Package ‘rsleep’

May 8, 2020

Type Package
Title Analysis of Sleep Data
Version 1.0.2
Author Paul Bouchequet <paul.bouchequet@frenchkpi.com>
Maintainer Paul Bouchequet <paul.bouchequet@frenchkpi.com>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports edfReader, jsonlite, ggplot2, signal, phonTools
Suggests testthat
RoxygenNote 7.1.0
NeedsCompilation no
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2020-05-08 18:10:02 UTC

R topics documented:

bands_power ... 2
check_events .. 3
detect_rpeaks ... 3
epochs .. 4
example_ecg_200hz ... 5
bands_power

Computes spectral power of bands listed in the bands argument.

Description

`bands_power` calculates power spectral densities estimates using Welch’s method on bands. Bands are computed from spectrogram bands equal or greater than lower limit and inferior to the upper limit.

Usage

```r
bands_power(bands, signal, sRate, broadband = c(0.5, 40))
```

Arguments

- **bands**: A list of bands to compute with lower and upper limits in the form ‘list(c(0.4, c(4.8))’
- **signal**: Numerical vector of the signal.
- **sRate**: Signal sample rate in Hertz.
- **broadband**: The broadband to normalize by.

Value

A list of bands powers.

Examples

```r
bands_power(bands = list(c(0.4, c(4.8)), signal = sin(c(1:10000)), sRate = 200)
```
check_events

Check events dataframe.

Description

Check events dataframe.

Usage

check_events(e)

Arguments

- **e**
 Events dataframe. Dataframe must have `begin` (POSIXt), `end` (POSIXt) and `event` (character) columns.

detect_rpeaks

Detects R peaks in raw ECG signal.

Description

Implements the first part of the Pan & Tompkins algorithms to detect R peaks from a raw ECG signal. Inspiration from https://zenodo.org/record/826614.

Usage

detect_rpeaks(
 signal,
 sRate,
 lowcut = 0,
 highcut = 15,
 filter_order = 1,
 integration_window = 15,
 refractory = 200
)

Arguments

- **signal**
 Numerical vector of ECG signal.
- **sRate**
 ECG signal sample rate.
- **lowcut**
 Butterworth bandpass filter low cut value.
- **highcut**
 Butterworth bandpass filter high cut value.
- **filter_order**
 Butterworth bandpass filter order value.
- **integration_window**
 Convolution window size.
- **refractory**
 Minimal space between peaks in milliseconds.
epochs

Value

A vector of each detected R peaks in seconds from the start.

References

Examples

data("example_ecg_200hz")
detect_rpeaks(example_ecg_200hz, 200)

ePOCHS

Split signals into a list of epochs according to an events dataframe or an epoch duration.

Description

Split signals into a list of epochs according to an events dataframe or an epoch duration.

Usage

epochs(signals, sRates, resample = 100, epoch = 30, startTime = 0)

Arguments

signals A list of numeric vectors containing signals.
sRates A vector or list of integer values of the signals sample rates.
resample The sample rate to resample all signals. Defaults to 100.
epoch Epochs reference. Can be an events dataframe or the number of seconds of each epoch. Defaults to 30.
startTime The start timestamp of the signal, used to join events to epoch.

Value

A list of signal chunks

Examples

ePOCHS(list(c(1:1000),c(1:1000)),100,2)
example_ecg_200hz
Sample electrocardiogram signal

Description

10 seconds of ECG from Resmed Nox A1 polysomnograph sampled at 200 Hz expressed in Volts.

Usage

example_ecg_200hz

Format

A vector of 2000 values.

Source

http://www.sommeil-vigilance.fr/

example_hypnogram_30s
Example hypnogram scored on 30 seconds.

Description

Example hypnogram scored on 30 seconds.

Usage

example_hypnogram_30s

Format

Dataframe
hypnogram

Filter and reorder an events dataframe to keep only sleep stages related-events.

Description

Remove non-sleep stages events and reorder dataframe rows using the begin column.

Usage

```r
hypnogram(events, labels = c("N3", "N2", "N1", "REM", "AWA"))
```

Arguments

- **events**: Events dataframe. Dataframe must have `begin` (POSIXt), `end` (POSIXt) and `event`.
- **labels**: Sleep stages labels. Defaults to `c("N3", "N2", "N1", "REM", "AWA")`.

Value

hypnogram dataframe.

Examples

```r
e <- data.frame(begin = as.POSIXlt(c(1536967800, 1536967860, 1536967830), origin = "1970-01-01"))
e$end <- as.POSIXlt(c(1536967830, 1536967890, 1536967860), origin = "1970-01-01")
e$event = c("back-position", "N3", "REM")
hypnogram(e)
```

normalize_cycles

Normalize sleep cycles scored on Noxturnal software from start and stop flags to unique events.

Description

Normalize sleep cycles scored on Noxturnal software from start and stop flags to unique events.

Usage

```r
normalize_cycles(events)
```

Arguments

- **events**: Events dataframe. Dataframe must have `begin` (POSIXt), `end` (POSIXt) and `event`. Cycles flags must be named `Activity-CLASSICstart`, `Activity-BNstart`, `Activity-BNend`, `Activity-REMstart`, `Activity-REMend`, `Activity-ENstart` or `Activity-ENend`.
Examples

cycles <- data.frame(event = c("Activity-CLASSICstart","Activity-CLASSICend"))
cycles$begin <- as.POSIXct(c("2016-01-16 01:13:30","2016-01-16 01:15:30"))
cycles$end <- as.POSIXct(c("2016-01-16 01:13:30","2016-01-16 01:15:30"))
normalize_cycles(cycles)

plot_hypnogram(cycles)

Example

e <- data.frame(begin = as.POSIXlt(c(1536967800,1536967830,1536967860),origin = "1970-01-01"))
e$end <- as.POSIXlt(c(1536967830,1536967860,1536967890), origin = "1970-01-01")
e$event = c("N3","N3","REM")
plot_hypnogram(e)

Description

A hypnogram represents the stages of sleep as a function of time. plot_hypnogram() plot a hypnogram using the ggplot2 library from stages sleep in an event dataframe. REM stage is highlighted in red.

Usage

plot_hypnogram(events, labels = c("N3", "N2", "N1", "REM", "AWA"))

Arguments

events Events dataframe. Dataframe must have begin (POSIXt), end (POSIXt) and event
labels Sleep stages labels. Defaults to c("N3", "N2", "N1", "REM", "AWA").

Value

a ggplot object.

Examples

e <- data.frame(begin = as.POSIXlt(c(1536967800,1536967830,1536967860),origin = "1970-01-01"))
e$end <- as.POSIXlt(c(1536967830,1536967860,1536967890), origin = "1970-01-01")
e$event = c("N3","N3","REM")
plot_hypnogram(e)

References

read_events_noxturnal
Read a Noxturnal events file (Unicode CSV format)

Description

Read a Noxturnal events file (Unicode CSV format)

Usage

```r
read_events_noxturnal(dir)
```

Arguments

- `dir`
 Noxturnal events file path.

Value

A dataframe of scored events.

read_mdf
Read a Morpheo Data Format (MDF) directory to a list.

Description

Read a Morpheo Data Format (MDF) directory to a list.

Usage

```r
read_mdf(mdfPath, channels = c(NA), metadata = TRUE)
```

Arguments

- `mdfPath`
 character. MDF path.
- `channels`
 character. Channels to read.
- `metadata`
 boolean. Read or not the metadata.

Value

A list.

References

spectrogram

Plot the spectrogram of signal.

Description

'spectrogram' resamples signal and use the 'specgram' function from the 'signal' library to compute the spectrogram. Results resolution can be then reduced to quickly plot large signals.

Usage

spectrogram(
 signal,
 sRate,
 maxFreq = 25,
 n = 1024,
 window = n * 2,
 overlap = 0,
 cols = c(rep("#3B9AB2", 9), "#78B7C5", "#EBCC2A", "#E1AF00", rep("#F21A00", 6)),
 freq = 4,
 plot = TRUE,
 startTime = as.POSIXct("1970/01/01 00:00:00")
)

Arguments

signal Numerical vector of the signal.
sRate Signal sample rate in Hertz.
maxFreq Maximal frequency to plot in Hertz. Signal will be resampled at maxFreq*2 sample rate.
n The size of the Fourier transform window.
window Shape of the fourier transform window, defaults to n*2.
overlap Overlap with previous window, defaults to 0.
cols Color scale used for the underlying plot function.
freq Aggregate frequency used to lower spectrogram resolution. Defaults to 4.
plot Boolean, plot or not the spectrogram.
startTime Posixct of the signal start. Adjust the x axis labels accordingly.

Value

A spectrogram.

Examples

library(signal)
spectrogram(chirp(seq(-2, 15, by = 0.001), 400, 10, 100, 'quadratic'), 20, n=1024)
stages_stats Get stages events related stats in a named vector.

Description
stages_stats computes stages related stats.

Usage
stages_stats(e)

Arguments
e Events dataframe. Dataframe must have begin (POSIXt), end (POSIXt) and event (character) columns.

Value
stages vector

Examples
e <- data.frame(begin = as.POSIXlt(seq(from = 0, to = 30*10, by = 30),origin = "1970-01-01"))
e$end <- as.POSIXlt(seq(from = 30, to = 30*11, by = 30), origin = "1970-01-01")
e$event = c("AWA","N1","N2","N3","N3","REM","N2","REM","N2","REM","AWA")
stages_stats(e)

write_channel Write a timeserie to disk using Morpheo Data Format (MDF) guidelines.

Description
Write a timeserie to disk using Morpheo Data Format (MDF) guidelines.

Usage
write_channel(channel, signals, headers, mdfPath, endian = "little")

Arguments
channel character. Channel name.
signals list. European Data Format (EDF) signals list.
headers list. European Data Format (EDF) file headers.
mdfPath character. Morpheo Data Format (MDF) directory path.
endian character. Endianess. "big" or "little". Defaults to "little".
write_mdf

References

write_mdf

Write a European Data Format (EDF) record file to disk using Morpheo Data Format (MDF) guidelines. Target directory is erased if it already exists. Signals are stored in binary file, events and metadata in JavaScript Object Notation (JSON) files.

Description

Write a European Data Format (EDF) record file to disk using Morpheo Data Format (MDF) guidelines. Target directory is erased if it already exists. Signals are stored in binary file, events and metadata in JavaScript Object Notation (JSON) files.

Usage

write_mdf(edfPath, mdfPath, channels = c(NA), events = c(), endian = "little")

Arguments

edfPath character. European Data Format (EDF) file path.
mdfPath character. Morpheo Data Format (MDF) directory path.
channels character. Vector of channels labels to write.
events dataframe. Events dataframe to write. Events dataframe. Dataframe must contain begin (POSIXt), end (POSIXt) and event (character) columns.
edian character. Endianess. "big" or "little". Defaults to "little".

References

Index

*Topic **datasets**
 - example_ecg_200hz, 5
 - example_hypnogram_30s, 5

bands_power, 2
check_events, 3
detect_rpeaks, 3
epochs, 4
example_ecg_200hz, 5
example_hypnogram_30s, 5
hypnogram, 6
normalize_cycles, 6
plot_hypnogram, 7
read_events_nocturnal, 8
read_mdf, 8
spectrogram, 9
stages Stats, 10
write_channel, 10
write_mdf, 11