Package ‘rsvd’

July 29, 2019

Type Package
Title Randomized Singular Value Decomposition
Version 1.0.2
Date 2019-07-28
Author N. Benjamin Erichson [aut, cre]
Maintainer N. Benjamin Erichson <erichson@berkeley.edu>
Description Low-rank matrix decompositions are fundamental tools and widely used for data analysis, dimension reduction, and data compression. Classically, highly accurate deterministic matrix algorithms are used for this task. However, the emergence of large-scale data has severely challenged our computational ability to analyze big data. The concept of randomness has been demonstrated as an effective strategy to quickly produce approximate answers to familiar problems such as the singular value decomposition (SVD). The rsvd package provides several randomized matrix algorithms such as the randomized singular value decomposition (rsvd), randomized principal component analysis (rpca), randomized robust principal component analysis (rrpca), randomized interpolative decomposition (rid), and the randomized CUR decomposition (rcur). In addition several plot functions are provided. The methods are discussed in detail by Erichson et al. (2016) <arXiv:1608.02148>.

Depends R (>= 3.2.2)
Imports Matrix
License GPL (>= 3)
LazyData TRUE

URL https://github.com/erichson/rSVD
BugReports https://github.com/erichson/rSVD/issues
Suggests ggplot2, testthat
RoxygenNote 6.1.0
NeedsCompilation no
Encoding UTF-8
Repository CRAN
Date/Publication 2019-07-29 04:10:02 UTC
R topics documented:

- digits ... 2
- ggbiplot .. 3
- ggcorplot 4
- ggindplot 5
- ggscreepplot 6
- plot.rpca 7
- rcur .. 7
- rid .. 10
- rpca ... 12
- rqb .. 14
- rrpca ... 16
- rsvd .. 18
- tiger .. 20

digits

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsampled MNIST database of handwritten digits. This smaller dataset has 3000 samples for each of the digits corresponding to the class labels 0,1,2,3. Each 28x28 image patch is stored as a flattened row vector.</td>
</tr>
</tbody>
</table>

Usage

```r
data('digits')
```

Format

An object of class `rsvd`.

Source

`mnist`

References

1http://yann.lecun.com/exdb/mnist/
ggbiplot

Biplot for rpca using ggplot.

Description

Creates a pretty biplot which is showing the individual factor map overlayed by the variables factor map, i.e, plotting both the principal component scores and directions.

Usage

```r
ggbiplot(rpcaObj, pcs = c(1, 2), loadings = TRUE, groups = NULL,
         alpha = 0.6, ellipse = TRUE, alpha.ellipse = 0.2,
         var_labels = TRUE, var_labels.names = NULL, ind_labels = TRUE,
         ind_labels.names = NULL)
```

Arguments

- **rpcaObj**
 - Object returned by the rpca function.
- **pcs**
 - Array_like.
 - An array with two values indicating the two PCs which should be used for plotting. By default the first two PCs are used, e.g., c(1, 2).
- **loadings**
 - Bool (TRUE, FALSE), optional.
 - If TRUE, the eigenvectors are unit scaled by the square root of the eigenvalues $W = W * diag(sqrt(eigvals))$.
- **groups**
 - Factor, optional.
 - Factor indicating groups.
- **alpha**
 - Scalar, optional.
 - Alpha transparency for scatter plot.
- **ellipse**
 - Bool (TRUE, FALSE), optional.
 - Draw a 1sd data ellipse for each group, if TRUE.
- **alpha.ellipse**
 - Scalar, optional.
 - Alpha transparency for ellipse.
ggcorplot

Description
Creates a pretty plot which is showing the correlation of the original variable with the principal component (PCs).

Usage

```r
ggcorplot(rpcaObj, pcs = c(1, 2), loadings = TRUE,
          var_labels = FALSE, var_labels.names = NULL, alpha = 1,
          top.n = NULL)
```

Arguments

- **rpcaObj**: Object returned by the rpca function.
- **pcs**: Array_like.
 An array with two values indicating the two PCs which should be used for plotting. By default the first two PCs are used, e.g., `c(1, 2)`.
- **loadings**: Bool (`TRUE`, `FALSE`), optional.
 If `TRUE`, the eigenvectors are unit scaled by the square root of the eigenvalues $W = W \ast \text{diag}(\sqrt{\text{eigvals}})$.

Var_labels

- **Bool (`TRUE`, `FALSE`), optional.**
 Plot variable names, if `TRUE`.

- **var_labels.names**: Array_like, optional.
 User specific labels for the variables.

Ind_labels

- **Bool (`TRUE`, `FALSE`), optional.**
 Plot data point names, if `TRUE`.

- **ind_labels.names**: Array_like, optional.
 User specific labels for data points.

Author(s)

N. Benjamin Erichson, <erichson@berkeley.edu>

See Also

rpca, ggplot

Examples

```r
#See ?rpca
```
ggindplot

var_labels Bool (TRUE, FALSE), optional.
Plot variable names, if TRUE.

var_labels.names
Array_like, optional.
User specific labels for the variables

alpha Scalar, optional.
Alpha transparency of the arrows.

top.n Scalar, optional.
Number of (most influencial) variables to label with small circles.

Author(s)

N. Benjamin Erichson, <erichson@berkeley.edu>

See Also

rpca, ggplot

Examples

#

ggindplot

Description

Creates a pretty plot which is showing the individual factor map, i.e, plotting the principal component scores.

Usage

ggindplot(rpcaObj, pcs = c(1, 2), groups = NULL, alpha = 0.6, ellipse = TRUE, alpha.ellipse = 0.2, ind_labels = TRUE, ind_labels.names = NULL)

Arguments

rpcaObj Object returned by the rpca function.

pcs Array_like.
An array with two values indicating the two PCs which should be used for plotting. By default the first two PCs are used, e.g., c(1, 2).

groups Factor, optional.
Factor indicating groups.
alpha
Scalar, optional.
Alpha transparency for scatter plot.

ellipse
Bool (\texttt{TRUE}, \texttt{FALSE}), optional.
Draw a 1sd data ellipse for each group, if \texttt{TRUE}.

alpha.ellipse
Scalar, optional.
Alpha transparency for ellipse.

ind_labels
Bool (\texttt{TRUE}, \texttt{FALSE}), optional.
Plot names for each individual point, if \texttt{TRUE}.

ind_labels.names
Array_like, optional.
User specific labels for the individual points.

Author(s)

N. Benjamin Erichson, \texttt{erichson@berkeley.edu}

See Also

rpca, ggplot

Examples

#See \texttt{?rpca}

ggscreeplot

\textit{Pretty Screeplot}

Description

Creates a pretty screeplot using \texttt{ggplot}. By default the explained variance is plotted against the number of the principal component. Alternatively the explained variance ratio, the cumulative explained variance ratio, or the eigenvalues can be plotted.

Usage

ggscreeplot(rpcaObj, type = c("var", "ratio", "cum", "eigenvals"))

Arguments

rpcaObj
Object returned by the \texttt{rpca} function.

type
String c(\texttt{`var'}, \texttt{`ratio'}, \texttt{`cum'}, \texttt{`eigenvals'}), optional.

.................

.................
plot.rpca

Author(s)
N. Benjamin Erichson,<erichson@berkeley.edu>

See Also
rpca.ggplot

Examples
#

plot.rpca Screeplot

Description
Creates a screeplot, variables and individual factor maps to summarize the results of the rpca function.

Usage
```r
## S3 method for class 'rpca'
plot(x, ...)
```

Arguments
- `x` Object returned by the rpca function.
- `...` Additional arguments passed to the individual plot functions (see below).

See Also
ggscreeplot, ggcorplot, ggindplot

Examples
#
Randomized CUR matrix decomposition.

Usage

```r
cur(A, k = NULL, p = 10, q = 0, idx_only = FALSE, rand = TRUE)
```

Arguments

- `A`: array_like; numeric (m, n) input matrix (or data frame). If the data contain `NA`s `na.omit` is applied.
- `k`: integer; target rank of the low-rank approximation, i.e., the number of columns/rows to be selected. It is required that k is smaller or equal to $\min(m, n)$.
- `p`: integer, optional; oversampling parameter (default $p = 10$).
- `q`: integer, optional; number of additional power iterations (default $q = 0$).
- `idx_only`: bool, optional; if `TRUE`, only the index set $C.\text{idx}$ and $R.\text{idx}$ is returned, but not the matrices C and R. This is more memory efficient, when dealing with large-scale data.
- `rand`: bool, optional; if `TRUE`, a probabilistic strategy is used, otherwise a deterministic algorithm is used.

Details

Algorithm for computing the CUR matrix decomposition of a rectangular (m, n) matrix A, with target rank $k << \min(m, n)$. The input matrix is factored as

$$A = C \ast U \ast R$$

using the `rid` decomposition. The factor matrix C is formed using actual columns of A, also called the partial column skeleton. The factor matrix R is formed using actual rows of A, also called the partial row skeleton.

If `rand = TRUE` a probabilistic strategy is used to compute the decomposition, otherwise a deterministic algorithm is used.
_value

rcur returns a list with class id containing the following components:

\textbf{C} array_like;
\begin{itemize}
 \item column subset \(C = A\{C.idx\}; (m, k) \) dimensional array.
\end{itemize}

\textbf{R} Array_like;
\begin{itemize}
 \item row subset \(R = A\{R.idx\}; (k, n) \) dimensional array.
\end{itemize}

\textbf{U} array_like;
\begin{itemize}
 \item connector matrix; \((k, k)\) dimensional array.
\end{itemize}

\textbf{C.idx} array_like;
\begin{itemize}
 \item index set of the \(k \) selected columns used to form \(C \).
\end{itemize}

\textbf{R.idx} array_like;
\begin{itemize}
 \item index set of the \(k \) selected rows used to form \(R \).
\end{itemize}

\textbf{C.scores} array_like;
\begin{itemize}
 \item scores of the selected columns.
\end{itemize}

\textbf{R.scores} array_like;
\begin{itemize}
 \item scores of the selected rows.
\end{itemize}

\section*{Author(s)}

N. Benjamin Erichson, \texttt{<erichson@berkeley.edu>}

\section*{References}

\section*{See Also}

\texttt{rid}

\section*{Examples}

```r
## Not run:
# Load test image
data('tiger')

# Compute (column) randomized interpolative decomposition
# Note that the image needs to be transposed for correct plotting
out <- rcur(tiger, k = 150)

# Reconstruct image
tiger.re <- out$C %*% out$U %*% out$R
```

```
# Compute relative error
print(norm(tiger-tiger.re, 'F') / norm(tiger, 'F'))

# Plot approximated image
image(tiger.re, col = gray((0:255)/255))

### End(Not run)

---

rid

**Randomized interpolative decomposition (ID).**

### Description

Randomized interpolative decomposition.

### Usage

```r
rid(A, k = NULL, mode = "column", p = 10, q = 0,
 idx_only = FALSE, rand = TRUE)
```

### Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>array_like; numeric $(m, n)$ input matrix (or data frame). If the data contain NAs na.omit is applied.</td>
</tr>
<tr>
<td>k</td>
<td>integer, optional; number of rows/columns to be selected. It is required that $k$ is smaller or equal to $\min(m,n)$.</td>
</tr>
<tr>
<td>mode</td>
<td>string c('column', 'row'), optional; columns or rows ID.</td>
</tr>
<tr>
<td>p</td>
<td>integer, optional; oversampling parameter (default $p = 10$).</td>
</tr>
<tr>
<td>q</td>
<td>integer, optional. number of additional power iterations (default $q = 0$).</td>
</tr>
<tr>
<td>idx_only</td>
<td>bool, optional; if (TRUE), the index set idx is returned, but not the matrix C or R. This is more memory efficient, when dealing with large-scale data.</td>
</tr>
<tr>
<td>rand</td>
<td>bool, optional; if (TRUE), a probabilistic strategy is used, otherwise a deterministic algorithm is used.</td>
</tr>
</tbody>
</table>
Details

Algorithm for computing the ID of a rectangular \((m, n)\) matrix \(A\), with target rank \(k << \min(m, n)\). The input matrix is factored as

\[ A = C \ast Z \]

using the column pivoted QR decomposition. The factor matrix \(C\) is formed as a subset of columns of \(A\), also called the partial column skeleton. If \(\text{mode} = 'row'\), then the input matrix is factored as

\[ A = Z \ast R \]

using the row pivoted QR decomposition. The factor matrix \(R\) is now formed as a subset of rows of \(A\), also called the partial row skeleton. The factor matrix \(Z\) contains a \((k, k)\) identity matrix as a submatrix, and is well-conditioned.

If \(\text{rand} = 'TRUE'\) a probabilistic strategy is used to compute the decomposition, otherwise a deterministic algorithm is used.

Value

\texttt{rid} returns a list containing the following components:

- \(C\) array_like;
  - column subset \(C = A[,idx]\), if \(\text{mode} = 'column'\); array with dimensions \((m, k)\).
- \(R\) array_like;
  - row subset \(R = A[idx,]\), if \(\text{mode} = 'row'\); array with dimensions \((k, n)\).
- \(Z\) array_like;
  - well conditioned matrix; Depending on the selected mode, this is an array with dimensions \((k, n)\) or \((m, k)\).
- \(idx\) array_like;
  - index set of the \(k\) selected columns or rows used to form \(C\) or \(R\).
- \(pivot\) array_like;
  - information on the pivoting strategy used during the decomposition.
- \(scores\) array_like;
  - scores of the columns or rows of the input matrix \(A\).
- \(scores.idx\) array_like;
  - scores of the \(k\) selected columns or rows in \(C\) or \(R\).

Author(s)

N. Benjamin Erichson, <erichson@uw.edu>

References

See Also
rcur.

Examples

```r
Not run:
Load test image
data("tiger")

Compute (column) randomized interpolative decompsition
Note that the image needs to be transposed for correct plotting
out <- rid(t(tiger), k = 150)

Show selected columns
tiger.partial <- matrix(0, 1200, 1600)
tiger.partial[, out$idx] <- t(tiger)[, out$idx]
image(t(tiger.partial), col = gray((0:255)/255), useRaster = TRUE)

Reconstruct image
tiger.re <- t(out$C %*% out$Z)

Compute relative error
print(norm(tiger - tiger.re, 'F') / norm(tiger, 'F'))

Plot approximated image
image(tiger.re, col = gray((0:255)/255))

End(Not run)
```

**rpca**

*Randomized principal component analysis (rpca).*

Description

Fast computation of the principal components analysis using the randomized singular value decomposition.

Usage

```r
rpca(A, k = NULL, center = TRUE, scale = TRUE, retx = TRUE,
p = 10, q = 2, rand = TRUE)
```

Arguments

- **A**
  
a numeric \((m, n)\) input matrix (or data frame) to be analyzed.
  If the data contain \(NAs\) na.omit is applied.
**Details**

Principal component analysis is an important linear dimension reduction technique.

Randomized PCA is computed via the randomized SVD algorithm (rsvd). The computational gain is substantial, if the desired number of principal components is relatively small, i.e. \( k \ll \min(m, n) \).

The print and summary method can be used to present the results in a nice format. A scree plot can be produced with `ggscreeplot`. The individuals factor map can be produced with `ggindplot`, and a correlation plot with `ggcorplot`.

The predict function can be used to compute the scores of new observations. The data will automatically be centered (and scaled if requested). This is not fully supported for complex input matrices.

**Value**

`rpca` returns a list with class `rpca` containing the following components:

- **rotation** array_like;
  the rotation (eigenvectors); \((n, k)\) dimensional array.

- **eigvals** array_like;
  eigenvalues; \(k\) dimensional vector.

- **sdev** array_like;
  standard deviations of the principal components; \(k\) dimensional vector.

- **x** array_like;
  the scores / rotated data; \((m, k)\) dimensional array.

- **center, scale** array_like;
  the centering and scaling used.
Note

The principal components are not unique and only defined up to sign (a constant of modulus one in the complex case) and so may differ between different PCA implementations. Similar to `prcomp` the variances are computed with the usual divisor N - 1.

Author(s)

N. Benjamin Erichson, <erichson@berkeley.edu>

References


See Also

ggscreenplot, ggindplot, ggcorplot, plot.rpca, predict, rsvd

Examples

```r
library('rsvd')
#
Load Edgar Anderson's Iris Data
#
data('iris')

#
log transform
#
log.iris <- log(iris[, 1:4])
iris.species <- iris[, 5]

#
Perform rPCA and compute only the first two PCs
#
iris.rpca <- rpca(log.iris, k=2)
summary(iris.rpca) # Summary
print(iris.rpca) # Prints the rotations

#
Use rPCA to compute all PCs, similar to \code{\link{prcomp}}
#
iris.rpca <- rpca(log.iris)
summary(iris.rpca) # Summary
print(iris.rpca) # Prints the rotations
```
**rqb**

Randomized QB Decomposition (rqb).

---

**Description**

Compute the near-optimal QB decomposition of a rectangular matrix.

**Usage**

```r
rqb(A, k = NULL, p = 10, q = 2, sdist = "normal", rand = TRUE)
```

**Arguments**

- **A**: array_like; real/complex \((m, n)\) input matrix (or data frame).
- **k**: integer, optional; target rank of the low-rank decomposition. It should satisfy \(k << \min(m, n)\).
- **p**: integer, optional; oversampling parameter (default \(p = 10\)).
- **q**: integer, optional; number of power iterations (default \(q = 2\)).
- **sdist**: string \(c(\text{unif'}, \text{normal'}, \text{rademacher'})\), optional; specifies the sampling distribution:
  - \(\text{unif'}\): Uniform \([-1,1]\).
  - \(\text{normal'}\) (default): Normal \([-\text{N}(0,1)]\).
  - \(\text{rademacher'}\): Rademacher random variates.
- **rand**: bool, optional; If \(\text{TRUE}\), a probabilistic strategy is used, otherwise a deterministic algorithm is used.

**Details**

The randomized QB decomposition factors a rectangular \((m, n)\) matrix \(A\) as \(A = Q \ast B\). \(Q\) is an \((m, k)\) matrix with orthogonal columns, and \(B\) a \((k, n)\) matrix. The target rank is assumed to be \(k << \min(m, n)\).

\(p\) is an oversampling parameter to improve the approximation. A value between 5 and 10 is recommended, and \(p = 10\) is set by default.

The parameter \(q\) specifies the number of power (subspace) iterations to reduce the approximation error. This is recommended if the singular values decay slowly. In practice 1 or 2 iterations achieve good results, however, computing power iterations increases the computational time. The number of power iterations is set to \(q = 2\) by default.
Value

rqpc returns a list containing the following components:

- \( Q \) array_like; matrix with orthogonal columns; \((m, k)\) dimensional array.
- \( B \) array_like; smaller matrix; \((k, n)\) dimensional array.

Author(s)

N. Benjamin Erichson, <erichson@berkeley.edu>

References


See Also

svd

---

rrpca Randomized robust principal component analysis (rrpca).

Description

Robust principal components analysis separates a matrix into a low-rank plus sparse component.

Usage

rrpca(A, lambda = NULL, maxiter = 50, tol = 1e-05, p = 10, q = 2, trace = FALSE, rand = TRUE)

Arguments

- \( A \) array_like; a real \((m, n)\) input matrix (or data frame) to be decomposed. na.omit is applied, if the data contain NAs.
- \( \lambda \) scalar, optional; tuning parameter (default \( \lambda = \max(m, n)^{-0.5} \)).
- \( \text{maxiter} \) integer, optional; maximum number of iterations (default \( \text{maxiter} = 50 \)).
tol  scalar, optional;
     precision parameter (default tol = 1.0e−5).

p   integer, optional;
     oversampling parameter for rsvd (default p = 10), see rsvd.

q   integer, optional;
     number of additional power iterations for rsvd (default q = 2), see rsvd.

trace bool, optional;
     print progress.

rand bool, optional;
     if (TRUE), the rsvd routine is used, otherwise svd is used.

Details

Robust principal component analysis (RPCA) is a method for the robust separation of a rectangular
\((m, n)\) matrix \(A\) into a low-rank component \(L\) and a sparse component \(S\):
\[
A = L + S
\]

To decompose the matrix, we use the inexact augmented Lagrange multiplier method (IALM). The
algorithm can be used in combination with either the randomized or deterministic SVD.

Value

rrpca returns a list containing the following components:

L array_like;
     low-rank component; \((m, n)\) dimensional array.

S array_like
     sparse component; \((m, n)\) dimensional array.

Author(s)

N. Benjamin Erichson, <erichson@berkeley.edu>

References

     10.18637/jss.v089.i11.

     arxiv.org/abs/1009.5055).
Examples

```r
library('rsvd')

Create toy video
background frame
xy <- seq(-50, 50, length.out=100)
mgrid <- list(x=outer(xy*0,xy,FUN="+"), y=outer(xy,xy*0,FUN="+"))
bg <- 0.1*exp(sin(-mgrid$x**2-mgrid$y**2))
toyVideo <- matrix(rep(c(bg), 100), 100*100, 100)

add moving object
for(i in 1:90) {
 mobject <- matrix(0, 100, 100)
 mobject[i:(10+i), 45:55] <- 0.2
 toyVideo[,i] = toyVideo[,i] + c(mobject)
}

Foreground/Background separation
out <- rrpca(toyVideo, trace=TRUE)

Display results of the seperation for the 10th frame
par(mfrow=c(1,4))
image(matrix(bg, ncol=100, nrow=100)) #true background
image(matrix(toyVideo[,10], ncol=100, nrow=100)) # frame
image(matrix(out$L[,10], ncol=100, nrow=100)) # seperated background
image(matrix(out$S[,10], ncol=100, nrow=100)) #seperated foreground
```

rsvd

**Randomized Singular Value Decomposition (rsvd).**

Description

The randomized SVD computes the near-optimal low-rank approximation of a rectangular matrix using a fast probabilistic algorithm.

Usage

```r
rsvd(A, k = NULL, nu = NULL, nv = NULL, p = 10, q = 2,
 sdist = "normal")
```

Arguments

A  
array_like;  
a real/complex \((m,n)\) input matrix (or data frame) to be decomposed.

k  
integer;  
specifies the target rank of the low-rank decomposition. \(k \ll min(m,n)\).
nu | integer, optional;  
number of left singular vectors to be returned. \( \text{nu} \) must be between 0 and \( k \).

nv | integer, optional;  
number of right singular vectors to be returned. \( \text{nv} \) must be between 0 and \( k \).

p | integer, optional;  
oversampling parameter (by default \( p = 10 \)).

q | integer, optional;  
number of additional power iterations (by default \( q = 2 \)).

sdist | string \( \text{c('unif', 'normal', 'rademacher')} \), optional;  
specifies the sampling distribution of the random test matrix:  
\( \text{'unif'} \) : Uniform \([-1,1]\).  
\( \text{'normal'} \) (default) : Normal \( \text{~N}(0,1) \).  
\( \text{'rademacher'} \) : Rademacher random variates.

Details

The singular value decomposition (SVD) plays an important role in data analysis, and scientific computing. Given a rectangular \((m, n)\) matrix \( A \), and a target rank \( k << \text{min}(m, n) \), the SVD factors the input matrix \( A \) as

\[ A = U_k \text{diag}(d_k) V_k^\top \]

The \( k \) left singular vectors are the columns of the real or complex unitary matrix \( U \). The \( k \) right singular vectors are the columns of the real or complex unitary matrix \( V \). The \( k \) dominant singular values are the entries of \( d \), and non-negative and real numbers.

\( p \) is an oversampling parameter to improve the approximation. A value of at least 10 is recommended, and \( p = 10 \) is set by default.

The parameter \( q \) specifies the number of power (subspace) iterations to reduce the approximation error. The power scheme is recommended, if the singular values decay slowly. In practice, 2 or 3 iterations achieve good results, however, computing power iterations increases the computational costs. The power scheme is set to \( q = 2 \) by default.

If \( k > \text{(min}(n, m)/4) \), a deterministic partial or truncated \text{svd} algorithm might be faster.

Value

\text{rsvd} \ returns a list containing the following three components:

\text{d} | array_like;  
singular values; vector of length \( (k) \).

\text{u} | array_like;  
left singular vectors; \((m, k)\) or \((m, \text{nu})\) dimensional array.

\text{v} | array_like;  
right singular vectors; \((n, k)\) or \((n, \text{nv})\) dimensional array.
Note

The singular vectors are not unique and only defined up to sign (a constant of modulus one in the complex case). If a left singular vector has its sign changed, changing the sign of the corresponding right vector gives an equivalent decomposition.

Author(s)

N. Benjamin Erichson, <erichson@berkeley.edu>

References


See Also

svd, rpca

Examples

```r
library('rsvd')

Create a n x n Hilbert matrix of order n,
with entries H[i,j] = 1 / (i + j + 1).

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }

H <- hilbert(n=50)

Low-rank (k=10) matrix approximation using rsvd
k=10
s <- rsvd(H, k=k)
Hre <- s$u %*% diag(s$d) %*% t(s$v) # matrix approximation

print(100 * norm(H - Hre, 'F') / norm(H,'F')) # percentage error

Compare to truncated base svd
s <- svd(H)
Hre <- s$u[,1:k] %*% diag(s$d[1:k]) %*% t(s$v[,1:k]) # matrix approximation

print(100 * norm(H - Hre, 'F') / norm(H,'F')) # percentage error
```

Description

1600x1200 grayscaled (8 bit [0-255]/255) image.
Usage

```r
data('tiger')
```

Format

An object of class `rsvd`.

Source

Wikimedia²

References

S. Taheri (2006). "Panthera tigris altaica", (Online image)

Examples

```r
Not run:
library('rsvd')
data('tiger')

#Display image
image(tiger, col = gray((0:255)/255))

End(Not run)
```