Package ‘rsvd’

July 29, 2016

Type Package
Title Randomized Singular Value Decomposition
Version 0.6
Date 2016-07-28
Author N. Benjamin Erichson [aut, cre]
Maintainer N. Benjamin Erichson <nbe@st-andrews.ac.uk>
Description Randomized singular value decomposition (rsvd) is a very fast probabilistic algorithm that can be used to compute the near optimal low-rank singular value decomposition of massive data sets with high accuracy. SVD plays a central role in data analysis and scientific computing. SVD is also widely used for computing (randomized) principal component analysis (PCA), a linear dimensionality reduction technique. Randomized PCA (rpca) uses the approximated singular value decomposition to compute the most significant principal components. This package also includes a function to compute (randomized) robust principal component analysis (RPCA). In addition several plot functions are provided.
Depends R (>= 3.2.2)
License GPL (>= 2)
LazyData TRUE
URL https://github.com/Benli11/Rsvd
BugReports https://github.com/Benli11/Rsvd
RoxygenNote 5.0.1
Suggests ggplot2, plyr, scales, grid, testthat, knitr, rmarkdown
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-29 06:41:14

R topics documented:

 ggbiplot .. 2
 ggcorplot .. 3
 ggscreeplot .. 3

1
Biplot for rPCA using ggplot2

Description

Biplot for rPCA using ggplot2

Usage

```r
ggbiplot(rpcaObj, pcs = c(1, 2), groups = NULL, ellipse = TRUE, alpha.ellipse = 0.2, loadings = TRUE, labels = TRUE, ...)
```

Arguments

- `rpcaObj`: object containing the sdev component, such as that returned by `rpca`
- `pcs`: array_like
- `groups`: optional, factor
- `ellipse`: draw a 1sd data ellipse for each group
- `alpha.ellipse`: alpha transparency for ellipse
- `loadings`: draw arrows for the variables
- `labels`: label variables
- `...`: arguments passed to or from other methods, see `ggplot`.

Author(s)

N. Benjamin Erichson, <nbe@st-andrews.ac.uk>

See Also

`rpca`, `ggplot`

Examples

```r
#See ?rpca
```
ggcorplot

Correlation plot

Description

Creates a pretty plot which is showing the correlation of the original variable with the principal component (PCs).

Usage

```r
ggcorplot(rpcaObj, pcs = c(1, 2))
```

Arguments

- `rpcaObj` object containing the sdev component, such as that returned by `rpca`
- `pcs` array_like an array with two values indicating which two PCs should be plotted, by default the first two PCs are used, e.g., `c(1, 2)`.

See Also

- `rpca`, `ggplot`

Examples

```r
#
```

ggscreeplot

Pretty Screeplot

Description

Creates a pretty screeplot using `ggplot`. By default the explained variance is plotted against the number of the principal component. Alternatively the eigenvalues, explained variance ratio or the cumulative explained variance ratio can be plotted.

Usage

```r
ggscreeplot(rpcaObj, type = c("var", "ratio", "cum", "eigenvals"))
```
Arguments

rpcaObj object containing the sdev component, such as that returned by rpca

type str c('var', 'ratio', 'cum', 'eigenvals'), optional

See Also

rpca, ggplot

Examples

#

plot.rpca

Description

Creates a screeplot. By default the explained variance is plotted against the number of the principal component. Alternatively the eigenvalues, explained variance ratio or the cumulative explained variance ratio can be plotted.

Usage

S3 method for class 'rpca'
plot(x, type = c("var", "ratio", "cum", "eigenvals"), ...)

Arguments

x object containing the sdev component, such as that returned by rpca

type str c('var', 'ratio', 'cum', 'eigenvals'), optional

... arguments passed to or from other methods, see plot.

See Also

rpca

Examples

#
Description
Computes the approximate low-rank eigendecomposition of a symmetric matrix.

Usage
reigen(A, k = NULL, p = 10, q = 1, sdist = "unif")

Arguments
A array_like
a real/complex input matrix (or data frame), with dimensions (m, n).

k int, optional
determines the target rank of the low-rank decomposition and should satisfy
k << min(m, n).

p int, optional
oversampling parameter for (default p = 10).

q int, optional
number of power iterations (default q = 1).

sdist str c('normal', 'unif', 'spixel'), optional
Specifies the sampling distribution.
'unif' : (default) Uniform '[-1,1]'.
'normal' : Normal ' ~N(0,1)',
'col' : Random column sampling.

Details
The eigenvalue decomposition plays a central role in data analysis and scientific computing. Randomized eigen (reigen) is a fast algorithm to compute the the approximate low-rank eigenvalue decomposition of $A' A$ given the rectangular (m, n) matrix A using a probabilistic algorithm. Given a target rank $k << n$, reigen factors the input matrix A as $A' A = V * diag(d) * V'$. The eigenvectors are the columns of the real or complex unitary matrix V. The eigenvalues d are non-negative and real numbers.

The parameter p is a oversampling parameter to improve the approximation. A value between 2 and 10 is recommended and $p = 10$ is set as default.

The parameter q specifies the number of normalized power iterations (subspace iterations) to reduce the approximation error. This is recommended if the the singular values decay slowly. In practice 1 or 2 iterations archive good results, however, computing power iterations increases the computational time. The number of power iterations is set to $q = 1$ by default.

If $k > (\min(n, m)/1.5)$, a deterministic partial or truncated eigen algorithm might be faster.
reigen

Value

reigen returns a list containing the following two components:

values array_like
 Eigenvalues; 1-d array of length (k).

vectors array_like
 Eigenvectors; array with dimensions (k, k).

Note

The eigenvectors are not unique and only defined up to sign (a constant of modulus one in the complex case).

Author(s)

N. Benjamin Erichson, <nbe@st-andrews.ac.uk>

References

See Also

rsvd, r pca, eigen

Examples

library(rsvd)
set.seed(123)

Create real random test matrix with dimension (m, n) and rank k
m = 10
n = 5
k = 3
A <- matrix(rnorm(m*k), m, k)
A <- A %*% t(A)
A <- A[,1:n]

AtA = t(A) %*% A

Randomized low-rank eigenvalue decomposition k=3
reigen.out <- reigen(A, k=3)
AtA.re = reigen.out$vectors %*% diag(reigen.out$values) %*% t(reigen.out$vectors)
rpca

Description

Principal components analysis using randomized singular value decomposition.

Usage

```
rpca(A, k = NULL, center = TRUE, scale = TRUE, loading = FALSE, 
retx = FALSE, svdaig = "auto", p = 10, q = 1, ...)
```

Arguments

- **A** array_like
 a numeric input matrix (or data frame), with dimensions \((m, n)\).
 If the data contain \(N\)As `na.omit` is applied.
- **k** int, optional
 determines the number of principle components to compute. It is required that
 \(k\) is smaller or equal to \(n\), but it is recommended that \(k << \min(m, n)\).
- **center** bool \((TRUE, FALSE)\), optional
 a logical value \((TRUE\) by default) indicating whether the variables should be
 shifted to be zero centered. Alternatively, a vector of length equal the number of
 columns of \(A\) can be supplied. The value is passed to scale.
- **scale** bool \((TRUE, FALSE)\), optional
 a logical value \((TRUE\) by default) indicating whether the variables should be
 scaled to have unit variance. Alternatively, a vector of length equal the number of
 columns of \(A\) can be supplied. The value is passed to scale.
- **loading** bool \((TRUE, FALSE)\), optional
 When \(TRUE\) (by default \(FALSE\)) the eigenvectors are unit scaled by the
 square root of the eigenvalues \(W = W * \text{diag}(\text{sqrt(eigvals)})\).
- **retx** bool \((TRUE, FALSE)\), optional
 a logical value \((FALSE\) by default) indicating whether the rotated variables /
 scores should be returned.
svdalg str c('auto', 'reigen', 'rsvd', svd'), optional
Determines which algorithm should be used for computing the singular value de-
composition. By default 'auto' is used, which decides whether to use reigen or
svd, depending on the number of principle components. If \(k < \min(n, m)/1.5 \)
randomized reigen is used. Instead rsvd can be used, as well.
p int, optional
oversampling parameter for reigen (default \(p = 10 \)), see reigen.
q int, optional
number of power iterations for reigen (default \(q = 1 \)), see reigen.
... arguments passed to or from other methods, see reigen.

Details

Principal component analysis is a linear dimensionality reduction technique, aiming to keep only
the most significant principal components to allow a better interpretation of the data and to project
the data to a lower dimensional space.

Traditionally, the computation is done by a (deterministic) singular value decomposition. Ran-
donized PCA is computed using a fast randomized algorithm (rsvd) to compute the approximate
low-rank SVD decomposition. The computational gain is high if the desired number of principal
components is small, i.e. \(k << n \).

rsvd expects a numeric (real/complex) input matrix with dimensions \((m, n)\). Given a target rank
\(k \), rsvd factors the input matrix \(A \) as \(A = W \ast \text{diag}(s) \ast W' \). The columns of the real or complex
unitary matrix \(W \) contain the eigenvectors (i.e. principal components). The vector \(s \) contains
the corresponding eigenvalues. Following prcomp we denote this matrix \(W \) as rotation matrix
(commonly also called loadings).

The print and summary method can be used to present the results in a nice format. A scree plot
can be produced with the plot function or as recommended with ggscreeplot. A biplot can be
produced with ggbiplot, and a correlation plot with ggcorplot.

The predict function can be used to compute the scores of new observations. The data will automatic-
ically be centred (and scaled if requested). This is not fully supported for complex input matrices.

Value

rpca returns a list with class rpca containing the following components:

rotation array_like
matrix containing the rotation (eigenvectors), or the variable loadings if loadings =
TRUE; array with dimensions \((n, k)\).

loading array_like
matrix containing the loadings (scaled eigenvectors), if loadings = TRUE;
array with dimensions \((n, k)\).

eigvals array_like
the eigenvalues; 1-d array of length \(k \).

sdev array_like
the standard deviations of the principal components.
rpca

array_like
if `retx` is true a matrix containing the scores / rotated data (centred and scaled if requested) is returned.

center, scale array_like
the centering and scaling used, or `FALSE`.

Note

The principal components are not unique and only defined up to sign (a constant of modulus one in the complex case) and so may differ between different PCA implementations.
Similar to `prcomp` the variances are computed with the usual divisor `N - 1`.
Note also that `scale = TRUE` cannot be used if there are zero or constant (for `center = TRUE`) variables.

Author(s)

N. Benjamin Erichson, <nbe@st-andrews.ac.uk>

See Also

ggscreeplot, ggbiplot, ggcorplot, plot.rpca, predict.rsvd

Examples

library(rsvd)
#
Load Edgar Anderson's Iris Data
data(iris)
#
log transform
#
log.iris <- log(iris[, 1:4])
iris.species <- iris[, 5]
#
Perform rPCA and compute all PCs, similar to \code{\link{prcomp}}
iris.rpca <- rpca(log.iris, retx=TRUE)
summary(iris.rpca) # Summary
print(iris.rpca) # Prints the rotations
#
You can compare the results with prcomp
iris.pca <- prcomp(log.iris, center = TRUE, scale. = TRUE)
summary(iris.pca) # Summary
print(iris.pca) # Prints the rotations
rrpca

Randomized robust principal component analysis (rrpca).

Description

Robust principal components analysis using randomized singular value decomposition.

Usage

rrpca(A, k = NULL, lamb = NULL, gamma = 1.25, rho = 1.5, maxiter = 50,
tol = 0.001, svdalg = "auto", p = 10, q = 1, trace = FALSE, ...)

Arguments

A array_like
 a numeric input matrix (or data frame), with dimensions \((m, n) \).
 If the data contain \(\text{NA} \)s na.omit is applied.

k int, optional
 determines the number of principle components to compute. It is required that \(k \leq \min(m, n) \).

lamb real, optional
 tuning parameter (default \(\text{lamb} = \max(m, n)^{-0.5} \)).

gamma real, optional
 tuning parameter (default \(\text{gamma} = 1.25 \)).
rrpca

- **rho**
 - real, optional
 - tuning parameter (default $\rho = 1.5$).

- **maxiter**
 - int, optional
 - determines the maximal numbers of iterations (default $\text{maxiter} = 20$).

- **tol**
 - real, optional
 - tolerance parameter for the desired convergence of the algorithm.

- **svdalg**
 - str c('auto', 'rsvd', 'svd'), optional
 - Determines which algorithm should be used for computing the singular value decomposition. By default 'auto' is used, which decides whether to use **rsvd** or **svd**, depending on the number of principle components. If $k < \min(n, m)/1.5$ randomized svd is used.

- **p**
 - int, optional
 - oversampling parameter for **rsvd** (default $p = 0$), see **rsvd**.

- **q**
 - int, optional
 - number of power iterations for **rsvd** (default $q = 1$), see **rsvd**.

- **trace**
 - bool, optional
 - print progress.

- **...**
 - arguments passed to or from other methods, see **rsvd**.

Details

Robust principal component analysis (RPCA) is a method for the robust separation of a rectangular (m, n) matrix A into a low-rank component L and a sparse component S as follows: $A = L + S$. Here we are using the fast randomized accelerated inexact augmented Lagrange multiplier method (IALM) for obtaining the robust separation.

Value

rrpca returns a list with class **rrpca** containing the following components:

- **L**
 - array_like
 - Low-rank component, array of shape (m, n).

- **S**
 - array_like
 - Sparse component, array of shape (m, n).

- **k**
 - int
 - target-rank used for the final iteration.

- **err**
 - vector
 - Frobenious error archived by each iteration.

Note

...
Author(s)

N. Benjamin Erichson, <nbe@st-andrews.ac.uk>

References

Examples

library(rsvd)

Create toy video
background frame
xy <- seq(-50, 50, length.out=100)
mgrid <- list(x=outer(xy*0,xy,FUN="+"), y=outer(xy,xy*0,FUN="+"))
bgs <- 0.1*exp(-mgrid$x**2-mgrid$y**2))
toyVideo <- matrix(rep(c(bg), 100), 100*100, 100)

add moving object
for(i in 1:90)
{
 mobjective <- matrix(0, 100, 100)
 mobjective[(10+i), 45:55] <- 0.2
 toyVideo[,i] = toyVideo[,i] + c(mobjec)
}

Foreground/Background separation
out <- rrpca(toyVideo, k=1, p=5, q=1, svdalg='rsvd', trace=TRUE)

Display results of the seperation for the 10th frame
par(mfrow=c(1,4))
image(matrix(bg, ncol=100, nrow=100)) #true background
image(matrix(toyVideo[,10], ncol=100, nrow=100)) # frame
image(matrix(out$[,10], ncol=100, nrow=100)) # seperated background
image(matrix(out$S[,10], ncol=100, nrow=100)) #seperated foreground

rs}v

Randomized Singular Value Decomposition (rs}).

Description

Compute the near-optimal low-rank singular value decomposition (SVD) of a rectangular matrix.

Usage

rs}v(A, k = NULL, nu = NULL, nv = NULL, p = 10, q = 1, sdist = "unif", vt = FALSE)
Arguments

A
array_like
a real/complex input matrix (or data frame), with dimensions \((m, n)\).

k
int, optional
determines the target rank of the low-rank decomposition and should satisfy
\(k << \min(m, n)\).

nu
int, optional
the number of left singular vectors to be computed. This must be between 0 and
\(k\).

nv
int, optional
the number of right singular vectors to be computed. This must be between 0 and
\(k\).

p
int, optional
oversampling parameter for (default \(p = 10\)).

q
int, optional
number of power iterations (default \(q = 1\)).

sdist
str('normal', 'unif', 'col'), optional
Specifies the sampling distribution.
'unif': (default) Uniform '[-1,1].'
'normal': Normal '~N(0,1)'.
'col': Random column sampling.

vtt
bool (\(TRUE, FALSE\)), optional
\(TRUE\) : returns the transposed right singular vectors \(vt\).
\(FALSE\) : (default) returns the right singular vectors as \(v\), this is the format as
\(svd\) returns \(v\).

Details

The singular value decomposition (SVD) plays a central role in data analysis and scientific computing. Randomized SVD (rSVD) is a fast algorithm to compute the approximate low-rank SVD of a rectangular \((m, n)\) matrix \(A\) using a probablistic algorithm. Given a target rank \(k << n\), \(rsvd\) factors the input matrix \(A\) as \(A = U \ast \text{diag}(d) \ast V'\). The right singular vectors are the columns
of the real or complex unitary matrix \(U\). The left singular vectors are the columns of the real or complex unitary matrix \(V\). The singular values \(d\) are non-negative and real numbers.

The parameter \(p\) is a oversampling parameter to improve the approximation. A value between 5 and 10 is recommended and \(p = 10\) is set by default.

The parameter \(q\) specifies the number of normalized power iterations (subspace iterations) to reduce the approximation error. This is recommended if the the singular values decay slowly. In practice 1 or 2 iterations achieve good results, however, computing power iterations increases the computational time. The number of power iterations is set to \(q = 1\) by default.

If \(k > (\min(n, m)/1.5)\), a deterministic partial or truncated \(svd\) algorithm might be faster.
Value

rsvd returns a list containing the following three components:

\[\begin{align*}
 \mathbf{d} & \quad \text{array_like} \\
 & \text{Singular values; 1-d array of length} \ (k). \\
 \mathbf{u} & \quad \text{array_like} \\
 & \text{Right singular values; array with dimensions} \ (m, k). \\
 \mathbf{v} \ (\text{or} \ \mathbf{vt}) & \quad \text{array_like} \\
 & \text{Left singular values; array with dimensions} \ (n, k). \\
 \text{Or if} \ \mathbf{vt} = \text{TRUE}, \text{array with dimensions} \ (k, n). \\
\end{align*} \]

Note

The singular vectors are not unique and only defined up to sign (a constant of modulus one in the complex case). If a left singular vector has its sign changed, changing the sign of the corresponding right vector gives an equivalent decomposition.

Author(s)

N. Benjamin Erichson, <nbe@st-andrews.ac.uk>

References

See Also

svd, rpca

Examples

```r
# Create a n by n Hilbert matrix of order n,
# with entries H[i,j] = 1 / (i + j + 1).
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
H <- hilbert(n=50)

# Low-rank (k=10) matrix approximation using rsvd
k=10
s <- rsvd(H, k=k)
Hre <- s$su @* diag(s$d) @* t(s$v) # matrix approximation
print(100 * norm(H - Hre, 'F') / norm(H,'F')) # percentage error
# Compare to truncated base svd
```
s <- svd(H)
Hre <- s$s[,1:k] %*% diag(s$ssd[,1:k]) %*% t(s$v[,1:k]) # matrix approximation
print(100 * norm(H - Hre, 'F') / norm(H,'F')) # percentage error

tiger

Tiger

Description

1600x1200 grayscaled (8 bit [0-255]/255) image.

Usage

data(tiger)

Format

An object of class "rsvd".

Source

Wikimedia

References

S. Taheri (2006). "Panthera tigris altaica", (Online image)

Examples

library(rsvd)
#data(tiger)

#Display image
#image(tiger, col = gray((0:255)/255))
Index

*Topic image
 tiger, 15

eigen, 5, 6

ggbiplot, 2, 8, 9
ggcorplot, 3, 8, 9
ggplot, 2-4
ggscreepplot, 3, 8, 9

plot, 4
plot.rpca, 4, 9
prcomp, 8, 9
predict, 9

reigen, 5, 8
rpca, 2-4, 6, 7, 14
rrpca, 10
rsvd, 6, 8, 9, 11, 12

svd, 8, 11, 13, 14

tiger, 15