Package ‘rsdNE’

January 5, 2022

Type Package

Title Response Surface Designs with Neighbour Effects (rsdNE)

Version 1.0.0

Maintainer Ashutosh Dalal <ashutosh.dalal97@gmail.com>

Description Response surface designs with neighbour effects are suitable for experimental situations where it is expected that the treatment combination administered to one experimental unit may affect the response on neighboring units as well as the response on the unit to which it is applied. Integrating these effects in the response surface model improves the experiment's precision (Jaggi, S., Sarika and Sharma, V.K. (2010)<http://krishi.icar.gov.in/jspui/handle/123456789/4364>; Verma A., Jaggi S., Varghese, E., Varghese, C., Bhoomik, A., Datta, A. and Hemavathi M. (2021)<DOI:10.1080/03610918.2021.1890123>). This package includes sym(), asym1(), asym2() functions that generates response surface designs which are rotatable under a polynomial model of a given order without interaction term incorporating neighbour effects.

License GPL (>= 2)

Encoding UTF-8

Repository CRAN

RoxygenNote 7.1.2

NeedsCompilation no

Author Ashutosh Dalal [aut, cre],
Seema Jaggi [aut, ctb],
Eldho Varghese [aut, ctb],
Subhasish Sarkar [aut],
Arpan Bhoomik [aut],
Cini Varghese [aut],
Anindita Datta [aut],
Soumen Pal [aut]

Date/Publication 2022-01-05 10:10:05 UTC
R topics documented:

asym1 ... 2
asym2 ... 3
sym ... 4

Index 7

asym1
This generates a class of asymmetric rotatable response surface designs with neighbour effects under a second order model

Description
This function generates asymmetrical rotatable response surface designs in the presence of neighbour effects for 2n factors, n factors at 2 levels and another n factors at 3 levels.

Usage
asym1(n1, n2, c)

Arguments

n1 n1 factors having 2 levels, 1<=n1<=5
n2 n2 factors having 3 levels, 1<=n2<=5
c Value of alpha (Coefficient of neighbour effects), 0<=c<=1

Value
This function generates rotatable designs as well as Z_prime_Z matrix, inv(Z_primeZ) matrix and variance estimated response for the (2^n1 * 3^n2) factorial combination.

Note
Here 3 types of cases have been considered: (2^n1*3^n2), where, n1=n2=n; (2^n1*3), where, n1=n and n2=1; (2*3^n2), where, n1=1 and n2=n.

Author(s)
asym2

This generates a class of asymmetric rotatable response surface designs with neighbour effects under a polynomial model of order max(s1,s2)-1

Description

This function generates asymmetrical rotatable response surface designs in the presence of neighbour effects for (n1 + n2) factors, n1 factors at s1 levels and another n2 factors at s2 levels.

Usage

asym2(s1, n1, s2, n2, c)
Arguments

- **s1**: Number of levels of n1 factors, $1 < s1 <= 8$
- **n1**: Number of factors, $1 <= n1 <= 4$
- **s2**: Number of levels of n2 factors, $1 < s2 <= 8$
- **n2**: Number of factors, $1 <= n2 <= 4$
- **c**: Value of alpha (Coefficient of neighbour effects), $0 <= c <= 1$

Value

This function generates rotatable designs as well as $Z_{prime}Z$ matrix, $inv(Z_{prime}Z)$ matrix and variance estimated response for the $(s1^n1 * s2^n2)$ factorial combination.

Note

Here s1 and s2 both not even at the same time and s1 not equal to s2.

Author(s)

References

Examples

```r
library(rsdNE)
asym2(2, 2, 5, 2, 0.5)
```

sym

This generates a class of symmetric rotatable response surface designs with neighbour effects under a polynomial model of order (s1-1)

Description

This function generates symmetrical rotatable response surface designs in the presence of neighbour effects for n1 factors each at s1 levels.

Usage

```r
sym(s1, n1, c)
```
Arguments

s1 Number of levels of n1 factors, 1<s1<=6
n1 Number of factors, 1<n1<=4
c Value of alpha (Coefficient of neighbour effects), 0<=c<=1

Value

his function generates rotatable designs as well as Z_prime_Z matrix, inv(Z_primeZ) matrix and variance estimated response for the (s1^n1) factorial combination.

Author(s)

References

Sarika et al., 2009, Communications in Statistics-Theory and Methods; Sarika et al., 2013, Ars Combinatoria

Examples

library(rsdNE)
sym(2,2,0.5)
##output:
X matrix
##[,1] [,2] [,3]
##[1,] 1 -1 -1
##[2,] 1 1 1
##[3,] 1 1 -1
##[4,] 1 -1 1
##[5,] 1 -1 -1
##[6,] 1 1 1
##[7,] 1 -1 1
##[8,] 1 1 -1
##[9,] 1 -1 1
##[10,] 1 1 1
Z prime Z matrix
##[,1] [,2] [,3]
##[1,] 32 0 0
##[2,] 0 4 0
##[3,] 0 0 4
Z prime Z inverse matrix
##[,1] [,2] [,3]
##[1,] 0.03125 0.00 0.00
##[2,] 0.00 0.25 0.00
##[3,] 0.00 0.00 0.25
[2,] 0.00000 0.25 0.00
[3,] 0.00000 0.00 0.25
[1] "total number of runs" "8"
[1] "variance of estimated response" "0.5312"
Index

asym1, 2
asym2, 3
sym, 4