build_phi_function_from_coefs

convert a pair of simple logistic regression coefficients into $P(Y|T)$ curve:

Description

convert a pair of simple logistic regression coefficients into $P(Y|T)$ curve:

Usage

build_phi_function_from_coefs(coefs)

Arguments

coops numeric vector of coefficients

Value

function(t) $P(Y=1|T=t)$

compute_mu

compute mean window period duration from simple logistic regression coefficients

Description

compute mean window period duration from simple logistic regression coefficients

Usage

compute_mu(theta)

Arguments

theta numeric vector of coefficients
Value

numeric scalar: mean window period duration

Description

This function fits a logistic regression model for a binary outcome Y with an interval-censored covariate T, using an EM algorithm, as described in Morrison et al (2021); doi: 10.1111/biom.13472.

Usage

```r
fit_joint_model(
  participant_level_data,
  obs_level_data,
  model_formula = stats::formula(Y ~ T),
  mu_function = compute_mu,
  bin_width = 1,
  denom_offset = 0.1,
  EM_toler_loglik = 0.1,
  EM_toler_est = 1e-04,
  EM_max_iterations = Inf,
  glm_tolerance = 1e-07,
  glm_maxit = 20,
  initial_S_estimate_location = 0.25,
  coef_change_metric = "max abs rel diff coefs",
  verbose = FALSE
)
```

Arguments

- `participant_level_data` a data.frame or tibble with the following variables:
 - ID: participant ID
 - E: study enrollment date
 - L: date of last negative test for seroconversion
 - R: date of first positive test for seroconversion
 - Cohort (optional): this variable can be used to stratify the modeling of the seroconversion distribution.

- `obs_level_data` a data.frame or tibble with the following variables:
 - ID: participant ID
 - O: biomarker sample collection dates
 - Y: MAA classifications (binary outcomes)

- `model_formula` the functional form for the regression model for p(y|t) (as a formula() object)
mu_function
a function taking a vector of regression coefficient estimates as input and outputting an estimate of mu (mean duration of MAA-positive infection).

bin_width
the number of days between possible seroconversion dates (should be an integer)

denom_offset
an offset value added to the denominator of the hazard estimates to improve numerical stability

EM_toler_loglik
the convergence cutoff for the log-likelihood criterion ("Delta_L" in the paper)

EM_toler_est
the convergence cutoff for the parameter estimate criterion ("Delta_theta" in the paper)

EM_max_iterations
the number of EM iterations to perform before giving up if still not converged.

glm_tolerance
the convergence cutoff for the glm fit in the M step

glm_maxit
the iterations cutoff for the glm fit in the M step

initial_S_estimate_location
determines how seroconversion date is guessed to initialize the algorithm; can be any decimal between 0 and 1; 0.5 = midpoint imputation, 0.25 = 1st quartile, 0 = last negative, etc.

coef_change_metric
a string indicating the type of parameter estimate criterion to use:

- "max abs rel diff coefs" is the "Delta_theta" criterion described in the paper.
- "max abs diff coefs" is the maximum absolute change in the coefficients (not divided by the old values); this criterion can be useful when some parameters are close to 0.
- "diff mu" is the absolute change in mu, which may be helpful in the incidence estimate calibration setting but not elsewhere.

verbose
whether to print algorithm progress details to the console

Value
a list with the following elements:

- **Theta**: the estimated regression coefficients for the model of \(p(Y|T) \)
- **Mu**: the estimated mean window period (a transformation of Theta)
- **Omega**: a table with the estimated parameters for the model of \(p(S|E) \).
- **converged**: indicator of whether the algorithm reached its cutoff criteria before reaching the specified maximum iterations. 1 = reached cutoffs, 0 = not.
- **iterations**: the number of EM iterations completed before the algorithm stopped.
- **convergence_metrics**: the four convergence metrics

References

Examples

Not run:

```r
# simulate data:
study_data <- simulate_interval_censoring()

# fit model:
EM_algorithm_outputs <- fit_joint_model(
  obs_level_data = study_data$obs_data,
  participant_level_data = study_data$pt_data
)

## End(Not run)
```

fit_midpoint_model

Fit model using midpoint imputation

Description

Fit model using midpoint imputation

Usage

```r
fit_midpoint_model(
  participant_level_data, 
  obs_level_data, 
  maxit = 1000, 
  tolerance = 1e-08
)
```

Arguments

- `participant_level_data`: a data.frame or tibble with the following variables:
 - ID: participant ID
 - E: study enrollment date
 - L: date of last negative test for seroconversion
 - R: date of first positive test for seroconversion
 - `Cohort` (optional): this variable can be used to stratify the modeling of the seroconversion distribution.

- `obs_level_data`: a data.frame or tibble with the following variables:
 - ID: participant ID
 - O: biomarker sample collection dates
 - Y: MAA classifications (binary outcomes)

- `maxit`: maximum iterations, passed to `bigglm`

- `tolerance`: convergence criterion, passed to `bigglm`
fit_uniform_model

Fit model using uniform imputation

Usage

```r
fit_uniform_model(
  participant_level_data,
  obs_level_data,
  maxit = 1000,
  tolerance = 1e-08,
  n_imputations = 10
)
```

Arguments

- `participant_level_data`: a data.frame or tibble with the following variables:
 - ID: participant ID
 - E: study enrollment date
 - L: date of last negative test for seroconversion
 - R: date of first positive test for seroconversion
 - Cohort (optional): this variable can be used to stratify the modeling of the seroconversion distribution.

- `obs_level_data`: a data.frame or tibble with the following variables:

Value

a vector of logistic regression coefficient estimates

Examples

```r
sim_data = simulate_interval_censoring(
  "theta" = c(0.986, -3.88),
  "study_cohort_size" = 4500,
  "preconversion_interval_length" = 365,
  "hazard_alpha" = 1,
  "hazard_beta" = 0.5)

theta_est_midpoint = fit_midpoint_model(
  obs_level_data = sim_data$obs_data,
  participant_level_data = sim_data$pt_data
)
```
plot_CDF

- ID: participant ID
- O: biomarker sample collection dates
- Y: MAA classifications (binary outcomes)

maxit maximum iterations, passed to bigglm
tolerance convergence criterion, passed to bigglm
n_imputations number of imputed data sets to create

Value

a vector of logistic regression coefficient estimates

Examples

```r
sim_data = simulate_interval_censoring(
  "theta" = c(0.986, -3.88),
  "study_cohort_size" = 4500,
  "preconversion_interval_length" = 365,
  "hazard_alpha" = 1,
  "hazard_beta" = 0.5)

theta_est_midpoint = fit_uniform_model(
  obs_level_data = sim_data$obs_data,
  participant_level_data = sim_data$pt_data)
```

plot_CDF

plot estimated and true CDFs for seroconversion date distribution

Description

plot estimated and true CDFs for seroconversion date distribution

Usage

```r
plot_CDF(true_hazard_alpha, true_hazard_beta, omega.hat)
```

Arguments

- `true_hazard_alpha` The data-generating hazard at the start of the study
- `true_hazard_beta` The change in data-generating hazard per calendar year
- `omega.hat` tibble of estimated discrete hazards

Value

a ggplot
Examples

Not run:

```r
hazard_alpha = 1
hazard_beta = 0.5
study_data <- simulate_interval_censoring(
    "hazard_alpha" = hazard_alpha,
    "hazard_beta" = hazard_beta)

# fit model:
EM_algorithm_outputs <- fit_joint_model(
    obs_level_data = study_data$obs_data,
    participant_level_data = study_data$pt_data
)
plot1 = plot_CDF(
    true_hazard_alpha = hazard_alpha,
    true_hazard_beta = hazard_beta,
    omega.hat = EM_algorithm_outputs$Omega)

print(plot1)

## End(Not run)
```

plot_phi_curves

Plot true and estimated curves for P(Y=1|T=t)

Description

Plot true and estimated curves for P(Y=1|T=t)

Usage

```r
plot_phi_curves(
    theta_true,
    theta.hat_joint,
    theta.hat_midpoint,
    theta.hat_uniform
)
```

Arguments

- `theta_true` the coefficients of the data-generating model P(Y=1|T=t)
- `theta.hat_joint` the estimated coefficients from the joint model
- `theta.hat_midpoint` the estimated coefficients from midpoint imputation
- `theta.hat_uniform` the estimated coefficients from uniform imputation
Value

a ggplot

Examples

```r
## Not run:
theta_true = c(0.986, -3.88)
hazard_alpha = 1
hazard_beta = 0.5
sim_data = simulate_interval_censoring(
  "theta" = theta_true,
  "study_cohort_size" = 4500,
  "preconversion_interval_length" = 365,
  "hazard_alpha" = hazard_alpha,
  "hazard_beta" = hazard_beta)

# extract the participant-level and observation-level simulated data:
sim_participant_data = sim_data$pt_data
sim_obs_data = sim_data$obs_data
rm(sim_data)

# joint model:
EM_algorithm_outputs = fit_joint_model(
  obs_level_data = sim_obs_data,
  participant_level_data = sim_participant_data,
  bin_width = 7,
  verbose = FALSE)

# midpoint imputation:
theta_est_midpoint = fit_midpoint_model(
  obs_level_data = sim_obs_data,
  participant_level_data = sim_participant_data
)

# uniform imputation:
theta_est_uniform = fit_uniform_model(
  obs_level_data = sim_obs_data,
  participant_level_data = sim_participant_data
)

plot2 = plot_phi_curves(
  theta_true = theta_true,
  theta.hat_uniform = theta_est_uniform,
  theta.hat_midpoint = theta_est_midpoint,
  theta.hat_joint = EM_algorithm_outputs$Theta)

print(plot2)

## End(Not run)
```
The `rwicc` package implements a regression model with an interval-censored covariate using an EM algorithm, as described in Morrison et al (2021); doi: 10.1111/biom.13472.

rwicc functions

The main `rwicc` functions are:

- `simulate_interval_censoring`
- `fit_joint_model`

References

The `seroconversion_inverse_survival_function` determines the seroconversion date corresponding to a provided probability of survival. See doi: 10.1111/biom.13472, Supporting Information, Section A.4.

Usage

```
seroconversion_inverse_survival_function(u, e, hazard_alpha, hazard_beta)
```

Arguments

- `u` a vector of seroconversion survival probabilities
- `e` a vector of time differences between study start and enrollment (in years)
- `hazard_alpha` the instantaneous hazard of seroconversion on the study start date
- `hazard_beta` the change in hazard per year after study start date

Value

numeric vector of time differences between study start and seroconversion (in years)
References

simulate_interval_censoring

Simulate a dataset with interval-censored seroconversion dates

Description

simulate_interval_censoring generates a simulated data set from a data-generating model based on the typical structure of a cohort study of HIV biomarker progression, as described in Morrison et al (2021); doi: 10.1111/biom.13472.

Usage

simulate_interval_censoring(
 study_cohort_size = 4500,
 hazard_alpha = 1,
 hazard_beta = 0.5,
 preconversion_interval_length = 84,
 theta = c(0.986, -3.88),
 probability_of_ever_seroconverting = 0.05,
 years_in_study = 10,
 max_scheduling_offset = 7,
 days_from_study_start_to_recruitment_end = 365,
 study_start_date = lubridate::ymd("2001-01-01")
)

Arguments

study_cohort_size
 the number of participants to simulate (N_0 in the paper)

hazard_alpha
 the hazard (instantaneous risk) of seroconversion at the start date of the cohort study for those participants at risk of seroconversion

hazard_beta
 the change in hazard per calendar year

preconversion_interval_length
 the number of days between tests for seroconversion

theta
 the parameters of a logistic model (with linear functional term) specifying the probability of MAA-positive biomarkers as a function of time since seroconversion

probability_of_ever_seroconverting
 the probability that each participant is at risk of HIV seroconversion

years_in_study
 the duration of follow-up for each participant
simulate_interval_censoring

max_scheduling_offset
the maximum divergence of pre-seroconversion followup visits from the pre-
scribed schedule

days_from_study_start_to_recruitment_end
the length of the recruitment period

study_start_date
the date when the study starts recruitment ("d_0" in the main text). The value
of this parameter does not affect the simulation results; it is only necessary as a
reference point for generating E, L, R, O, and S.

Value
A list containing the following two tibbles:

- pt_data: a tibble of participant-level information, with the following columns:
 - ID: participant ID
 - E: enrollment date
 - L: date of last HIV test prior to seroconversion
 - R: date of first HIV test after seroconversion
- obs_data: a tibble of longitudinal observations with the following columns:
 - ID: participant ID
 - O: dates of biomarker sample collection
 - Y: MAA classifications of biomarker samples

References

Examples
study_data <- simulate_interval_censoring()
participant_characteristics <- study_data$pt_data
longitudinal_observations <- study_data$obs_data
Index

build_phi_function_from_coefs, 2
compute_mu, 2
fit_joint_model, 3, 10
fit_midpoint_model, 5
fit_uniform_model, 6
plot_CDF, 7
plot_phi_curves, 8
rwicc, 10
seroconversion_inverse_survival_function, 10
simulate_interval_censoring, 10, 11