Package ‘sabre’

October 14, 2022

Version 0.4.3

Title Spatial Association Between Regionalizations

License MIT + file LICENSE

Encoding UTF-8

LazyData true

ByteCompile true

Suggests testthat, covr, knitr, rmarkdown, methods

RoxygenNote 7.2.1

Depends R (>= 3.3.0)

Imports dplyr, entropy, raster, rlang, sf, tibble, tidyr

Enhances stars, terra

VignetteBuilder knitr

URL https://jakubnowosad.com/sabre/

BugReports https://github.com/Nowosad/sabre/issues

NeedsCompilation no

Author Jakub Nowosad [aut, cre] (<https://orcid.org/0000-0002-1057-3721>), Tomasz Stepinski [aut], Space Informatics Lab [cph]

Maintainer Jakub Nowosad <nowosad.jakub@gmail.com>

Repository CRAN

Date/Publication 2022-08-17 09:30:02 UTC
R topics documented:

- `eco_us` ... 2
- `mapcurves` .. 2
- `mapcurves_calc` ... 3
- `partitions1` .. 5
- `partitions2` .. 5
- `regions1` ... 6
- `regions2` ... 6
- `vmeasure` .. 7
- `vmeasure_calc` .. 8

Index

```
eco_us    Ecoregions of the United States

Description

  Bailey's Ecoregions of the Conterminous United States

Usage

  eco_us

Format

  An object of class `sf` (inherits from `data.frame`) with 330 rows and 5 columns.

Source

  https://www.sciencebase.gov/catalog/item/54244abde4b037b608f9e23d

```

```
mapcurves    Mapcurves

Description

  Mapcurves: a quantitative method for comparing categorical maps.

Usage

  mapcurves(x, y, z = NULL)
```
Arguments

- **x**: A numeric vector, representing a categorical values.
- **y**: A numeric vector, representing a categorical values.
- **z**: A numeric matrix. The goodness of fit (GOF) value for each pair of classes in x and y. By default this argument is set to NULL, and the value of z is calculated based on x and y.

Value

A list with two elements:

- "ref_map" - the map to be used as reference ("x" or "y")
- "gof" - the Mapcurves's goodness of fit value

References

Examples

```r
set.seed(2018-03-21)
A = floor(matrix(runif(100, 0, 9), 10))
B = floor(matrix(runif(100, 0, 9), 10))
mapcurves(A, B)
```

Description

It calculates the Mapcurves’s goodness-of-fit (GOF)

Usage

```r
mapcurves_calc(x, y, x_name, y_name, precision = NULL)
```

"S3 method for class 'sf'

```r
mapcurves_calc(x, y, x_name = NULL, y_name = NULL, precision = NULL)
```

"S3 method for class 'stars'

```r
mapcurves_calc(x, y, x_name = NULL, y_name = NULL, precision = NULL)
```

"S3 method for class 'SpatRaster'

```r
mapcurves_calc(x, y, x_name = NULL, y_name = NULL, precision = NULL)
```

"S3 method for class 'RasterLayer'

```r
mapcurves_calc(x, y, x_name = NULL, y_name = NULL, precision = NULL)
```
Arguments

- **x**: An object of class `sf` with a `POLYGON` or `MULTIPOLYGON` geometry type or a spatial raster object of class `RasterLayer`, `SpatRaster`, or `stars`.
- **y**: An object of class `sf` with a `POLYGON` or `MULTIPOLYGON` geometry type or a spatial raster object of class `RasterLayer`, `SpatRaster`, or `stars`.
- **x_name**: A name of the column with regions/clusters names.
- **y_name**: A name of the column with regions/clusters names.
- **precision**: numeric, or object of class `units` with distance units (but see details); see `st_as_binary` for how to do this.

Value

A list with four elements:

- "map1" - the sf object containing the first map used for calculation of GOF
- "map2" - the sf object containing the second map used for calculation of GOF
- "ref_map" - the map used as a reference ("x" or "y")
- "gof" - the Mapcurves’s goodness of fit value

References

Examples

```r
library(sf)
data("regions1")
data("regions2")

mc = mapcurves_calc(x = regions1, y = regions2, x_name = z, y_name = z)
mc

plot(mc$map1)
plot(mc$map2)

library(raster)
data("partitions1")
data("partitions2")
mc2 = mapcurves_calc(x = partitions1, y = partitions2)
mc2

plot(mc2$map1)
plot(mc2$map2)
```
partitions1

Red regionalization (raster version)

Description

Raster data of the red regionalization used in Figure 1 of Stepinski and Nowosad (2018)

Usage

`partitions1`

Format

An object of class `RasterLayer` of dimension 8 x 10 x 1.

References

partitions2

Blue regionalization (raster version)

Description

Raster data of the blue regionalization used in Figure 1 of Stepinski and Nowosad (2018)

Usage

`partitions2`

Format

An object of class `RasterLayer` of dimension 8 x 10 x 1.

References

regions1
Red regionalization

Description
Data of the red regionalization used in Figure 1 of Stepinski and Nowosad (2018)

Usage
`regions1`

Format
An object of class `sf` (inherits from `data.frame`) with 4 rows and 2 columns.

References

regions2
Blue regionalization

Description
Data of the blue regionalization used in Figure 1 of Stepinski and Nowosad (2018)

Usage
`regions2`

Format
An object of class `sf` (inherits from `data.frame`) with 3 rows and 2 columns.

References
vmeasure

<table>
<thead>
<tr>
<th>vmeasure</th>
<th>V-measure</th>
</tr>
</thead>
</table>

Description

A conditional entropy-based external cluster evaluation measure.

Usage

vmeasure(x, y, z = NULL, B = 1)

Arguments

- **x**: A numeric vector, representing a categorical values.
- **y**: A numeric vector, representing a categorical values.
- **z**: A numeric matrix. A contingency table of the counts at each combination of categorical levels. By default this argument is set to NULL, and the value of \(z \) is calculated based on \(x \) and \(y \).
- **B**: A numeric value. If \(B > 1 \) then completeness is weighted more strongly than homogeneity, and if \(B < 1 \) then homogeneity is weighted more strongly than completeness. By default this value is 1.

Value

A list with three elements:

- "v_measure"
- "homogeneity"
- "completeness"

References

Examples

```r
x = c(1, 1, 1, 2, 2, 3, 3, 3, 1, 1, 2, 2, 2, 3, 3)
y = c(rep(1, 5), rep(2, 5), rep(3, 5))
vmeasure(x, y)
```
vmeasure_calc

V-measure calculation

Description

It calculates a degree of spatial association between regionalizations using an information-theoretical measure called the V-measure.

Usage

```r
vmeasure_calc(x, y, x_name, y_name, B = 1, precision = NULL)
```

S3 method for class 'sf'

```r
vmeasure_calc(x, y, x_name, y_name, B = 1, precision = NULL)
```

S3 method for class 'stars'

```r
vmeasure_calc(x, y, x_name = NULL, y_name = NULL, B = 1, precision = NULL)
```

S3 method for class 'SpatRaster'

```r
vmeasure_calc(x, y, x_name = NULL, y_name = NULL, B = 1, precision = NULL)
```

S3 method for class 'RasterLayer'

```r
vmeasure_calc(x, y, x_name = NULL, y_name = NULL, B = 1, precision = NULL)
```

Arguments

- **x**
 - An object of class sf with a POLYGON or MULTIPOLYGON geometry type or a spatial raster object of class RasterLayer, SpatRaster, or stars.

- **y**
 - An object of class sf with a POLYGON or MULTIPOLYGON geometry type or a spatial raster object of class RasterLayer, SpatRaster, or stars.

- **x_name**
 - A name of the column with regions/clusters names.

- **y_name**
 - A name of the column with regions/clusters names.

- **B**
 - A numeric value. If $B > 1$ then completeness is weighted more strongly than homogeneity, and if $B < 1$ then homogeneity is weighted more strongly than completeness. By default this value is 1.

- **precision**
 - numeric, or object of class units with distance units (but see details); see `st_as_binary` for how to do this.

Value

A list with five elements:

- "map1" - the sf object containing the first preprocessed map used for calculation of GOF with two attributes - `map1` (name of the category) and `rih` (region inhomogeneity).
- "map2" - the sf object containing the second preprocessed map used for calculation of GOF with two attributes - `map1` (name of the category) and `rih` (region inhomogeneity).
• "v_measure"
• "homogeneity"
• "completeness"

References

Examples

```r
library(sf)
data("regions1")
data("regions2")
vm = vmeasure_calc(x = regions1, y = regions2, x_name = z, y_name = z)
vm

plot(vm$map1["rih"])
plot(vm$map2["rih"])

library(raster)
data("partitions1")
data("partitions2")
vm2 = vmeasure_calc(x = partitions1, y = partitions2)
vm2

plot(vm2$map1["rih"]) plot(vm2$map2["rih"])```

# Index

## datasets
- eco_us, 2
- partitions1, 5
- partitions2, 5
- regions1, 6
- regions2, 6

ecos, 2

mapcurves, 2
mapcurves_calc, 3

partitions1, 5
partitions2, 5

regions1, 6
regions2, 6

st_as_binary, 4, 8

vmeasure, 7
vmeasure_calc, 8