound parameter are specified in logit units (see \text{logit}). For discussion on the choice of priors see Cai, Yang, and Hansen (2011, p. 246).
Value

an item model

References

See Also

Other response model: `rpf.gpcmp()`, `rpf.grmp()`, `rpf.grm()`, `rpf.lmp()`, `rpf.mcm()`, `rpf.nrm()`

Examples

```r
spec <- rpf.drm()
rpf.prob(spec, rpf.rparam(spec), 0)
```

rpf.dTheta
Item derivatives with respect to the location in the latent space

Description

Evaluate the partial derivatives of the response probability with respect to ability. See `rpf.info` for an application.

Usage

```r
rpf.dTheta(m, param, where, dir)
```

Arguments

- `m`
 item model
- `param`
 item parameters
- `where`
 location in the latent distribution
- `dir`
 if more than 1 factor, a basis vector
Create monotonic polynomial generalized partial credit (GPC-MP) model

Description

This model is a polytomous model proposed by Falk & Cai (2016) and is based on the generalized partial credit model (Muraki, 1992).

Usage

```
rpf.gpcmp(outcomes = 2, q = 0, multidimensional = FALSE)
```

Arguments

- `outcomes` The number of possible response categories.
- `q` a non-negative integer that controls the order of the polynomial (2q+1) with a default of q=0 (1st order polynomial = generalized partial credit model).
- `multidimensional` whether to use a multidimensional model. Defaults to `FALSE`. The multidimensional version is not yet available.

Details

The GPC-MP replaces the linear predictor part of the generalized partial credit model with a monotonic polynomial, \(m(\theta; \omega, \xi, \alpha, \tau) \). The response function for category \(k \) is:

\[
P(\text{pick} = k | \omega, \xi, \alpha, \tau, \theta) = \frac{\exp(\sum_{v=0}^{k}(\xi_k + m(\theta; \omega, \xi, \alpha, \tau)))}{\sum_{u=0}^{K-1}\exp(\sum_{v=0}^{u}(\xi_u + m(\theta; \omega, \xi, \alpha, \tau)))}
\]

where \(\alpha \) and \(\tau \) are vectors of length \(q \). The GPC-MP uses the same parameterization for the polynomial as described for the logistic function of a monotonic polynomial (LMP). See also (\texttt{rpf.lmp}).

The order of the polynomial is always odd and is controlled by the user specified non-negative integer, \(q \). The model contains 1+(outcomes-1)+2*q parameters and are used as input to the \texttt{rpf.prob} function in the following order: \(\omega \) - natural log of the slope of the item model when \(q=0 \), \(\xi \) - a (outcomes-1)-length vector of intercept parameters, \(\alpha \) and \(\tau \) - two parameters that control bends in the polynomial. These latter parameters are repeated in the same order for models with \(q>0 \). For example, a q=2 polynomial with 3 categories will have an item parameter vector of: \(\omega, \xi_1, \xi_2, \alpha_1, \alpha_2, \tau_1, \alpha_2, \tau_2 \).

Note that the GPC-MP reduces to the LMP when the number of categories is 2, and the GPC-MP reduces to the generalized partial credit model when the order of the polynomial is 1 (i.e., \(q=0 \)).

Value

an item model
References
generalized partial credit model with applications to multiple group analysis. *Psychometrika, 81*,
434-460. http://dx.doi.org/10.1007/s11336-014-9428-7

Psychological Measurement, 16*, 159–176.

See Also
Other response model: rpf.drm(), rpf.grmp(), rpf.grm(), rpf.lmp(), rpf.mcm(), rpf.nrm()

Examples
```
spec <- rpf.gpcomp(5,2) # 5-category, 3rd order polynomial
theta<--seq(-3,3,1)
p<-rpf.prob(spec, c(1.02,3.48,2.5,-.25,-1.64,.89,-8.7,-.74,-8.99),theta)
```

rpf.grm

Create a graded response model

Description
For outcomes k in 0 to K, slope vector a, intercept vector c, and latent ability vector theta, the
response probability function is

\[
\begin{align*}
P(\text{pick} = 0|a, c, \theta) &= 1 - P(\text{pick} = 1|a, c_1, \theta) \\
P(\text{pick} = k|a, c, \theta) &= \frac{1}{1 + \exp(-(a\theta + c_k))} - \frac{1}{1 + \exp(-(a\theta + c_{k+1}))} \\
P(\text{pick} = K|a, c, \theta) &= \frac{1}{1 + \exp(-(a\theta + c_K))}
\end{align*}
\]

Usage
```r
rpf.grm(outcomes = 2, factors = 1, multidimensional = TRUE)
```

Arguments
- **outcomes**: The number of choices available
- **factors**: the number of factors
- **multidimensional**: whether to use a multidimensional model. Defaults to TRUE.
The graded response model was designed for an item with a series of dependent parts where a higher score implies that easier parts of the item were surmounted. If there is any chance your polytomous item has independent parts then consider \texttt{rpf.nrm}. If your categories cannot cross then the graded response model provides a little more information than the nominal model. Stronger a priori assumptions offer provide more power at the cost of flexibility.

Value

an item model

See Also

Other response model: \texttt{rpf.drm(), rpf.gpcmp(), rpf.grmp(), rpf.lmp(), rpf.mcm(), rpf.nrm()}

Examples

```r
spec <- rpf.grm()
rpf.prob(spec, rpf.rparam(spec), 0)
```

rpf.grmp

Create monotonic polynomial graded response (GR-MP) model

Description

The GR-MP model replaces the linear predictor of the graded response model (Samejima, 1969, 1972) with a monotonic polynomial (Falk, conditionally accepted).

Usage

\texttt{rpf.grmp(outcomes = 2, q = 0, multidimensional = FALSE)}

Arguments

- **outcomes** The number of possible response categories. When equal to 2, the model reduces to the logistic function of a monotonic polynomial (LMP).
- **q** a non-negative integer that controls the order of the polynomial (2q+1) with a default of q=0 (1st order polynomial = graded response model).
- **multidimensional** whether to use a multidimensional model. Defaults to FALSE. The multidimensional version is not yet available.
Details

Given its relationship to the graded response model, the GR-MP is constructed in an analogous way:

\[
P(\text{pick} = 0|\lambda, \alpha, \tau, \theta) = 1 - \frac{1}{1 + \exp(-(\xi_1 + m(\theta; \lambda, \alpha, \tau)))}
\]

\[
P(\text{pick} = k|\lambda, \alpha, \tau, \theta) = \frac{1}{1 + \exp(-(\xi_k + m(\theta; \lambda, \alpha, \tau)))} - \frac{1}{1 + \exp(-(\xi_{k+1} + m(\theta; \lambda, \alpha, \tau)))}
\]

\[
P(\text{pick} = K|\lambda, \alpha, \tau, \theta) = \frac{1}{1 + \exp(-(\xi_K + m(\theta; \lambda, \alpha, \tau)))}
\]

The order of the polynomial is always odd and is controlled by the user specified non-negative integer, q. The model contains 1+(outcomes-1)+2*q parameters and are used as input to the \texttt{rpf.prob} or \texttt{rpf.dTheta} functions in the following order: \(\lambda\) - slope of the item model when \(q=0\), \(\xi\) - a (outcomes-1)-length vector of intercept parameters, \(\alpha\) and \(\tau\) - two parameters that control bends in the polynomial. These latter parameters are repeated in the same order for models with \(q>0\). For example, a \(q=2\) polynomial with 3 categories will have an item parameter vector of: \(\lambda, \xi_1, \xi_2, \alpha_1, \tau_1, \alpha_2, \tau_2\).

As with other monotonic polynomial-based item models (e.g., \texttt{rpf.lmp}), the polynomial looks like the following:

\[m(\theta; \lambda, \alpha, \tau) = b_1 \theta + b_2 \theta^2 + \ldots + b_{2q+1} \theta^{2q+1}\]

However, the coefficients, \(b\), are not directly estimated, but are a function of the item parameters, and the parameterization of the GR-MP is different than that currently appearing for the logistic function of a monotonic polynomial (LMP; \texttt{rpf.lmp}) and monotonic polynomial generalized partial credit (GPC-MP; \texttt{rpf.gpcmp}) models. In particular, the polynomial is parameterized such that boundary discrimination functions for the GR-MP will be all monotonically increasing or decreasing for any given item. This allows the possibility of items that load either negatively or positively on the latent trait, as is common with reverse-worded items in non-cognitive tests (e.g., personality).

The derivative \(m'(\theta; \lambda, \alpha, \tau)\) is parameterized in the following way:

\[
m'(\theta; \lambda, \alpha, \tau) = \begin{cases}
\lambda \prod_{u=1}^{q} (1 - 2\alpha_u \theta + (\alpha_u^2 + \exp(\tau_u)) \theta^2) & \text{if } q > 0 \\
\lambda & \text{if } q = 0
\end{cases}
\]

Note that the only difference between the GR-MP and these other models is that \(\lambda\) is not re-parameterized and may take on negative values. When \(\lambda\) is negative, it is analogous to having a negative loading or a monotonically decreasing function.

Value

an item model

References

See Also

Other response model: `rpf.drm()`, `rpf.gpcmp()`, `rpf.grm()`, `rpf.lmp()`, `rpf.mcm()`, `rpf.nrm()`

Examples

```r
spec <- rpf.grmp(5,2) # 5-category, 3rd order polynomial	heta<-seq(-3,3,.1)
p<-rpf.prob(spec, c(2.77,2,1,0,-1,.89,-8.7,-.74,-8.99),theta)
```

rpf.id_of

Convert an rpf item model name to an ID

Description

This is an internal function and should not be used.

Usage

```
rpf.id_of(name)
```

Arguments

- `name` name of the item model (string)

Value

- the integer ID assigned to the given model

rpf.info

Map an item model, item parameters, and person trait score into a information vector

Description

Map an item model, item parameters, and person trait score into a information vector

Usage

```
rpf.info(ii, ii.p, where, basis = 1)
```

Arguments

- `ii` an item model
- `ii.p` item parameters
- `where` the location in the latent distribution
- `basis` if more than 1 factor, a positive basis vector
Value

Fisher information

References

Examples

```r
i1 <- rpf.drm()
i1.p <- c(.6,1,.1,.95)
theta <- seq(0,3,.05)
plot(theta, rpf.info(i1, i1.p, t(theta)), type="l")
```

rpf.lmp

Create logistic function of a monotonic polynomial (LMP) model

Description

This model is a dichotomous response model originally proposed by Liang (2007) and is implemented using the parameterization by Falk & Cai (2016).

Usage

```r
rpf.lmp(q = 0, multidimensional = FALSE)
```

Arguments

- `q` a non-negative integer that controls the order of the polynomial (2q+1) with a default of q=0 (1st order polynomial = 2PL).
- `multidimensional` whether to use a multidimensional model. Defaults to FALSE. The multidimensional version is not yet available.

Details

The LMP model replaces the linear predictor part of the two-parameter logistic function with a monotonic polynomial, \(m(\theta, \omega, \xi, \alpha, \tau) \),

\[
P(\text{pick} = 1|\omega, \xi, \alpha, \tau, \theta) = \frac{1}{1 + \exp(- (\xi + m(\theta; \omega, \alpha, \tau)))}
\]

where \(\alpha \) and \(\tau \) are vectors of length \(q \).

The order of the polynomial is always odd and is controlled by the user specified non-negative integer, \(q \). The model contains 2+2*q parameters and are used in conjunction with the `rpf.prob` or `rpf.dTheta` function in the following order: \(\omega \) - the natural log of the slope of the item model when
q=0, \xi - the intercept, \alpha and \tau - two parameters that control bends in the polynomial. These latter parameters are repeated in the same order for models with q>0. For example, a q=2 polynomial with have an item parameter vector of: \omega, \xi, \alpha_1, \tau_1, \alpha_2, \tau_2.

In general, the polynomial looks like the following:

\[m(\theta; \omega, \alpha, \tau) = b_1 \theta + b_2 \theta^2 + \ldots + b_{2q+1} \theta^{2q+1} \]

However, the coefficients, b, are not directly estimated, but are a function of the item parameters. In particular, the derivative \[m'(\theta; \omega, \alpha, \tau) \] is parameterized in the following way:

\[m'(\theta; \omega, \alpha, \tau) = \begin{cases} \exp(\omega) \prod_{u=1}^q (1 - 2\alpha_u \theta + (\alpha_u^2 + \exp(\tau_u))\theta^2) & \text{if } q > 0 \\ \exp(\omega) & \text{if } q = 0 \end{cases} \]

See Falk & Cai (2016) for more details as to how the polynomial is constructed. At the lowest order polynomial (q=0) the model reduces to the two-parameter logistic (2PL) model. However, parameterization of the slope parameter, \omega, is currently different than the 2PL (i.e., slope = \exp(\omega)). This parameterization ensures that the response function is always monotonically increasing without requiring constrained optimization.

For an alternative parameterization that releases constraints on \omega, allowing for monotonically decreasing functions, see rpf.grmp. And for polytomous items, see both rpf.grmp and rpf.gpcmp.

Value

an item model

References

See Also

Other response model: rpf.drm(), rpf.gpcmp(), rpf.grmp(), rpf.grm(), rpf.mcm(), rpf.nrm()

Examples

```r
spec <- rpf.lmp(1) # 3rd order polynomial
theta<-seq(-3,3,.1)
p<-rpf.prob(spec, c(-.11,.37,.24,-.21),theta)

spec <- rpf.lmp(2) # 5th order polynomial
p<-rpf.prob(spec, c(.69,.71,-.5,-8.48,.52,-3.32),theta)
```
rpf.logprob

Map an item model, item parameters, and person trait score into a probability vector

Description

Note that in general, exp(rpf.logprob(..)) != rpf.prob(..) because the range of logits is much wider than the range of probabilities due to limitations of floating point numerical precision.

Usage

```r
rpf.logprob(m, param, theta)
```

Arguments

- `m`: an item model
- `param`: item parameters
- `theta`: the trait score(s)

Value

A vector of probabilities. For dichotomous items, probabilities are returned in the order incorrect, correct. Although redundant, both incorrect and correct probabilities are returned in the dichotomous case for API consistency with polytomous item models.

Examples

```r
i1 <- rpf.drm()
i1.p <- rpf.rparam(i1)
rpf.logprob(i1, c(i1.p), -1)  # low trait score
rpf.logprob(i1, c(i1.p), c(0,1))  # average and high trait score
```

rpf.mcm

Create a multiple-choice response model

Description

Experimental

Usage

```r
rpf.mcm(outcomes = 2, numChoices = 5, factors = 1)
```
Arguments

outcomes the number of possible outcomes
numChoices the number of choices available
factors the number of factors

Details

This function instantiates a multiple-choice response model.

Value

an item model

Author(s)

Jonathan Weeks <weeksjp@gmail.com>

See Also

Other response model: rpf.drm(), rpf.gcmp(), rpf.grmp(), rpf.grm(), rpf.lmp(), rpf.nrm()

Description

Experimental This is a point estimate of the mean difficulty of items that do not offer easily interpretable parameters such as the Generalized PCM. Since the information curve may not be unimodal, this function integrates across the latent space.

Usage

rpf.mean.info(spec, param, grain = 0.1)

Arguments

spec list of item specs
param list or matrix of item parameters
grain the step size for numerical integration (optional)
rpf.mean.info1

Find the point where an item provides mean maximum information

Description

Experimental

Usage

rpf.mean.info1(spec, iparam, grain = 0.1)

Arguments

spec an item spec
iparam an item parameter vector
grain the step size for numerical integration (optional)

rpf.modify

Create a similar item specification with the given number of factors

Description

Create a similar item specification with the given number of factors

Usage

rpf.modify(m, factors)

Arguments

m item model
factors the number of factors/dimensions

Examples

s1 <- rpf.grm(factors=3)
rpf.rparam(s1)
s2 <- rpf.modify(s1, 1)
rpf.rparam(s2)
Create a nominal response model

Description

This function instantiates a nominal response model.

Usage

rpf.nrm(outcomes = 3, factors = 1, T.a = "trend", T.c = "trend")

Arguments

- outcomes: The number of choices available
- factors: the number of factors
- T.a: the T matrix for slope parameters
- T.c: the T matrix for intercept parameters

Details

The transformation matrices T.a and T.c are chosen by the analyst and not estimated. The T matrices must be invertible square matrices of size outcomes-1. As a shortcut, either T matrix can be specified as "trend" for a Fourier basis or as "id" for an identity basis. The response probability function is

\[a = T_a \alpha \]
\[c = T_c \gamma \]
\[P(\text{pick} = k|s, a_k, c_k, \theta) = \frac{1}{1 + \exp(-(s\theta a_k + c_k))} \]

where \(a_k\) and \(c_k\) are the result of multiplying two vectors of free parameters \(\alpha\) and \(\gamma\) by fixed matrices \(T_a\) and \(T_c\), respectively; \(a_0\) and \(c_0\) are fixed to 0 for identification; and \(C\) is a normalizing factor to ensure that \(\sum_k P(\text{pick} = k) = 1\).

Value

an item model

References

See Also

Other response model: rpf.drm(), rpf.gpcmp(), rpf.grmp(), rpf.grm(), rpf.lmp(), rpf.mcm()
Examples

```r
spec <- rpf.nrm()
rpf.prob(spec, rpf.rparam(spec), 0)
# typical parameterization for the Generalized Partial Credit Model
gpcm <- function(outcomes) rpf.nrm(outcomes, T.c=lower.tri(diag(outcomes-1),TRUE) * -1)
spec <- gpcm(4)
rpf.prob(spec, rpf.rparam(spec), 0)
```

rpf.numParam

Length of the item parameter vector

Description

Length of the item parameter vector

Usage

```r
rpf.numParam(m)
```

Arguments

- `m` item model

Examples

```r
rpf.numParam(rpf.grm(outcomes=3))
rpf.numParam(rpf.nrm(outcomes=3))
```

rpf.numSpec

Length of the item model vector

Description

Length of the item model vector

Usage

```r
rpf.numSpec(m)
```

Arguments

- `m` item model

Examples

```r
rpf.numSpec(rpf.grm(outcomes=3))
rpf.numSpec(rpf.nrm(outcomes=3))
```
rpf.ogive

The ogive constant

Description

The ogive constant can be multiplied by the discrimination parameter to obtain a response curve very similar to the Normal cumulative distribution function (Haley, 1952; Molenaar, 1974). Recently, Savalei (2006) proposed a new constant of 1.749 based on Kullback-Leibler information.

Usage

rpf.ogive

Format

An object of class numeric of length 1.

Details

In recent years, the logistic has grown in favor, and therefore, this package does not offer any special support for this transformation (Baker & Kim, 2004, pp. 14-18).

References

rpf.paramInfo

Retrieve a description of the given parameter

Description
Retrieve a description of the given parameter

Usage

```
rpf.paramInfo(m, num = NULL)
```

Arguments
- **m**: item model
- **num**: vector of parameters (defaults to all)

Value
- a list containing the type, upper bound, and lower bound

Examples

```
rpf.paramInfo(rpf.drm())
```

rpf.prob

Map an item model, item parameters, and person trait score into a probability vector

Description
This function is known by many names in the literature. When plotted against latent trait, it is often called a traceline, item characteristic curve, or item response function. Sometimes the word 'category' or 'outcome' is used in place of 'item'. For example, 'item response function' might become 'category response function'. All these terms refer to the same thing.

Usage

```
rpf.prob(m, param, theta)
```

Arguments
- **m**: an item model
- **param**: item parameters
- **theta**: the trait score(s)
Value

A vector of probabilities. For dichotomous items, probabilities are returned in the order incorrect, correct. Although redundant, both incorrect and correct probabilities are returned in the dichotomous case for API consistency with polytomous item models.

Examples

```r
i1 <- rpf.drm()
i1.p <- rpf.rparam(i1)
rpf.prob(i1, c(i1.p), -1)  # low trait score
rpf.prob(i1, c(i1.p), c(0,1))  # average and high trait score
```

rpf.rescale

Rescale item parameters

Description

Adjust item parameters for changes in mean and covariance of the latent distribution.

Usage

```r
rpf.rescale(m, param, mean, cov)
```

Arguments

- `m`: item model
- `param`: item parameters
- `mean`: vector of means
- `cov`: covariance matrix

Examples

```r
spec <- rpf.grm()
p1 <- rpf.rparam(spec)
testPoint <- rnorm(1)
move <- rnorm(1)
cov <- as.matrix(rlnorm(1))
Icov <- solve(cov)
padj <- rpf.rescale(spec, p1, move, cov)
pr1 <- rpf.prob(spec, padj, (testPoint-move) %% Icov)
pr2 <- rpf.prob(spec, p1, testPoint)
abs(pr1 - pr2) < 1e9
```
rpf.rparam
Generates item parameters

Description

This function generates random item parameters. The version argument is available if you are writing a test that depends on reproducible random parameters (using `set.seed`).

Usage

```
rpf.rparam(m, version = 2L)
```

Arguments

- **m**: an item model
- **version**: the version of random parameters

Value

item parameters

Examples

```
i1 <- rpf.drm()
rpf.rparam(i1)
```

rpf.sample
Randomly sample response patterns given a list of items

Description

Returns a random sample of response patterns given a list of item models and parameters. If `grp` is given then `theta`, `items`, `params`, `mean`, and `cov` can be omitted.

Usage

```
rpf.sample(
  theta, 
  items, 
  params, 
  ..., 
  prefix = "i", 
  mean = NULL, 
  cov = NULL, 
  mcar = 0, 
  grp = NULL
)
```
Arguments

theta
either a vector (for 1 dimension) or a matrix (for >1 dimension) of person abilities or the number of response patterns to generate randomly

items
a list of item models

params
a list or matrix of item parameters. If omitted, random item parameters are generated for each item model.

... Not used. Forces remaining arguments to be specified by name.

prefix
Column names are taken from param or items. If no column names are available, some will be generated using the given prefix.

mean
mean vector of latent distribution (optional)

cov
covariance matrix of latent distribution (optional)

mcar
proportion of generated data to set to NA (missing completely at random)

group
a list containing the model and data. See the details section.

Value

Returns a data frame of response patterns

Format of a group

A model, or group within a model, is represented as a named list.

spec list of response model objects

param numeric matrix of item parameters

free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)

mean numeric vector giving the mean of the latent distribution

cov numeric matrix giving the covariance of the latent distribution

data data.frame containing observed item responses, and optionally, weights and frequencies

score factors scores with response patterns in rows

weightColumn name of the data column containing the numeric row weights (optional)

dataColumn name of the data column containing the integral row frequencies (optional)

qwidth width of the quadrature expressed in Z units

qpoints number of quadrature points

minItemsPerScore minimum number of non-missing items when estimating factor scores

The param matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in spec and order of columns in param are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by param colnames.

Currently only a multivariate normal distribution is available, parameterized by the mean and cov. If mean and cov are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, qwidth=2 and qpoints=5 would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.
See Also

sample

Examples

1 dimensional items
i1 <- rpf.drm()
i1.p <- rpf.rparam(i1)
i2 <- rpf.nrm(outcomes=3)
i2.p <- rpf.rparam(i2)
rpf.sample(5, list(i1,i2), list(i1.p, i2.p))
SitemFit

Usage

SitemFit(
 grp,
 ...,
 method = "pearson",
 log = TRUE,
 qwidth = 6,
 qpoints = 49L,
 alt = FALSE,
 omit = 0L,
 .twotier = TRUE,
 .parallel = TRUE
)

Arguments

grp a list containing the model and data. See the details section.
...
 Not used. Forces remaining arguments to be specified by name.
method whether to use a pearson or rms test
log whether to return p-values in log units
qwidth Deprecated
qpoints Deprecated
alt whether to include the item of interest in the denominator
omit number of items to omit (a single number) or a list of the length the number of
 items
.twotier whether to enable the two-tier optimization
 .parallel whether to take advantage of multiple CPUs (default TRUE)

Value

a list of output from SitemFit

Format of a group

A model, or group within a model, is represented as a named list.

spec list of response model objects
param numeric matrix of item parameters
free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
mean numeric vector giving the mean of the latent distribution
cov numeric matrix giving the covariance of the latent distribution
data data.frame containing observed item responses, and optionally, weights and frequencies
score factors scores with response patterns in rows
weightColumn name of the data column containing the numeric row weights (optional)
freqColumn name of the data column containing the integral row frequencies (optional)
qwidth width of the quadrature expressed in Z units
qpoints number of quadrature points
minItemsPerScore minimum number of non-missing items when estimating factor scores

The param matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in spec and order of columns in param are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by param colnames.

Currently only a multivariate normal distribution is available, parameterized by the mean and cov. If mean and cov are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, qwidth=2 and qpoints=5 would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.

See Also
Other diagnostic: ChenThissen1997(), SitemFit1(), multinomialFit(), rpf.1dim.fit(), sumScoreEAPTest()

Examples

grp <- list(spec=list())
grp$spec[1:20] <- list(rpf.grm())
grp$param <- sapply(grp$spec, rpf.rparam)
colnames(grp$param) <- paste("i", 1:20, sep="")
grp$mean <- 0
grp$cov <- diag(1)
grp$free <- grp$param != 0
grp$data <- rpf.sample(500, grp=grp)
SitemFit(grp)

SitemFit1 Compute the S fit statistic for 1 item

Description
Implements the Kang & Chen (2007) polytomous extension to S statistic of Orlando & Thissen (2000). Rows with missing data are ignored, but see the omit option.

Usage
SitemFit1(
grp,
item,
free = 0,
...,
 method = "pearson",
 log = TRUE,
 qwidth = 6,
 qpoints = 49L,
 alt = FALSE,
 omit = 0L,
 .twotier = TRUE
)

Arguments

grp a list containing the model and data. See the details section.
item the item of interest
free the number of free parameters involved in estimating the item (to adjust the df)
... Not used. Forces remaining arguments to be specified by name.
method whether to use a pearson or rms test
log whether to return p-values in log units
qwidth Deprecated
qpoints Deprecated
alt whether to include the item of interest in the denominator
omit number of items to omit or a character vector with the names of the items to
 omit when calculating the observed and expected sum-score tables
.twotier whether to enable the two-tier optimization

Details

This statistic is good at finding a small number of misfitting items among a large number of well
fitting items. However, be aware that misfitting items can cause other items to misfit.

Observed tables cannot be computed when data is missing. Therefore, you can optionally omit
items with the greatest number of responses missing relative to the item of interest.

Pearson is slightly more powerful than RMS in most cases I examined.

Setting alt to TRUE causes the tables to match published articles. However, the default setting of
FALSE probably provides slightly more power when there are less than 10 items.

The name of the test, "S", probably stands for sum-score.

Format of a group

A model, or group within a model, is represented as a named list.

spec list of response model objects
param numeric matrix of item parameters
free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
mean numeric vector giving the mean of the latent distribution
stripData numeric matrix giving the covariance of the latent distribution
data data.frame containing observed item responses, and optionally, weights and frequencies
score factors scores with response patterns in rows
weightColumn name of the data column containing the numeric row weights (optional)
freqColumn name of the data column containing the integral row frequencies (optional)
qwidth width of the quadrature expressed in Z units
qpoints number of quadrature points
minItemsPerScore minimum number of non-missing items when estimating factor scores

The param matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in spec and order of columns in param are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by param colnames.

Currently only a multivariate normal distribution is available, parameterized by the mean and cov. If mean and cov are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, qwidth=2 and qpoints=5 would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.

References

See Also

Other diagnostic: *ChenThissen1997(), SitemFit(), multinomialFit(), rpf.1dim.fit(), sumScoreEAPTest()*

stripData

Strip data and scores from an IFA group

Description

In addition, the freqColumn and weightColumn are reset to NULL.

Usage

`stripData(grp)`

Arguments

- `grp` a list containing the model and data. See the details section.
stripData

Value

The same group without associated data.

Format of a group

A model, or group within a model, is represented as a named list.

- `spec` list of response model objects
- `param` numeric matrix of item parameters
- `free` logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- `mean` numeric vector giving the mean of the latent distribution
- `cov` numeric matrix giving the covariance of the latent distribution
- `data` data.frame containing observed item responses, and optionally, weights and frequencies
- `score` factors scores with response patterns in rows
- `weightColumn` name of the data column containing the numeric row weights (optional)
- `freqColumn` name of the data column containing the integral row frequencies (optional)
- `qwidth` width of the quadrature expressed in Z units
- `qpoints` number of quadrature points
- `minItemsPerScore` minimum number of non-missing items when estimating factor scores

The `param` matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in `spec` and order of columns in `param` are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by `param` colnames.

Currently only a multivariate normal distribution is available, parameterized by the `mean` and `cov`. If `mean` and `cov` are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, `qwidth=2` and `qpoints=5` would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by `EAPscores`.

Examples

```r
spec <- list()
spec[1:3] <- list(rpf.grm(outcomes=3))
param <- sapply(spec, rpf.rparam)
data <- rpf.sample(5, spec, param)
colnames(param) <- colnames(data)
grp <- list(spec=spec, param=param, data=data, minItemsPerScore=1L)
grp$score <- EAPscores(grp)
str(grp)
grp <- stripData(grp)
str(grp)
```
Compute the sum-score EAP table

Description

Observed tables cannot be computed when data is missing. Therefore, you can optionally omit items with the greatest number of responses missing when conducting the distribution test.

Usage

sumScoreEAP(grp, ..., qwidth = 6, qpoints = 49L, .twotier = TRUE)

Arguments

grp a list containing the model and data. See the details section.
... Not used. Forces remaining arguments to be specified by name.
qwidth DEPRECATED
qpoints DEPRECATED
.twotier whether to enable the two-tier optimization

Details

When two-tier covariance structure is detected, EAP scores are only reported for primary factors. It is possible to compute EAP scores for specific factors, but it is not clear why this would be useful because they are conditional on the specific factor sum scores. Moreover, the algorithm to compute them efficiently has not been published yet (as of Jun 2014).

Format of a group

A model, or group within a model, is represented as a named list.

spec list of response model objects
param numeric matrix of item parameters
free logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
mean numeric vector giving the mean of the latent distribution
cov numeric matrix giving the covariance of the latent distribution
data data.frame containing observed item responses, and optionally, weights and frequencies
score factors scores with response patterns in rows
weightColumn name of the data column containing the numeric row weights (optional)
freqColumn name of the data column containing the integral row frequencies (optional)
qwidth width of the quadrature expressed in Z units
qpoints number of quadrature points
minItemsPerScore minimum number of non-missing items when estimating factor scores
The param matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in spec and order of columns in param are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by param colnames.

Currently only a multivariate normal distribution is available, parameterized by the mean and cov. If mean and cov are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, qwidth=2 and qpoints=5 would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.

See Also

Other scoring: EAPscores(), bestToOmit(), itemOutcomeBySumScore(), observedSumScore(), omitItems(), omitMostMissing()

Examples

```r
# see Thissen, Pommerich, Billeaud, & Williams (1995, Table 2)
spec <- list()
spec[1:3] <- list(rpf.grm(outcomes=4))

param <- matrix(c(1.87, .65, 1.97, 3.14,
  2.66, .12, 1.57, 2.69,
  1.24, .08, 2.03, 4.3), nrow=4)
# fix parameterization
param <- apply(param, 2, function(p) c(p[1], p[2:4] * -p[1]))

grp <- list(spec=spec, mean=0, cov=matrix(1,1,1), param=param)
sumScoreEAP(grp)
```

sumScoreEAPTest Conduct the sum-score EAP distribution test

Description

Conduct the sum-score EAP distribution test

Usage

```r
sumScoreEAPTest(grp, ..., qwidth = 6, qpoints = 49L, .twotier = TRUE)
```

Arguments

- `grp` a list containing the model and data. See the details section.
- `...` Not used. Forces remaining arguments to be specified by name.
- `qwidth` DEPRECATED
Format of a group

A model, or group within a model, is represented as a named list.

- **spec**: list of response model objects
- **param**: numeric matrix of item parameters
- **free**: logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- **mean**: numeric vector giving the mean of the latent distribution
- **cov**: numeric matrix giving the covariance of the latent distribution
- **data**: data.frame containing observed item responses, and optionally, weights and frequencies
- **score**: factors scores with response patterns in rows
- **weightColumn**: name of the data column containing the numeric row weights (optional)
- **freqColumn**: name of the data column containing the integral row frequencies (optional)
- **qwidth**: width of the quadrature expressed in Z units
- **qpoints**: number of quadrature points
- **minItemsPerScore**: minimum number of non-missing items when estimating factor scores

The `param` matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in `spec` and order of columns in `param` are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by `param` colnames.

Currently only a multivariate normal distribution is available, parameterized by the `mean` and `cov`. If `mean` and `cov` are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, `qwidth=2` and `qpoints=5` would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by `EAPscores`.

References

See Also

Other diagnostic: `ChenThissen1997()`, `SitemFit1()`, `SitemFit()`, `multinomialFit()`, `rpf.1dim.fit()`
tabulateRows
Tabulate data.frame rows

Description

Like `tabulate` but entire rows are the unit of tabulation. The data.frame is not sorted, but must be sorted already.

Usage

```r
tabulateRows(observed)
```

Arguments

- `observed`
a sorted data.frame holding ordered factors in every column

See Also

`orderCompletely`

Examples

```r
df <- as.data.frame(matrix(c(sample.int(2, 30, replace=TRUE)), 10, 3))
df <- df[orderCompletely(df),]
tabulateRows(df)
```

toFactorLoading
Convert response function slopes to factor loadings

Description

All slopes are divided by the ogive constant. Then the following transformation is applied to the slope matrix,

Usage

```r
toFactorLoading(slope, ogive = rpf.ogive)
```

Arguments

- `slope`
a matrix with items in the columns and slopes in the rows
- `ogive`
the ogive constant (default `rpf.ogive`)

Details

\[
\frac{\text{slope}}{\left[1 + \text{rowSums}(\text{slope}^2)\right]^{\frac{1}{2}}}
\]
Value

a factor loading matrix with items in the rows and factors in the columns

See Also

Other factor model equivalence: `fromFactorLoading()`, `fromFactorThreshold()`, `toFactorThreshold()`

toFactorThreshold | Convert response function intercepts to factor thresholds

Description

Convert response function intercepts to factor thresholds

Usage

toFactorThreshold(intercept, slope, ogive = rpf.ogive)

Arguments

intercept a matrix with items in the columns and intercepts in the rows
slope a matrix with items in the columns and slopes in the rows
ogive the ogive constant (default rpf.ogive)

Value

a factor threshold matrix with items in the columns and factor thresholds in the rows

See Also

Other factor model equivalence: `fromFactorLoading()`, `fromFactorThreshold()`, `toFactorLoading()`

write.flexmirt | Write a flexMIRT PRM file

Description

Experimental This was last updated in 2017 and may no longer work.

Usage

write.flexmirt(groups, file = NULL, fileEncoding = "")
Arguments

- **groups**: a list of groups each with items and latent parameters
- **file**: the destination file name
- **fileEncoding**: how to encode the text file (optional)

Details

Formats item parameters in the way that flexMIRT expects to read them.

NOTE: Support for the graded response model may not be complete.

Format of a group

A model, or group within a model, is represented as a named list.

- **spec**: list of response model objects
- **param**: numeric matrix of item parameters
- **free**: logical matrix of indicating which parameters are free (TRUE) or fixed (FALSE)
- **mean**: numeric vector giving the mean of the latent distribution
- **cov**: numeric matrix giving the covariance of the latent distribution
- **data**: data.frame containing observed item responses, and optionally, weights and frequencies
- **score**: factors scores with response patterns in rows
- **weightColumn**: name of the data column containing the numeric row weights (optional)
- **freqColumn**: name of the data column containing the integral row frequencies (optional)
- **qwidth**: width of the quadrature expressed in Z units
- **qpoints**: number of quadrature points
- **minItemsPerScore**: minimum number of non-missing items when estimating factor scores

The **param** matrix stores items parameters by column. If a column has more rows than are required to fully specify a model then the extra rows are ignored. The order of the items in spec and order of columns in param are assumed to match. All items should have the same number of latent dimensions. Loadings on latent dimensions are given in the first few rows and can be named by setting rownames. Item names are assigned by **param** colnames.

Currently only a multivariate normal distribution is available, parameterized by the **mean** and **cov**. If **mean** and **cov** are not specified then a standard normal distribution is assumed. The quadrature consists of equally spaced points. For example, qwidth=2 and qpoints=5 would produce points -2, -1, 0, 1, and 2. The quadrature specification is part of the group and not passed as extra arguments for the sake of consistency. As currently implemented, OpenMx uses EAP scores to estimate latent distribution parameters. By default, the exact same EAP scores should be produced by EAPscores.
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>datasets</td>
<td>rpf.ogive, 49</td>
</tr>
<tr>
<td>data</td>
<td>kct, 19</td>
</tr>
<tr>
<td></td>
<td>LSAT6, 20</td>
</tr>
<tr>
<td></td>
<td>LSAT7, 20</td>
</tr>
<tr>
<td></td>
<td>science, 54</td>
</tr>
<tr>
<td></td>
<td>$.\text{rpf.}\text{base}\text{-method}(\text{Class rpf.}\text{base}), 11</td>
</tr>
<tr>
<td></td>
<td>$\lln,\text{rpf.}\text{base}\text{-method}(\text{Class rpf.}\text{base}), 11</td>
</tr>
<tr>
<td></td>
<td>_\text{rpf}\text{-dLL}(\text{rpf.}\text{dLL}), 34</td>
</tr>
<tr>
<td></td>
<td>_\text{rpf}\text{-dTheta}(\text{rpf.}\text{dTheta}), 36</td>
</tr>
<tr>
<td></td>
<td>_\text{rpf}\text{-logprob}(\text{rpf.}\text{logprob}), 44</td>
</tr>
<tr>
<td></td>
<td>_\text{rpf}\text{-prob}(\text{rpf.}\text{prob}), 50</td>
</tr>
<tr>
<td></td>
<td>_\text{rpf}\text{-rescale}(\text{rpf.}\text{rescale}), 51</td>
</tr>
<tr>
<td>An introduction, 4</td>
<td>as.IFAgroup, 5</td>
</tr>
<tr>
<td>bestToOmit</td>
<td>6, 15, 18, 24–26, 61</td>
</tr>
<tr>
<td></td>
<td>chen.thissen.1997 (ChenThissen1997), 7</td>
</tr>
<tr>
<td></td>
<td>ChenThissen1997, 7, 22, 30, 32, 56, 58, 62</td>
</tr>
<tr>
<td></td>
<td>Class rpf.1dim, 9</td>
</tr>
<tr>
<td></td>
<td>Class rpf.1dim.drm, 10</td>
</tr>
<tr>
<td></td>
<td>Class rpf.1dim.gpcmp, 10</td>
</tr>
<tr>
<td></td>
<td>Class rpf.1dim.graded, 10</td>
</tr>
<tr>
<td></td>
<td>Class rpf.1dim.grm, 10</td>
</tr>
<tr>
<td></td>
<td>Class rpf.1dim.grmp, 10</td>
</tr>
<tr>
<td></td>
<td>Class rpf.1dim.lmp, 11</td>
</tr>
<tr>
<td></td>
<td>Class rpf.base, 11</td>
</tr>
<tr>
<td></td>
<td>Class rpf.mdim, 11</td>
</tr>
<tr>
<td></td>
<td>Class rpf.mdim.drm, 11</td>
</tr>
<tr>
<td></td>
<td>Class rpf.mdim.graded, 11</td>
</tr>
<tr>
<td></td>
<td>Class rpf.mdim.grm, 12</td>
</tr>
<tr>
<td></td>
<td>Class rpf.mdim.mcm, 12</td>
</tr>
<tr>
<td></td>
<td>Class rpf.mdim.nrm, 12</td>
</tr>
<tr>
<td></td>
<td>collapseCategoricalCells, 12</td>
</tr>
<tr>
<td></td>
<td>compressDataFrame, 13</td>
</tr>
<tr>
<td></td>
<td>crosstabTest, 14</td>
</tr>
<tr>
<td></td>
<td>EAPscores, 5–7, 9, 14, 15, 18, 22, 24–26, 30–32, 53, 56, 58, 59, 61, 62, 65</td>
</tr>
<tr>
<td></td>
<td>expandDataFrame, 16</td>
</tr>
<tr>
<td></td>
<td>fromFactorLoading, 16, 17, 64</td>
</tr>
<tr>
<td></td>
<td>fromFactorThreshold, 17, 17, 64</td>
</tr>
<tr>
<td></td>
<td>itemOutcomeBySumScore, 7, 15, 17, 24–26, 61</td>
</tr>
<tr>
<td></td>
<td>kct, 19</td>
</tr>
<tr>
<td></td>
<td>logit, 19, 35</td>
</tr>
<tr>
<td></td>
<td>LSAT6, 20</td>
</tr>
<tr>
<td></td>
<td>LSAT7, 20</td>
</tr>
<tr>
<td></td>
<td>multinomialFit, 9, 21, 32, 56, 58, 62</td>
</tr>
<tr>
<td></td>
<td>observedSumScore, 7, 15, 18, 23, 25, 26, 61</td>
</tr>
<tr>
<td></td>
<td>omitItems, 7, 15, 18, 24, 26, 61</td>
</tr>
<tr>
<td></td>
<td>omitMostMissing, 7, 15, 18, 24, 25, 26, 61</td>
</tr>
<tr>
<td></td>
<td>orderCompletely, 27, 63</td>
</tr>
<tr>
<td></td>
<td>ordinal.gamma, 8, 27</td>
</tr>
<tr>
<td></td>
<td>ptw2011.gof.test, 28</td>
</tr>
<tr>
<td></td>
<td>read.flexmirt, 29</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim-class (Class rpf.1dim), 9</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim.drm-class (Class rpf.1dim.drm), 10</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim.fit, 9, 22, 30, 56, 58, 62</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim.gpcmp-class (Class rpf.1dim.gpcmp), 10</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim.graded-class (Class rpf.1dim.graded), 10</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim.grm-class (Class rpf.1dim.grm), 10</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim.grmp-class (Class rpf.1dim.grmp), 10</td>
</tr>
<tr>
<td></td>
<td>rpf.1dim.lmp-class (Class rpf.1dim.lmp), 11</td>
</tr>
</tbody>
</table>
(rpf.rparam), 52
rpf.rparam,rpf.1dim.gpcmp-method
(rpf.rparam), 52
rpf.rparam,rpf.1dim.gradated-method
(rpf.rparam), 52
rpf.rparam,rpf.1dim.grpmp-method
(rpf.rparam), 52
rpf.rparam,rpf.1dim.lmp-method
(rpf.rparam), 52
rpf.rparam,rpf.mdim.drm-method
(rpf.rparam), 52
rpf.rparam,rpf.mdim.gradated-method
(rpf.rparam), 52
rpf.rparam,rpf.mdim.mcm-method
(rpf.rparam), 52
rpf.rparam,rpf.mdim.nrm-method
(rpf.rparam), 52
rpf.sample, 52
rpf_numParam_wrapper (rpf.numParam), 48
rpf_numSpec_wrapper (rpf.numSpec), 48
rpf_paramInfo_wrapper (rpf.paramInfo), 50

sample, 54
science, 54
sfif (science), 54
sfpf (science), 54
sfsf (science), 54
sfxf (science), 54
SitemFit, 9, 22, 32, 54, 58, 62
SitemFit1, 9, 22, 32, 54–56, 56, 62
stripData, 58
sumScoreEAP, 7, 15, 18, 24–26, 60
sumScoreEAPTest, 9, 22, 32, 56, 58, 61

tabulateRows, 63
toFactorLoading, 17, 63, 64
toFactorThreshold, 17, 64, 64

write.flexmirt, 64