Package ‘ryouready’

August 29, 2016

Maintainer Mark Heckmann <heckmann.mark@gmail.com>
License GPL (>= 2)
Title Companion to the Forthcoming Book - R you Ready?
LazyData yes
Encoding UTF-8
Type Package
LazyLoad yes
Description Package contains some data and functions that
 are used in my forthcoming "R you ready?" book.
Version 0.4
Date 2015-12-02
Imports stats, graphics, ggplot2, stringr, car
NeedsCompilation no
Author Mark Heckmann [aut, cre]
Repository CRAN
Date/Publication 2015-12-03 13:32:57

R topics documented:
collapse_response_set.data.frame .. 2
count_na ... 3
d.eta ... 4
d.ngo ... 4
d.superiority .. 4
eta .. 5
foo ... 6
intervals .. 6
nom.lambda .. 7
nom.uncertainty ... 8
ord.gamma .. 9
ord.somers.d ... 10
collapse_responseset.data.frame

Collapse multiple response sets to single variable

Description

This function allows to collapse several multiple response set variables into one variable. It can be applied either to a dataframe or within the `transform` function.

Usage

```r
## S3 method for class 'data.frame'
collapse_responseset(x, vars = NULL, rec = NULL, ...)
```

```r
## Default S3 method:
collapse_responseset(..., rec = NULL)
```

```r
collapse_responseset(x, ...)
```

Arguments

- **x**
 - A dataframe.

- **vars**
 - The names or indexes of the dataframe columns that contain the mutli response set. By default all variables from dataframe are used.

- **rec**
 - A vector of the same length as the number of variables specifying the new values for each column.

- **...**
 - Several vector of the same length (for default method).

Value

A vector with the new values.

Author(s)

Mark Heckmann
Examples

```r
d <- data.frame(t1=c(1,0,NA,0,0),
t2=c(0,1,0,NA,0),
t3=c(0,0,1,0,0))

# collapse all variables of a dataframe
collapse_responseset(d)

# collapse columns 1 to 3 (which is all in this case as well)
collapse_responseset(d, vars=1:3)
collapse_responseset(d, vars=c("t1", "t2", "t3"))

# use letters instead of numbers for recoding
collapse_responseset(d, vars=1:3, rec=letters[1:3])

# use with several vectors
collapse_responseset(d$t1, d$t2, d$t3)

# use inside of transform
transform(d, new=collapse_responseset(t1, t2, t3))
transform(d, new=collapse_responseset(t1, t2, t3, rec=letters[1:3]))
```

count_na

Count the number of NAs in each row or in each column

Description

Count the number of NAs in each row or in each column

Usage

```r
count_na(x, along = 1)
```

Arguments

- `x` A dataframe or matrix.
- `along` Along which dimension to count the NAs in (1 = rows, 2 = columns).

Value

A vector giving the number of NAs for each row or column.
Examples

```r
x <- d.ngo

# count NAs row-wise across all variables
count_na(x)

# count NAs column-wise
count_na(x, along=2)
```

d.eta
Sample data set for eta function examples

Description

Data set for eta examples.

d.ngo
NGO Dataset

Description

Data set used by Kähler (2008).

References

d.superiority
Student self assessment data

Description

The participants were asked to assess in h
Description

Eta coefficient for nominal/interval data.

Usage

\[
\text{eta}(x, y, \text{breaks} = \text{NULL, na.rm} = \text{FALSE})
\]

Arguments

- **x**: Independent nominal variable (factor or numeric).
- **y**: Dependent interval variable (numeric).
- **breaks**: If \(x\) is interval data the \(\text{breaks}\) argument can be specified to classify the data. \(\text{breaks}\) is passed on to the function \text{cut}.
- **na.rm**: Logical. Indicating if NA values are removed.

Value

Eta coefficient

Author(s)

Mark Heckmann

Examples

\[
\begin{align*}
\text{attach(d.eta)} & \quad \# \text{using d.eta dataset} \\
\text{eta(x1, y)} & \\
\text{# removing missing data} \\
\text{eta(c(x1, 2), c(NA, y), na.rm=TRUE)} & \quad \# \text{NA added to y to show NA behaviour} \\
\text{# classify interval data x} \\
\text{eta(x, y, breaks=c(1, 4, 7,10))} & \quad \# \text{visualize classification} \\
\text{plot(x, y)} \\
\text{abline(v=c(1, 4, 7,10))} & \\
\text{# setting number of breaks for classification} \\
\text{eta(x, y, breaks=7)}
\end{align*}
\]
foo
A function to demonstrate how an R function is defined.

Description
A function to demonstrate how an R function is defined.

Usage
foo(x, y)

Arguments
x Numeric.
y Numeric.

Value
The sum of x and y.

Author(s)
Mark Heckmann

intervals
Use standard mathematical interval notation in recode from car package

Description
The recode function from the car package is an excellent function for recoding data. When defining open intervals though, the recoding definitions will quickly become hard to read. The intervals function allows to use standard mathematical interval notation, e.g. like \([1,4)\), to define (open) intervals. It will convert the intervals definition into a format required by the recode function from car. The standard intervals can simply be used additionally to the standard recoding definitions as required by recode.

Usage
intervals(rec, e = 10^-8)
Arguments

rec recoding definition as required by the \texttt{recode} function from the \texttt{car} package, additionally allowing for standard mathematical interval notation. An interval notation consists of two brackets containing the interval values separated by a comma. Open and closed intervals may be defined, e.g. \((1, 2), [1, 2], (1, 2], [1, 2). The tags lo and hi for the highest and lowest value in the dataset may also be used, e.g. \([lo, 4], [0, hi)\).

e Deviation from given interval values when an open interval is used (i.e. excluding the given value). The default deviation is \(10^{-8}\). This means that e.g. the interval \((1, 2)\) is converted into the definition \(1+10^{-8}:2-10^{-8}\) to be used in the \texttt{recode} function.

Value

A string with recoding definitions for intervals as required by \texttt{recode} from \texttt{car}.

Author(s)

Mark Heckmann

Examples

```r
## Not run:
library(car)

# the standard way if we want to recode \([1,2)\) to the value 3
recode(c(1, 1.999, 2, 2.001), "1:2-1e-4=3")

# the same using interval notation
intervals("[1,2)=3")
recode(c(1, 1.999, 2, 2.001), intervals("[1,2)=3"))

# another example: the car way
e <- 10^{-8}
recode(1:9/3.01, "lo:1-e=0; 1:2-e=1; 2:3-e=2")
# using intervals
recode(1:9/3.01, intervals("[lo,1)=0; [1,2)=1; [2,3)=2"))

## End(Not run)
```

\texttt{nom.lambda} \quad \textit{Calculate Lambda for nominal data tables.}

Description

Calculate Lambda for nominal data tables.
Usage

nom.\lambda(x)

Arguments

x A table object.

Value

A named list with the three values:

\lambda_{cr} The row variable is used as independent, the column variable as dependent variable.
\lambda_{rc} The column variable is used as independent, the row variable as dependent variable.
\lambda_{symmetric} Symmetric Lambda (the mean of both above).

Note

The code for the calculation was supplied by Marc Schwartz (under GPL 2). Checked against SPSS results.

Author(s)

Marc Schwartz, Mark Heckmann

Examples

{

}

nom.\text{uncertainty} \hspace{1cm} \text{Calculate the Uncertainty Coefficient (Theil's U)}

Description

Calculate the Uncertainty Coefficient (Theil’s U)

Usage

nom.\text{uncertainty}(x)

Arguments

x A table object.
ord.gamma

Value

A named list with the three values:

- `ucc.cr` The row variable is used as independent, the column variable as dependent variable.
- `uc.rc` The column variable is used as independent, the row variable as dependent variable.
- `uc.symmetric` Symmetric uncertainty coefficient.

Note

The code for the calculation was supplied by Marc Schwartz (under GPL 2). Note: Asymmetric formulae denominators corrected on May 4, 2007 thanks to Antti Arppe. Checked against SPSS results.

Author(s)

Marc Schwartz, Mark Heckmann

Examples

```r
{
}
```

ord.gamma *Calculate Goodman-Kruskal gamma for ordinal data tables.*

Description

Calculate Goodman-Kruskal gamma for ordinal data tables.

Usage

```r
ord.gamma(x)
```

Arguments

- `x` A table object.

Value

The gamma value.

Note

The code for the calculation was supplied by Marc Schwartz (under GPL 2). Checked against SPSS results.
Author(s)
Marc Schwartz, Mark Heckmann

Examples
{
 # TODO
}

ord.somers.d Calculate Somers’ d for ordinal data tables.

Description
Calculate Somers’ d for ordinal data tables.

Usage
ord.somers.d(x)

Arguments
x A table object.

Value
Kendall’s Tau-b value.
A named list with the three values:
sd.cr The row variable is used as independent, the column variable as dependent variable.
sd.rc The column variable is used as independent, the row variable as dependent variable.
sd.symmetric Symmetric Somers’ d.

Note
The code for the calculation was supplied by Marc Schwartz (under GPL 2)

Author(s)
Marc Schwartz, Mark Heckmann

Examples
{
 # TODO
}
ord.tau

Calculate Kendall’s Tau statistics for ordinal data tables (Tau-b and Tau-c).

Description

Calculate Kendall’s Tau statistics for ordinal data tables (Tau-b and Tau-c).

Usage

ord.tau(x)

Arguments

x A table object.

Value

A named list with the three values:

tau.a Tau-a statistic (for quadratic tables only)
tau.b Tau-b statistic
tau.c Kendall-Stuart Tau-c statistic

Note

The code for the calculation was supplied by Marc Schwartz (under GPL 2)

Author(s)

Marc Schwartz, Mark Heckmann

Examples

{
 # TODO
}
Description

The QQ-plot in SPSS and R looks very different. The points and the QQ-line are positioned differently. `qqnorm_spss` implements a version of the QQ-plot that resembles the SPSS version. The function returns an object containing the processed data. The output can be plotted using the function `plot` and `ggplot`. The parameters that can be passed to the plotting functions are documented in `plot.qqnorm.spss` and `ggplot.qqnorm.spss`.

Usage

```r
qqnorm_spss(x, standardize = FALSE, method = 1, ties.method = "average")
```

Arguments

- `x` A numeric vector.
- `standardize` Whether the quantiles of the standardized values should be displayed. The default is to display the quantiles using the original data.
- `method` The method used to assign probabilities for the ranks that are then converted into quantiles. The following methods are implemented (see Castillo-Gutiérrez, Lozano-Aguilera, & Estudillo-Martínez, 2012): 1 = Blom (default), 2 = Rankit / Hazen, 3 = Tukey, 4 = Van der Waerden / Weibull, 5 = Benard and Bos-Levenbach, 6 = Gringorten and 7 = Yu and Huang.
- `ties.method` Method to assign ranks to ties. One of "average", "first", "random", "max", "min". See `ties.method` argument from `rank` for more details.

Value

An list object of class `qqnorm.spss` with the following elements:

- `x` The original data
- `y` Corresponding quantiles in original scaling
- `x.std` Standardized values
- `y.std` Corresponding quantiles for standardized values
- `method.name` Name of the method to assign probabilities to ranks
- `ties.method` Method to treat ties
- `xname` Name of the variable used to produce the plot

TODO

Check output against SPSS results.
References

Examples

```r
require(ggplot2)

set.seed(0)
x <- sample(0:9, 100, rep=TRUE)

### SPSS like

# Standard QQ-plot
qq <- qqnorm_spss(x, 1)
plot(qq)
ggplot(qq)

qq <- qqnorm_spss(x, 1, standardize=TRUE)
plot(qq, l.col="red")
qqnorm(qq, line=FALSE)

# Detrended QQ-plot (plottype=2)
plot(qq, plottype=2)
qqnorm(qq, plottype=2)

### R
qqnorm(x, datax=TRUE)
qqline(x, datax=TRUE)
```

recode2

Wrapper for recode from car to allow to recode multiple columns at once

Description

Wrapper for recode from car to allow to recode multiple columns at once

Usage

```r
recode2(x, vars = NULL, ...)
```
Arguments

x A dataframe.
vars A vector of variable names or numeric indexes to select the columns to recode.
... Arguments that are passed on to recode from car (see ?recode for more info).
recodes
Character string of recode specifications: see below.

as.factor.result
Return a factor; default is TRUE if the column is a factor, FALSE otherwise.

as.numeric.result
If TRUE (the default), and as.factor.result is FALSE, then the result will be coerced to numeric if all values in the result are numeric.

levels
An optional argument specifying the order of the levels in the returned factor; the default is to use the sort order of the level names.

... More arguments passed to recode.

Value
A dataframe with recoded columns.

Author(s)
Mark Heckmann

Examples
```r
a <- attitude
rec <- "0:50=1; 51:70=2; 60:100=3; else=NA"
recode2(a, recodes=rec)
recode2(a, vars=1:2, recodes=rec)
recode2(a, vars=c("rating", "complaints"), recodes=rec)
```

Description
In the construction of psychometric scales the calculation of a value is sometimes only desired if a minimum number of items contain values. In SPSS it is possible to calculate a mean value only if a minimum number of values are supplied by using the syntax MEAN.MIN with MIN being a numeric value. The function rowMeans2 does the same.

Usage
```r
rowMeans2(x, w, min = 0, na.rm = TRUE)
```

Arguments
- **x**: A matrix of dataframe whose columns should be averaged.
- **w**: A numerical vector of weights the same length as number of columns in x.
- **min**: The minimum number of values required to calculate the mean value. Otherwise return NA.
- **na.rm**: A logical value indicating whether NA values in x should be stripped before the computation proceeds.
Details

rowMeans2 is very similar to rowMeans. The differences are that rowMeans2 allows to indicate the minimum number of values that have to be supplied and to weight the columns.

Value

A vector of means.

Author(s)

Mark Heckmann

See Also

rowMeans

Examples

```r
x <- replicate(3, runif(5))
x[1:3, 1] <- NA  # add NAs to data
x[1:2, 2] <- NA
x[1, 3] <- NA

x
rowMeans2(x)  # the same as rowMeans, except that NAs are allowed
rowMeans2(x, min=2)  # minimum two values to calculate mean
rowMeans2(x, min=3)  # minimum three values to calculate mean

# returns numeric(0) if x has zero rows
d <- x[NULL, ]
rowMeans2(d)

# weights for each column
rowMeans2(x, w=c(1,1,2))
```

Description

This package contains several functions that make an R beginners life easier and which are used in our forthcoming ‘R you ready?’ R book.

Details

The book’s website where you can find the fulltext freely available currently is http://ryouready.markheckmann.de.

Author(s)

Mark Heckmann.
Index

*Topic **data**
 d.eta, 4
 d.ngo, 4
 d.superiority, 4
*Topic **package**
 ryouready, 16
*Topic **ryouready**
 ryouready, 16

collapse_responseset
 (collapse_responseset.data.frame), 2
 collapse_responseset.data.frame, 2
count_na, 3
cut, 5
d.eta, 4
d.ngo, 4
d.superiority, 4
eta, 5
foo, 6
ggplot.qqnorm.spss, 12
intervals, 6
nom.lambda, 7
nom.uncertainty, 8
ord.gamma, 9
ord.somers.d, 10
ord.tau, 11
plot.qqnorm.spss, 12
qqnorm_spss, 12
rank, 12
recode2, 13
rowMeans, 16
rowMeans2, 15
ryouready, 16