Package ‘rticulate’

September 4, 2022

Type Package

Title Ultrasound Tongue Imaging

Version 1.7.3

Date 2022-09-04

Maintainer Stefano Coretta <stefano.coretta@gmail.com>

Description A tool for processing Articulate Assistant Advanced™ (AAA) export files and plot tongue contour data from any system.

URL https://github.com/stefanocoretta/rticulate

BugReports https://github.com/stefanocoretta/rticulate/issues

Depends R (>= 3.0.0)

Encoding UTF-8

LazyData true

Imports dplyr, ggplot2, glue, magrittr, mgcv, purrr, readr, rlang, stats, tibble, tidymv, tidy, tidyselect

RoxygenNote 7.2.1

Suggests knitr, rmarkdown, stringr

VignetteBuilder knitr

Language en_GB

License MIT + file LICENSE

NeedsCompilation no

Author Stefano Coretta [aut, cre]

Repository CRAN

Date/Publication 2022-09-04 16:20:02 UTC
get_origin

Description

It returns the Cartesian x, y coordinates of the virtual origin of the ultrasonic waves/probe surface (see Details).

Usage

get_origin(data, fan_lines = c(10, 25))

Arguments

data The spline data (the cartesian coordinates must be in two columns named X and Y).

fan_lines A numeric vector with two fan lines (the default is c(10, 25)).

Details

The function estimates the origin of the ultrasound waves from the probe using the spline data and the provided fan lines. The estimation method is based on Heyne, Matthias & Donald Derrick (2015) Using a radial ultrasound probe’s virtual origin to compute midsagittal smoothing splines in polar coordinates. The Journal of the Acoustical Society of America 138(6), EL509–EL514, DOI:10.1121/1.4937168.

Value

A numeric vector with the Cartesian (x, y) coordinates of the virtual origin of the ultrasonic waves/probe surface.
Origin estimation

The equations of the two fan lines (10 and 25 by default) are set equal to find their intersection. The intersection is the origin. In some cases, the linear estimation of the equation fails, and an error related to fit is returned. In these cases, try different fan lines by increasing the minimum fan line and/or changing the maximum fan line (for example, if c(10, 25) returns an error, try c(15, 30)).

palate

Palate profile dataset.

Description

A dataset containing the palate profile of a single speaker.

Usage

`palate`

Format

A data frame with 42 rows and 14 variables.

- **speaker**
 speaker ID
- **seconds**
 time of coordinate, in seconds
- **rec_date**
 date and time of recording
- **prompt**
 prompt string
- **label**
 label of annotation
- **TT_displacement**
 smoothed displacement of tongue tip
- **TT_velocity**
 velocity of tongue tip displacement
- **TT_abs_velocity**
 absolute velocity of tongue tip displacement
- **TD_displacement**
 smoothed displacement of tongue dorsum
- **TD_velocity**
 velocity of tongue dorsum displacement
- **TD_abs_velocity**
 absolute velocity of tongue dorsum displacement
- **fan_line**
 fan line number
- **X**
 horizontal coordinate at time seconds
- **Y**
 vertical coordinate at time seconds
plot_polar_smooths

Plot smooths from a polar gam

Description

It plots the smooths of a polar GAM fitted with polar_gam().

Usage

plot_polar_smooths(
 model,
 series,
 comparison = NULL,
 origin = NULL,
 facet_terms = NULL,
 conditions = NULL,
 exclude_random = TRUE,
 series_length = 100,
 split = NULL,
 sep = "\.",
 time_series
)

Arguments

model A gam or bam model object.
series An unquoted expression indicating the model term that defines the series on which smoothing is applied. This is the term that is displayed on the x-axis when plotting.
comparison An unquoted expression indicating the model term for which the comparison will be plotted.
origin The coordinates of the origin as a vector of c(x, y) coordinates.
facet_terms An unquoted formula with the terms used for faceting.
conditions A list of quosures with quos specifying the levels to plot from the model terms not among series, comparison, or facet_terms.
exclude_random Whether to exclude random smooths (the default is TRUE).
series_length An integer indicating how many values along the time series to use for predicting the outcome term.
split Columns to separate as a named list.
sep Separator between columns (default is "\.", which is the default with). If character, it is interpreted as a regular expression.
time_series Deprecated, use series instead.
Value

An object of class ggplot.

Examples

```r
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
pgam <- polar_gam(Y ~ s(X, by = as.factor(label)), data = tongue_it01)
plot_polar_smooths(pgam, X, label)
```

plot_tongue

Plot tongue contours from spline data.

Description

It plots tongue contours from data imported from AAA.

Usage

```r
plot_tongue(data, geom = "line", ..., palate = NULL, palate_col = "green")
```

Arguments

- `data`: A data frame with splines data.
- `geom`: Type of geom to plot. Possible values are: line (the default), point, path.
- `...`: List of arguments to be passed to geom.
- `palate`: An optional data frame with the palate spline. If provided, the palate is plotted.
- `palate_col`: The colour of the palate spline (the default is green).

Value

An object of class ggplot.

Examples

```r
plot_tongue(tongue, geom = "point")
```
polar_gam

Polar generalised additive model (polar GAM)

Description

It fits a generalised additive model (GAM) to transformed polar tongue data and it returns a model in polar coordinates. Use `plot_polar_smooths()` for plotting.

Usage

```r
polar_gam(
  formula,
  data,
  origin = NULL,
  fan_lines = c(10, 25),
  AR_start = NULL,
  ...
)
```

Arguments

- `formula`: A GAM formula.
- `data`: A data set containing the spline coordinates (cartesian coordinates must be in columns named X and Y, polar coordinates in columns named angle and radius; these are the defaults in data imported with `read_aaa()`).
- `origin`: The coordinates of the origin as a vector of c(x, y) coordinates.
- `fan_lines`: A numeric vector with two fan lines (the default is c(10, 25)).
- `AR_start`: The AR.start argument to be passed to `mgcv::bam()`.
- `...`: Arguments to be passed to `mgcv::bam()`.

Details

It is advised to fit a separate model per speaker, unless you have a working method for inter-speaker normalisation of the coordinates.

Value

An object of class "gam" as described in `gamObject`.

Examples

```r
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
pgam <- polar_gam(Y ~ s(X, by = c2_place) + s(X, word, bs = "fs"),
  data = tongue_it01)
```
predict_polar_gam
Get all predictions from a polar GAM model

Description

It returns a tibble with the predictions from all the terms in a **polar_gam** model.

Usage

```r
predict_polar_gam(
  model,
  origin = NULL,
  exclude_terms = NULL,
  length_out = 50,
  values = NULL,
  return_ci = FALSE,
  ci_z = 1.96
)
```

Arguments

- **model**: A **polar_gam** model object.
- **origin**: The coordinates of the origin as a vector of \(c(x, y)\) coordinates.
- **exclude_terms**: Terms to be excluded from the prediction. Term names should be given as they appear in the model summary (for example, "s(x0, x1)").
- **length_out**: An integer indicating how many values along the numeric predictors to use for predicting the outcome term (the default is 50).
- **values**: User supplied values for numeric terms as a named list.
- **return_ci**: Whether to return a tibble with cartesian confidence intervals (for use with **geom_polar_ci**).
- **ci_z**: The z-value for calculating the CIs (the default is 1.96 for 95 percent CI).

Details

The function behaves like **predict_gam** but it converts the coordinates from polar to cartesian automatically. Check vignette("predict-gam", package = "tidymv") to an overview of the predict method.

To see an example of plotting, see the examples in **geom_polar_ci**.

Value

A tibble with predictions from a **polar_gam** model.
Examples

```r
library(dplyr)
tongue_it01 <- filter(tongue, speaker == "it01")
it01_pol <- polar_gam(Y ~ s(X, by = c2_place) + s(X, word, bs = "fs"),
data = tongue_it01)

# get predictions
it01_pred <- predict_polar_gam(it01_pol)

# get predictions excluding the random smooth for word (the coefficient for
# the random smooth is set to 0)
it01_excl_rand <- predict_polar_gam(it01_pol, exclude_terms = "s(X,word)"
```

read_aaa

Read tab separated files with AAA spline data.

Description

It reads a file or a list of files with data exported from AAA. The data are automatically transformed from a wide to a long format (each row has values of X or Y axes for each fan line). The imported tibble can then be used for plotting and statistical analysis.

Usage

```r
read_aaa(
  file, column_names, fan_lines = 42, coordinates = "cartesian",
  na_rm = FALSE, format = "long"
)
```

Arguments

- **file**: The path of the file with AAA data. It can also be a character vector with multiple paths as separate strings.
- **column_names**: The names of the columns without including the splines columns.
- **fan_lines**: The number of fan lines (the default is 42).
- **coordinates**: A string specifying the coordinate system. Possible values are "cartesian" (the default) and "polar".
- **na_rm**: Remove NAs (the default is FALSE).
- **format**: A string specifying the data format. Possible values are "long" and "wide" (the default is "long").
stimuli

Value

A tibble. An .index column is added which indexes (groups) each tongue contour.

Examples

columns <- c("speaker","seconds","rec_date","prompt","label",
"TT_displacement","TT_velocity","TT_abs_velocity","TD_displacement",
"TD_velocity","TD_abs_velocity")
file_path <- system.file("extdata", "it01.tsv", package = "rticulate")
tongue <- read_aaa(file_path, columns, na_rm = TRUE)

stimuli

Stimuli dataset.

Description

A dataset with linguistic information on the stimuli.

Usage

stimuli

Format

A data frame with 12 rows and 11 variables.

item item ID
word words of the form CVCV
ipa IPA transcription of the words
c1 first consonant
c1_phonation phonation of the first consonant, voiceless
vowel first and second vowel
anteropost backness of the vowel, back or central
height height of the vowel, high, mid or low
c2 second consonant
c2_phonation phonation of the second consonant, voiceless or voiced
c2_place place of the second consonant, coronal or velar
Tongue contours dataset.

Description

A dataset containing tongue contour coordinates of a single speaker.

Usage

tongue

Format

A data frame with 3612 rows and 28 variables.

- **speaker**: speaker ID
- **seconds**: time of coordinate, in seconds
- **rec_date**: date and time of recording
- **prompt**: prompt string
- **label**: label of annotation
- **TT_displacement**: smoothed displacement of tongue tip
- **TT_velocity**: velocity of tongue tip displacement
- **TT_abs_velocity**: absolute velocity of tongue tip displacement
- **TD_displacement**: smoothed displacement of tongue dorsum
- **TD_velocity**: velocity of tongue dorsum displacement
- **TD_abs_velocity**: absolute velocity of tongue dorsum displacement
- **TR_displacement**: smoothed displacement of tongue root
- **TR_velocity**: velocity of tongue root displacement
- **TR_abs_velocity**: absolute velocity of tongue root displacement
- **fan_line**: fan line number
- **X**: horizontal coordinate at time seconds
- **Y**: vertical coordinate at time seconds
- **word**: words of the form CVCV
- **item**: item ID
- **ipa**: IPA transcription of the words
- **c1**: first consonant
- **c1_phonation**: phonation of the first consonant, voiceless
- **vowel**: first and second vowel
- **anteropost**: backness of the vowel, back or central
- **height**: height of the vowel, high, mid or low
- **c2**: second consonant
- **c2_phonation**: phonation of the second consonant, voiceless or voiced
- **c2_place**: place of the second consonant, coronal or velar
transform_coord

Transform the coordinates of spline data

Description

This function transforms the coordinates of spline data between Cartesian and polar coordinate systems. The origin x and y coordinates can be supplied by the user, or calculated automatically (see Details).

Usage

transform_coord(
 data,
 to = "polar",
 origin = NULL,
 fan_lines = c(10, 25),
 use_XY = FALSE
)

Arguments

data A data set containing the spline coordinates (cartesian coordinates must be in columns named X and Y, polar coordinates in columns named angle and radius; these are the defaults in data imported with read_aaa()).
to Which system to convert to, as a string, either "polar" or "cartesian" (the default is "polar").
origin The coordinates of the origin as a vector of c(x, y) coordinates.
fan_lines A numeric vector with two fan lines (the default is c(10, 25)).
use_XY Whether to use the column names X and Y when converting to and from polar coordinates, rather than the default angle and radius (the default is FALSE. If TRUE, the columns X and Y are overwritten with the converted values. If converting to polar, X is the angle and Y the radius.

Details

The transformation between the coordinate systems require the selection of an origin in Cartesian coordinates (x and y). The origin ideally corresponds to the virtual origin of the ultrasound waves from the probe. The origin coordinates can be supplied by the user as a vector with the origin argument, or they can be estimated automatically if origin = NULL (the default). The estimation is performed by get_origin (see that function documentation for details).

Value

An object of class tbl_df-class (a tibble).
Index

* datasets
 palate, 3
 stimuli, 9
 tongue, 10

gamObject, 6
geom_polar_ci, 7
get_origin, 2, 11
ggplot, 5

palate, 3
plot_polar_smooths, 4
plot_tongue, 5
polar_gam, 6, 7
predict_gam, 7
predict_polar_gam, 7

read_aaa, 8

stimuli, 9

tongue, 10
transform_coord, 11