Package ‘rtrend’

November 7, 2022

Title Trend Estimating Tools
Description The traditional linear regression trend, Modified Mann-Kendall (MK) non-parameter trend and bootstrap trend are included in this package. Linear regression trend is rewritten by ‘.lm.fit’. MK trend is rewritten by ‘Rcpp’. Finally, those functions are about 10 times faster than previous version in R.

Version 0.1.4
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp, fftwtools, boot, magrittr, matrixStats, lubridate, terra, plyr
Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0)
URL https://github.com/rpkgs/rtrend
BugReports https://github.com/rpkgs/rtrend/issues
Config/testthat/edition 3
VignetteBuilder knitr
NeedsCompilation yes
Author Dongdong Kong [aut, cre] (<https://orcid.org/0000-0003-1836-8172>), Heyang Song [aut] (<https://orcid.org/0000-0002-4192-5603>)
Maintainer Dongdong Kong <kongdd.sysu@gmail.com>
Repository CRAN
Date/Publication 2022-11-07 08:20:02 UTC
Description

If valid observations <= 5, NA will be returned.

Usage

mkTrend_r(y, ci = 0.95, IsPlot = FALSE)

mkTrend(y, x = seq_along(y), ci = 0.95, IsPlot = FALSE)

Arguments

y numeric vector
ci critical value of autocorrelation
IsPlot boolean
x (optional) numeric vector

Details

mkTrend is 4-fold faster with .lm.fit.

Value

• Z_0: The original (non corrected) Mann-Kendall test Z statistic.
• $pval_0$: The original (non corrected) Mann-Kendall test p-value
• Z: The new Z statistic after applying the correction.
• $pval$: Corrected p-value after accounting for serial autocorrelation $N/n*s$ Value of the correction factor, representing the quotient of the number of samples N divided by the effective sample size $n*s$.
• slp: Sen slope, The slope of the (linear) trend according to Sen test.
movmean

Note

slp is significant, if pval < alpha.

Author(s)

Dongdong Kong

References

See Also

fume::mktest and trend::mk.test

Examples

```r
x <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
r <- mkTrend(x)
r_cpp <- mkTrend(x, IsPlot = TRUE)
```

Description

NA and Inf values in the y will be ignored automatically.

Usage

```r
movmean(y, halfwin = 1L, SG_style = FALSE, w = NULL)
movmean2(y, win_left = 1L, win_right = 0L, w = NULL)
movmean_2d(mat, win_left = 3L, win_right = 0L)
```

Arguments

- **y**: A numeric vector.
- **halfwin**: Integer, half of moving window size
- **SG_style**: If true, head and tail values will be in the style of SG (more weights on the center point), else traditional moving mean style.
- **w**: Corresponding weights of y, with the same length.
- **win_left, win_right**: windows size in the left and right
- **mat**: numeric matrix
Examples

```r
x <- 1:100
x[50] <- NA; x[80] <- Inf
s1 <- movmean(x, 2, SG_style = TRUE)
s2 <- movmean(x, 2, SG_style = FALSE)
movmean2(c(4, 8, 6, -1, -2, -3, -1), 2, 0)
movmean2(c(4, 8, NA, -1, -2, Inf, -1), 2, 0)
```

set_dim

Set dimensions of an Object

Description

Set dimensions of an Object

Usage

```r
set_dim(x, dim)
set_dimnames(x, value)
```

Arguments

- **x**: an R object, for example a matrix, array or data frame.
- **dim**: integer vector, see also `base::dim()`
- **value**: For the default method, either NULL or a numeric vector, which is coerced to integer (by truncation).

See Also

`base::dim`

Examples

```r
x <- 1:12
set_dim(x, c(3, 4))
```
slope_rast

calculate *slope* *of* *rast* *object*

Description

calculate slope of rast object

Usage

```r
slope_rast(
  r,
  period = c(2001, 2020),
  outfile = NULL,
  fun = rtrend::slope_mk,
  ...,                     # other parameters ignored
  overwrite = FALSE,
  .progress = "text"
)
```

```r
rast_filter_time(r, period = c(2001, 2020))
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>r</code></td>
<td>A yearly rast object, which should have time attribute</td>
</tr>
<tr>
<td><code>period</code></td>
<td><code>c(year_begin, year_end)</code></td>
</tr>
<tr>
<td><code>outfile</code></td>
<td>The path of outputed tiff file. If specified, slope and pvalue will be written into outfile.</td>
</tr>
<tr>
<td><code>fun</code></td>
<td>the function used to calculate slope, see <code>slope()</code> for details.</td>
</tr>
<tr>
<td><code>...</code></td>
<td>other parameters ignored</td>
</tr>
<tr>
<td><code>overwrite</code></td>
<td>logical. If TRUE, outfile is overwritten.</td>
</tr>
<tr>
<td><code>.progress</code></td>
<td>name of the progress bar to use, see <code>create_progress_bar</code></td>
</tr>
</tbody>
</table>

Value

A terra rast object, with bands of slope and pvalue.

See Also

`terra::rast()`
Examples

```r
library(rtrend)
library(terra)

f <- system.file("rast/MOD15A2_LAI_China_G050_2001-2020.tif", package = "rtrend")
r <- rast(f)
print(r)
time(r)

slp <- slope_rast(r,
                  period = c(2001, 2020),
                  outfile = "LAI_trend.tif", overwrite = TRUE,
                  fun = rtrend::slope_mk, .progress = "none"
)
# if you want to show progress, set `.progress = "text"`
slp
plot(slp)
file.remove("LAI_trend.tif")
```

Description

- `slope`: linear regression slope
- `slope_p`: linear regression slope and p-value
- `slope_mk`: mann kendall Sen's slope and p-value
- `slope_sen`: same as `slope_mk`, but with no p-value
- `slope_boot`: bootstrap slope and p-value

Usage

```r
slope_sen(y, x = NULL)
slope(y, x, ...)
slope_p(y, x, fast = TRUE)
slope_sen_r(y, x = seq_along(y), ...)
slope_mk(y, x = NULL, ...)
slope_boot(y, x = NULL, slope_FUN = slope, times = 100, alpha = 0.1, seed, ...)
```
smooth_wSG

Arguments

- `y`: vector of observations of length n, or a matrix with n rows.
- `x`: vector of predictor of length n, or a matrix with n rows.
- `...`: ignored.
- `fast`: Boolean. If true, `stats::.lm.fit()` will be used, which is 10x faster than `stats::.lm()`.
- `slope_FUN`: one of `slope()`, `slope_p()`, `slope_mk()`
- `times`: The number of bootstrap replicates.
- `alpha`: significant level, default 0.1
- `seed`: a single value, interpreted as an integer, or NULL (see ‘Details’).

Value

- `slope`: linear regression coefficient
- `pvalue`: p-value <= 0.05`` means that corresponding slope`` is significant.
- `sd`: Std. Error

For `slope_boot`, slope is estimated in many times. The lower, mean, upper and standard deviation (sd) are returned.

Examples

```r
y <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
r <- slope(y)
r_p <- slope_p(y)
r_mk <- slope_mk(y)
r_boot <- slope_boot(y)
```

smooth_wSG

Weighted Savitzky-Golay

Description

NA and Inf values in the y has been ignored automatically.

Usage

```r
smooth_wSG(y, halfwin = 1L, d = 1L, w = NULL)
smooth_SG(y, halfwin = 1L, d = 1L)
```

Arguments

- `y`: colvec
- `halfwin`: halfwin of Savitzky-Golay
- `d`: polynomial of degree. When d = 1, it becomes moving average.
- `w`: colvec of weight
Examples

```r
y <- c(1, 3, 2, 5, 6, 8, 10, 1)
w <- seq_along(y)/length(y)

halfwin = 2
d = 2
s1 <- smooth_wSG(y, halfwin, d, w)
s2 <- smooth_SG(y, halfwin, d)
```

Description

summary method for class ".lm.fit". It's 200 times faster than traditional `lm`.

Usage

```r
summary_lm(obj, ...)
```

Arguments

- `obj` Object returned by `.lm.fit`.
- `...` ignored

Value

a p x 4 matrix with columns for the estimated coefficient, its standard error, t-statistic and corresponding (two-sided) p-value. Aliased coefficients are omitted.

Examples

```r
set.seed(129)
n <- 100
p <- 2
X <- matrix(rnorm(n * p), n, p) # no intercept!
y <- rnorm(n)

obj <- .lm.fit (x = cbind(1, X), y = y)
info <- summary_lm(obj)
```
Index

.lm.fit, 8
base::dim, 4
base::dim(), 4
create_progress_bar, 5
mkTrend (mkTrend_r), 2
mkTrend_r, 2
movmean, 3
movmean2 (movmean), 3
movmean_2d (movmean), 3
rast_filter_time (slope_rast), 5
set_dim, 4
set_dimnames (set_dim), 4
slope (slope_sen), 6
slope(), 5, 7
slope_boot (slope_sen), 6
slope_mk (slope_sen), 6
slope_mk(), 7
slope_p (slope_sen), 6
slope_p(), 7
slope_rast, 5
slope_sen, 6
slope_sen_r (slope_sen), 6
smooth_SG (smooth_wSG), 7
smooth_wSG, 7
stats::.lm.fit(), 7
stats::lm(), 7
summary_lm, 8
terra::rast(), 5