Package ‘sNPLS’

December 16, 2020

Type Package

Title NPLS Regression with L1 Penalization

Version 1.0.27

Author David Hervas

Maintainer David Hervas <ddhervas@yahoo.es>

Depends R (>= 2.10)

Imports clickR, future, future.apply, ggplot2, ggrepel, ks, MASS, Matrix, pbapply

Description Tools for performing variable selection in three-way data using N-PLS in combination with L1 penalization, Selectivity Ratio and VIP scores. The N-PLS model (Rasmus Bro, 1996 <DOI:10.1002/(SICI)1099-128X(199601)10:1%3C47::AID-CEM400%3E3.0.CO;2-C>) is the natural extension of PLS (Partial Least Squares) to N-way structures, and tries to maximize the covariance between X and Y data arrays. The package also adds variable selection through L1 penalization, Selectivity Ratio and VIP scores.

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-12-16 12:50:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bread</td>
<td>2</td>
</tr>
<tr>
<td>coef.sNPLS</td>
<td>3</td>
</tr>
<tr>
<td>cv_fit</td>
<td>3</td>
</tr>
<tr>
<td>cv_snpls</td>
<td>4</td>
</tr>
<tr>
<td>fitted.sNPLS</td>
<td>5</td>
</tr>
<tr>
<td>plot.cvsNPLS</td>
<td>6</td>
</tr>
</tbody>
</table>
Bread data

Description

Evaluation of ten bread with respect to eleven attributes by eight judges (Xbread). The outcome is the salt content of each bread (Ybread).

Usage

```r
data(bread)
```

Format

An object of class `list` of length 2.

References

coef.sNPLS

Coefficients from a sNPLS model

Description

Extract coefficients from a sNPLS model

Usage

S3 method for class 'sNPLS'
coef(object, as.matrix = FALSE, ...)

Arguments

object A sNPLS model fit
as.matrix Should the coefficients be presented as matrix or vector?
... Further arguments passed to coef

Value

A matrix (or vector) of coefficients

cv_fit

Internal function for cv_snpls

Description

Internal function for cv_snpls

Usage

cv_fit(
xtrain,
ytrain,
xval,
yval,
ncomp,
threshold_j = NULL,
threshold_k = NULL,
keepJ = NULL,
keepK = NULL,
method,
...)
)
Arguments

- **xtrain**: A three-way training array
- **ytrain**: A response training matrix
- **xval**: A three-way test array
- **yval**: A response test matrix
- **ncomp**: Number of components for the sNPLS model
- **threshold_j**: Threshold value on Wj. Scaled between [0, 1)
- **threshold_k**: Threshold value on Wk. Scaled between [0, 1)
- **keepJ**: Number of variables to keep for each component, ignored if threshold_j is provided
- **keepK**: Number of 'times' to keep for each component, ignored if threshold_k is provided
- **method**: Select between sNPLS, sNPLS-SR or sNPLS-VIP
- **...**: Further arguments passed to sNPLS

Value

Returns the CV mean squared error

cv_snpls

Cross-validation for a sNPLS model

Description

Performs cross-validation for a sNPLS model

Usage

```r
cv_snpls(
X_npls, Y_npls, ncomp = 1:3,
samples = 20, keepJ = NULL, keepK = NULL, nfold = 10,
parallel = TRUE, method = "sNPLS",
... )
```
fitted.sNPLS

Arguments

- **X_npls**: A three-way array containing the predictors.
- **Y_npls**: A matrix containing the response.
- **ncomp**: A vector with the different number of components to test
- **samples**: Number of samples for performing random search in continuous thresholding
- **keepJ**: A vector with the different number of selected variables to test for discrete thresholding
- **keepK**: A vector with the different number of selected 'times' to test for discrete thresholding
- **nfold**: Number of folds for the cross-validation
- **parallel**: Should the computations be performed in parallel? Set up strategy first with `future::plan()`
- **method**: Select between sNPLS, sNPLS-SR or sNPLS-VIP
- **...**: Further arguments passed to sNPLS

Value

A list with the best parameters for the model and the CV error

Examples

```r
## Not run:
X_npls<-array(rpois(7500, 10), dim=c(50, 50, 3))
Y_npls<-matrix(2+0.4*X_npls[,5,1]+0.7*X_npls[,10,1]-0.9*X_npls[,15,1]+
0.6*X_npls[,20,1]- 0.5*X_npls[,25,1]+rnorm(50), ncol=1)
# Grid search for discrete thresholding
cv1<- cv_snpls(X_npls, Y_npls, ncomp=1:2, keepJ = 1:3, keepK = 1:2, parallel = FALSE)
# Random search for continuous thresholding
cv2<- cv_snpls(X_npls, Y_npls, ncomp=1:2, samples=20, parallel = FALSE)
## End(Not run)
```

fitted.sNPLS

Fitted method for sNPLS models

Description

Fitted method for sNPLS models

Usage

```r
## S3 method for class 'sNPLS'
fitted(object, ...)
```
plot.repeatcv

Arguments

object A sNPLS model fit
...

Value

Fitted values for the sNPLS model

plot.cvsNPLS

Plot cross validation results for sNPLS objects

Description

Plot function for visualization of cross validation results for sNPLS models

Usage

S3 method for class 'cvsNPLS'
plot(x, ...)

Arguments

x A cv_sNPLS object
...

Value

A facet plot with the results of the cross validation

plot.repeatcv

Density plot for repeat_cv results

Description

Plots a grid of slices from the 3-D kernel density estimates of the repeat_cv function

Usage

S3 method for class 'repeatcv'
plot(x, ...)

Arguments

x A repeatcv object
...

Further arguments passed to plot
Value

A grid of slices from a 3-D density plot of the results of the repeated cross-validation

plot.sNPLS

Plots for sNPLS model fits

Description

Different plots for sNPLS model fits

Usage

S3 method for class 'sNPLS'
plot(x, type = "T", comps = c(1, 2), labels = TRUE, group = NULL, ...)

Arguments

x
 A sNPLS model fit
type
 The type of plot. One of those: "T", "U", "Wj", "Wk", "time" or "variables"
comps
 Vector with the components to plot. It can be of length ncomp for types "time"
 and "variables" and of length 2 otherwise.
labels
 Should rownames be added as labels to the plot?
group
 Vector with categorical variable defining groups (optional)
...
 Not used

Value

A plot of the type specified in the type parameter

plot_T

Internal function for plot.sNPLS

Description

Internal function for plot.sNPLS

Usage

plot_T(x, comps, labels, group = NULL)
plot_U

Arguments

x A sNPLS model fit
comps A vector of length two with the components to plot
labels Should rownames be added as labels to the plot?
group Vector with categorical variable defining groups

Value

A plot of the T matrix of a sNPLS model fit

plot_time

Internal function for plot.sNPLS

Description

Internal function for plot.sNPLS

Usage

plot_time(x, comps)

Arguments

x A sNPLS model fit
comps A vector with the components to plot

Value

A plot of Wk coefficients for each component

plot_U

Internal function for plot.sNPLS

Description

Internal function for plot.sNPLS

Usage

plot_U(x, comps, labels, group = NULL)
plot_variables

Arguments

- **x**: A sNPLS model fit
- **comps**: A vector of length two with the components to plot
- **labels**: Should rownames be added as labels to the plot?
- **group**: Vector with categorical variable defining groups

Value

A plot of the U matrix of a sNPLS model fit

plot_Wj

Description

Internal function for `plot.sNPLS`

Usage

`plot_Wj(x, comps)`

Arguments

- **x**: A sNPLS model fit
- **comps**: A vector with the components to plot

Value

A plot of Wj coefficients for each component

Arguments

\(x \)
A sNPLS model fit

\(\text{comps} \)
A vector of length two with the components to plot

\(\text{labels} \)
Should rownames be added as labels to the plot?

Value

A plot of Wj coefficients

\(\text{plot}_Wk \)
Internal function for \(\text{plot.sNPLS} \)

Description

Internal function for \(\text{plot.sNPLS} \)

Usage

\(\text{plot}_Wk(x, \text{comps}, \text{labels}) \)

Arguments

\(x \)
A sNPLS model fit

\(\text{comps} \)
A vector of length two with the components to plot

\(\text{labels} \)
Should rownames be added as labels to the plot?

Value

A plot of the Wk coefficients

\(\text{predict.sNPLS} \)
Predict for sNPLS models

Description

Predict function for sNPLS models

Usage

S3 method for class 'sNPLS'
\(\text{predict(object, newX, rescale = TRUE, ...)} \)
repeat_cv

Arguments

object A sNPLS model fit
newX A three-way array containing the new data
rescale Should the prediction be rescaled to the original scale?
... Further arguments passed to predict

Value

A matrix with the predictions

repeat_cv Repeated cross-validation for sNPLS models

Description

Performs repeated cross-validation and represents results in a plot

Usage

repeat_cv(
 X_npls, # A three-way array containing the predictors.
 Y_npls, # A matrix containing the response.
 ncomp = 1:3, # A vector with the different number of components to test
 samples = 20, # Number of samples for performing random search in continuous thresholding
 keepJ = NULL, # A vector with the different number of selected variables to test in discrete thresholding
 keepK = NULL, # A vector with the different number of selected ‘times’ to test in discrete thresholding
 nfold = 10, # Number of folds for the cross-validation
 times = 30, # Further arguments passed to predict
 parallel = TRUE, # Further arguments passed to predict
 method = "sNPLS", # Further arguments passed to predict
 ...
)

Arguments

X_npls A three-way array containing the predictors.
Y_npls A matrix containing the response.
ncomp A vector with the different number of components to test
samples Number of samples for performing random search in continuous thresholding
keepJ A vector with the different number of selected variables to test in discrete thresholding
keepK A vector with the different number of selected ‘times’ to test in discrete thresholding
nfold Number of folds for the cross-validation
times Number of repetitions of the cross-validation
parallel Should the computations be performed in parallel? Set up strategy first with
 future::plan()
method Select between sNPLS, sNPLS-SR or sNPLS-VIP
... Further arguments passed to cv_snpls

Value

A density plot with the results of the cross-validation and an (invisible) data.frame with these results

Rmatrix \hspace{1cm} R-matrix from a sNPLS model fit

Description

Builds the R-matrix from a sNPLS model fit

Usage

Rmatrix(x)

Arguments

x A sNPLS model obtained from sNPLS

Value

Returns the R-matrix of the model, needed to compute the coefficients

sNPLS \hspace{1cm} Fit a sNPLS model

Description

Fits a N-PLS regression model imposing sparsity on wj and wk matrices
sNPLS

Usage

sNPLS(
 XN,
 Y,
 ncomp = 2,
 threshold_j = 0.5,
 threshold_k = 0.5,
 keepJ = NULL,
 keepK = NULL,
 scale.X = TRUE,
 center.X = TRUE,
 scale.Y = TRUE,
 center.Y = TRUE,
 conver = 1e-16,
 max.iteration = 10000,
 silent = F,
 method = "sNPLS"
)

Arguments

XN A three-way array containing the predictors.
Y A matrix containing the response.
ncomp Number of components in the projection
threshold_j Threshold value on Wj. Scaled between [0, 1)
threshold_k Threshold value on Wk. scaled between [0, 1)
keepJ Number of variables to keep for each component, ignored if threshold_j is provided
keepK Number of 'times' to keep for each component, ignored if threshold_k is provided
scale.X Perform unit variance scaling on X?
center.X Perform mean centering on X?
scale.Y Perform unit variance scaling on Y?
center.Y Perform mean centering on Y?
conver Convergence criterion
max.iteration Maximum number of iterations
silent Show output?
method Select between L1 penalization (sNPLS), variable selection with Selectivity Ratio (sNPLS-SR) or variable selection with VIP (sNPLS-VIP)

Value

A fitted sNPLS model
References

Examples

```r
X_npls<-array(rpois(7500, 10), dim=c(50, 50, 3))

Y_npls <- matrix(2+0.4*X_npls[,5,1]+0.7*X_npls[,10,1]-0.9*X_npls[,15,1]+
0.6*X_npls[,20,1]− 0.5*X_npls[,25,1]+rnorm(500), ncol=1)
#Discrete thresholding
fit <- sNPLS(X_npls, Y_npls, ncomp=3, keepJ = rep(2,3) , keepK = rep(1,3))
#Continuous thresholding
fit2 <- sNPLS(X_npls, Y_npls, ncomp=3, threshold_j=0.5, threshold_k=0.5)
#Use sNPLS-SR method
fit3 <- sNPLS(X_npls, Y_npls, ncomp=3, threshold_j=0.5, threshold_k=0.5, method="sNPLS-SR")
```

SR

Compute Selectivity Ratio for a sNPLS model

Description

Estimates Selectivity Ratio for the different components of a sNPLS model fit

Usage

```r
SR(model)
```

Arguments

- `model` A sNPLS model

Value

A list of data.frames, each of them including the computed Selectivity Ratios for each variable
Summary for sNPLS models

Description

Summary of a sNPLS model fit

Usage

```r
## S3 method for class 'sNPLS'
summary(object, ...)
```

Arguments

- `object` A sNPLS object
- `...` Further arguments passed to summary.default

Value

A summary including number of components, squared error and coefficients of the fitted model

Unfolding of three-way arrays

Description

Unfolds a three-way array into a matrix

Usage

`unfold3w(x)`

Arguments

- `x` A three-way array

Value

Returns a matrix with dimensions `dim(x)[1] x dim(x)[2] * dim(x)[3]`
Index

* datasets
 bread, 2

bread, 2

cv_fit, 3
cv_snps, 4

fitted.sNPLS, 5

plot.cvsNPLS, 6
plot.repeatcv, 6
plot.sNPLS, 7
plot_T, 7
plot_time, 8
plot_U, 8
plot_variables, 9
plot_Wj, 9
plot_Wk, 10
predict.sNPLS, 10

repeat_cv, 11
Rmatrix, 12

sNPLS, 12
SR, 14
summary.sNPLS, 15

unfold3w, 15