Package ‘rspa’

May 24, 2022

Maintainer Mark van der Loo <mark.vanderloo@gmail.com>
License GPL-3
Title Adapt Numerical Records to Fit (in)Equality Restrictions
Type Package
LazyLoad yes
Author Mark van der Loo
Description Minimally adjust the values of numerical records in a data.frame, such that each record satisfies a predefined set of equality and/or inequality constraints. The constraints can be defined using the 'validate' package. The core algorithms have recently been moved to the 'lintools' package, refer to 'lintools' for a more basic interface and access to a version of the algorithm that works with sparse matrices.
Version 0.2.6
Depends R (>= 2.13.0)
Imports graphics, stats, validate, lintools
Suggests editrules, tinytest
URL https://github.com/markvanderloo/rspa
BugReports https://github.com/markvanderloo/rspa/issues
RoxygenNote 7.2.0
Encoding UTF-8
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-05-24 10:00:02 UTC

R topics documented:

rspa-package .. 2
match_restrictions .. 2
remove_tag .. 4
tagged_values .. 4
tag_missing ... 5
Description

Given a vector x^0, and a set linear restrictions of the form $a_i \cdot x_i = b_i$ and/or $a_i \cdot x_i \leq b_i$ with $i = 1, 2, \ldots, m$. This package finds the nearest vector to x^0 (in the (weighted) euclidean sense) that satisfies all restrictions.

Details

Much of this package’s functionality, including algorithms for working with large, sparse problems has been moved to the lintools package. This package will serve as a front-end for application of the succesive projection algorithm for data stored in data.frame like objects.

match_restrictions

Alter numeric data records to match linear (in)equality constraints.

Description

Apply the successive projection algorithm to adjust each record in dat to satisfy a set of linear (in)equality constraints.

Usage

```r
match_restrictions(
  dat,
  restrictions,
  adjust = rep(TRUE, ncol(dat)),
  weight = rep(1, ncol(dat)),
  remove_tag = TRUE,
  ...
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>A data.frame</td>
</tr>
<tr>
<td>restrictions</td>
<td>An object of class validator</td>
</tr>
<tr>
<td>adjust</td>
<td>(optional) A logical matrix of dimensions dim(dat) where TRUE indicates that a value may be adjusted. When missing, the tagged_values are used. If no tagging was applied, adjust will default to an all TRUE matrix with dimensions equal to dim(dat).</td>
</tr>
<tr>
<td>weight</td>
<td>A weight vector of length ncol(dat) or a matrix of dimensions dim(dat).</td>
</tr>
<tr>
<td>remove_tag</td>
<td>if a value position indicator is present, remove it?</td>
</tr>
</tbody>
</table>

... arguments passed to project.
Value
dat, with values adapted.

Note on inequality restrictions
All inequality restrictions of the form \(a.x < b \) are treated as \(a.x \leq b \). The idea is to project the original record \(x \) onto the boundary defined by the (in)equations. Projection on a boundary defined by a strict inequation is illdefined since the value \(b \) in the restriction \(a.x < b \) is strictly outside the valid region.

See Also
tag_missing

Examples

```r
# a very simple adjustment example
v <- validate::validator(
x + y == 10,
x > 0,
y > 0
)

# x and y will be adjusted by the same amount
match_restrictions(data.frame(x=4,y=5), v)

# One of the inequalities violated
match_restrictions(data.frame(x=-1,y=5), v)

# Weighted distances: 'heavy' variables change less
match_restrictions(data.frame(x=4,y=5), v, weight=c(100,1))

# if w=1/x0, the ratio between coefficients of x0 stay the same (to first order)
x0 <- data.frame(x=4,y=5)
x1 <- match_restrictions(x0, v, weight=1/as.matrix(x0))
x0[,1]/x0[,2]
x1[,1] / x1[2]

# example of tag usage
v <- validate::validator(x + y == 1, x>0,y>0)
d <- data.frame(x=NA,y=0.5)
d <- tag_missing(d)
# impute
d[1,1] <- 1

# only the tagged values will be altered. The tag is
# removed afterwards.
match_restrictions(d,v)
```
remove_tag Remove cell position tags

Description
Remove cell position tags

Usage
remove_tag(dat, ...)

Arguments
- dat [data.frame]
- ... Currently not used

Value
dat with tag removed

See Also
Other tagging: tag_missing(), tagged_values()

tagged_values Retrieve tagged cell positions

Description
Retrieve tagged cell positions

Usage
tagged_values(dat, ...)

Arguments
- dat [data.frame]
- ... Currently not used

Value
A logical matrix, or NULL

See Also
Other tagging: remove_tag(), tag_missing()
tag_missing

Tag currently missing elements of a data.frame

Description

Attach an attribute that marks which cells are empty (NA).

Usage

```r
tag_missing(dat, ...)
```

Arguments

- `dat` [data.frame] to be tagged
- `...` Currently not used.

Value

`dat`, tagged for missing values.

See Also

Other tagging: `remove_tag()`, `tagged_values()`
Index

* tagging
 - remove_tag, 4
 - tag_missing, 5
 - tagged_values, 4

match_restrictions, 2

project, 2

remove_tag, 4, 4, 5
rspa-package, 2

tag_missing, 3, 4, 5
tagged_values, 2, 4, 4, 5

validator, 2