Package ‘sae2’

August 23, 2023

Version 1.2-1
Date 2023-08-22
Title Small Area Estimation: Time-Series Models
Author Robert Fay [aut, cre],
 Mamadou Diallo [aut]
Maintainer Robert Fay <bobfay@hotmail.com>
Depends R (>= 2.14.0), MASS, survey, stats
Suggests sae
Description Time series area-level models for small area estimation.
The package supplements the functionality of the sae package.
Specifically, it includes EBLUP fitting of the original Rao-Yu model,
which in the original form did not have a spatial component. The
package also offers a modified ('dynamic') version of the Rao-Yu model,
replacing the assumption of stationarity. Both univariate and
multivariate applications are supported. Of particular note is the
allowance for covariance of the area-level sample estimates over time,
as encountered in rotating panel designs such as the U.S. National
Crime Victimization Survey or present in a time-series of 5-year
estimates from the American Community Survey. Key references to the
methods include
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-23 09:10:02 UTC

R topics documented:
sae2-package .. 2
dynRYfit .. 3
Description

Time series are-level models for small area estimation. The package supplements the functionality of the package sae. Specifically, it includes EBLUP fitting of the original Rao-Yu model, which did not have a spatial component. It also offers a modified ("dynamic") version of the Rao-Yu model, replacing the assumption of stationarity. Both univariate and multivariate applications are supported. Of particular note is the allowance for covariance of the area-level sample estimates over time, as encountered in rotating panel designs such as the U.S. National Crime Victimization Survey or present in a time-series of 5-year estimates from the American Community Survey.

Details

Package: sae2
Type: Package
Version: 1.2-1
Date: 2023-08-22
License: GPL-2

The package provides two primary functions, eblupRY and eblupDyn, to fit non-spatial time-series small area models to area-level data. The function mvrnormSeries provides simulated data under either model. Functions geo_ratios and vcovgen can assist in preparing the input.

Author(s)

Robert E. Fay, Mamadou S. Diallo
Maintainer: Robert E. Fay <bobfay@hotmail.com>

References

See Also

sae

dynRYfit

Internal fitting function for Dynamic and Rao-Yu models

Description

Function designed to be called by either eblupDyn or eblupRY to produce EBLUP small area estimates of the dynamic or Rao-Yu time series models through either ML or REML estimation of the variance components. For completeness, the function is documented here, but users are encouraged to base applications on calls to the more convenient eblupDyn or eblupRY.

Usage

dynRYfit(y, X, M, TI, NV=1, vcov_e, maxiter=100, iter.tol=.1e-5, ncolx=NULL, sig2_u=1, sig2_v=1, rho=.8, rho_u =.4, delta=NULL, rho.fixed=NULL, y.include=NULL, ids=NULL, contrast.matrix=NULL, baby.steps=TRUE, dampening=NULL, iter.history=NULL, sig2.min.factor=.0001, max.rho_u=.98, max.rho=NULL, tol=.Machine$double.eps, y.rescale=NULL, llike.only=FALSE, method=c("REML", "ML"), model=c("dyn", "RY"))

Arguments

y
 For a univariate model, the dependent variable sorted in ascending order by time within domain. For a multivariate model, the dependent variables sorted in ascending order by time within variable within domain.

X
 A matrix of independent variables with the same number of rows as the length of y.

M
 The total number of domains, equivalent to D in eblupDyn and eblupRY.

TI
 The number of time instances (constant for all domains).

NV
 The number of dependent variables.

vcov_e
 For the univariate model, the sampling covariance matrix for the direct estimates of the M*TI elements of the dependent variable. The covariance matrix should be in the form of a square matrix with M*TI rows and columns. Non-zero covariances between domains are not allowed, so the matrix must have block diagonal form with M blocks, each of which is a square matrix with TI rows and columns. Note that within domain, non-zero covariances are allowed over time.
For the multivariate model, the square covariance matrix for the $M \times NV \times TI$ elements of the dependent variables. The matrix should be in the form of a square matrix with $M \times NV \times TI$ rows and columns. Time should vary within variable, which should vary within domain. Non-zero covariances between domains are not allowed, but non-zero covariances may be present across time and between variables.

maxiter

The maximum number of iterations allowed for the Fisher-scoring algorithm, with a default value of 100.

iter.tol

The convergence tolerance limit for the Fisher-scoring algorithm, with a default value of .000001.

ncolx

For a univariate model, the number of columns of X. For a multivariate model, a vector of length NV must be specified giving the number of columns of X used for each dependent variable.

sig2_u

An initial starting value or values for the variance of the random increments.

sig2_v

An initial starting value or values for a domain level random effect. In the Rao-Yu model, the random effect is constant over time, whereas in the dynamic model it is an initial effect subject to dampening over time.

rho

The correlation across time. This correlation is assumed to be the same for the dependent variables in the multivariate model.

rho_u

For $NV > 1$ only, the $(NV*(NV-1))/2$ starting values for the correlations between the random effects of the different dependent variables. If a single value is given, it will be used for the $(NV*(NV-1))/2$ components. The sort order corresponds to a lower triangle of the covariance matrix.

delta

The random effect components in the preferred internal order. Specification of delta will override any specification of sig2_u, sig2_v, rho, or rho_u. In the univariate case, delta should contain sig2_u, sig2_v, and rho. In the bivariate case, delta should be of length 6 with sig2_u and sig2_v, each of length 2, rho, and rho_u. Similarly, for 3 dependent variables, the length of delta is 10, with the last 3 elements rho_u in lower triangular form.

rho.fixed

If TRUE, the value of rho imbedded in delta, if specified, or else given by rho will remain fixed during the iterations. Among other features, this allows the likelihood function for trial values of rho to be computed at the maximum over the other random effect parameters.

y.include

If specified, vector of length M to indicate which domains to include in the estimation, with 1 signalling inclusion and 0 exclusion. Estimates for the excluded domains will be based on the fixed effects model only.

ids

A data frame with M rows giving ids for each of the domains. The data frame is copied into the returned object.

contrast.matrix

A matrix of coefficients of contrasts. The matrix must have $TI \times NV$ rows, but it can contain an arbitrary number of columns. Within each domain, the coefficients are applied to the $TI \times NV$ EBLUP estimates.

baby.steps

Unless specified as FALSE, the first five iterations of the Fisher scoring algorithm are dampened by factors of $c(.0625, .125, .25, .5, .75)$. These heuristically derived factors appear to lessen drastic overshooting of the true maximum in the initial iterations.
dampening
A factor used to dampen the changes in the random effect parameters. Unlike `baby.steps`, its effect persists during all of the iterations until convergence. Note that the "factory setting" of this parameter is 1 for the dynamic model but .9 for the Rao-Yu model.

iter.history
If TRUE, key values are saved during each iteration and included as additional items, described below, in the returned list: `delta.hist`, `likelihood.hist`, `adj.hist`, `s.hist`, `ix.hist`, `adj.factor.hist`, and `warning.hist`. If `iter.history` is not specified, these items will be returned only if the calculations are begun but not successfully completed.

sig2.min.factor
A factor to multiply the minimum direct variance to use as a minimum value for any of the variance components. The iterations will be constrained not to go below the resulting bounds.

max.rho_u
A maximum allowed value for the estimated rho_u. The default value is .98.

max.rho
A maximum allowed value for rho. By default, `eblupRY` sets this value to .98.

tol
A tolerance value used by matrix routines to prevent numerical instability. The value may be set to a lower value to encourage convergence, but appropriate caution should be applied.

y.rescale
In the univariate case, a scaler multiplier for all of the y values. If the y values are either too small or too large, the information matrix may become unstable. Setting this value to 1 has no effect; setting it to 10 or 100 rescales very small y values to a more appropriate range. Similarly, positive values less than 1 may be used to rescale large y values. The effect of rescaling is removed before normal return from the function, within the limits of normal precision.

In the multivariate case, `y.rescale` may be a vector of length `NV` to rescale each component separately.

llike.only
Compute the log-likelihood (ML) or restricted log-likelihood (REML) without further iteration, typically from values specified by `delta`.

method
Use restricted maximum likelihood ("REML") or maximum likelihood ("ML").

model
Dynamic ("dyn") or Rao-Yu ("RY").

Details
Many of arguments can be used to control the iterations if the defaults lead to convergence difficulties.

`llike.only` in combination with `delta` permits a point-by-point investigation of the likelihood surface.

The primary functions `eblupDyn` and `eblupRY` determine `X`, `NV`, `colx`, and `model`, but the remaining parameters can be passed to `dynRYfit` through `eblupDyn` or `eblupRY`.

Value

- `eblup` In the univariate case, a vector of length `M*TI` with the eblup estimates in the same sort order as `y`. In the multivariate case, a matrix of `M*TI` rows and `NV` columns.
fit A list summarizing the fit of the model with the following:
 • model: form of the model: TI - Dynamic or RaoYu; REML or ML.
 • convergence: a logical value indicating whether the convergence criterion was met.

parm A labelled vector with the estimated variance components, correlations, and number of iterations.

delta An ordered vector of the variance components (see above). It may be used as starting values for additional iterations.
eblup.mse MSE estimates for eblup.
eblup.g1 The g1 term of the MSE estimate.
eblup.g2 The g2 term of the MSE estimate.
eblup.g3 The g3 term of the MSE estimate.
est.fixed Estimates based on fixed effects only.
est.fixed.var The variance-covariance matrix for the estimates in coef.
eblup.wt1 Weights given to the direct estimate in forming eblup.
eblup.wt2 Weights given to the direct estimate, including effects through estimating the fixed effect coefficients.
contrast.est Estimates requested by the specified contrasts.
contrast.mse MSE estimates for contrast.est.
contrast.g1 The g1 term in the estimation of contrast.mse.
contrast.g2 The g2 term in the estimation of contrast.mse.
contrast.g3 The g3 term in the estimation of contrast.mse.
contrast.fixed.est Contrast estimates based on the fixed effect model.
contrast.fixed.var Variance estimates for the fixed effect model.
contrast.wt1 Weight wt1 given to the direct estimate in estimating the contrasts.
contrast.wt2 Weight wt2 in estimating the contrasts.
inference Information matrix for the components of delta.
var.coef Variance covariance matrix for coef.
delta.hist Values of delta at each iteration.
likelihood.hist Values of the log-likelihood (ML) or restricted log-likelihood (REML) at each iteration.
adj.hist Number of cycles in the internal loop to determine adj.factor within each iteration.
inf.mat.hist Values of inf.mat at each iteration.
s.hist Vector to be multiplied by the inverse information matrix to determine the change in the parameters.

ix.hist List of parameters eligible for change at each iteration. Parameters with estimated changes out of bounds will not be eligible.

adj.factor.hist Adjustment to the vector change in the parameters at each iteration.

warning.hist A 4-row matrix of warnings at each iteration, where warning 1 is set to 1 for the iteration if the algorithm has not found an increase in the restricted log likelihood or log likelihood, warning 2 is set to 1 if the maximum number of iterations is reached, warning 3 is set to 1 if the estimated variance-covariance matrix becomes singular, and warning 4 is set to 1 if the coefficients of the fixed effects cannot be estimated.

Author(s)

Robert E. Fay, Mamadou Diallo

EblupDyn EBLUP Fit of the Dynamic and Rao-Yu Time Series Models

Description

Functions for producing EBLUP small area estimates of the dynamic or Rao-Yu time series models through either ML or REML estimation of the variance components. The functions can fit univariate or multivariate models.

Usage

eblupDyn(formula, D, TI, vardir, method = c("REML", "ML"),
 MAXITER = 1000, PRECISION = .1e-05, data,
 max.rho = NULL, dampening = 1, ...)

eblupRY(formula, D, TI, vardir, method = c("REML", "ML"),
 MAXITER = 1000, PRECISION = .1e-05, data,
 max.rho = .98, dampening = 0.9, ...)

Arguments

formula For a univariate model, a formula for the linear regression relationship between the dependent variable and the independent variable(s). The variables included in formula must have length equal to D*TI and be sorted in ascending order by time within each domain.

For a multivariate model, a list of formulas, one for each dependent variable. The number of dependent variables, NV, is determined from the length of the list. The dependent variables included in the formulas must each have length equal
to $D \times TI$ and be sorted in ascending order by time within each component within each domain, which is an extension of the sorting requirement for the univariate model. Further details of the model specification are given under Details.

D
The total number of domains.

TI
The number of time instances, typically years (constant for all domains).

vardir
For the univariate model, the sampling covariance matrix for the direct estimates of the $D \times TI$ elements of the dependent variable. The covariance matrix should be in the form of a square matrix with $D \times TI$ rows and columns. Non-zero covariances between domains are not allowed, so the matrix must have a block diagonal form with D blocks, each of which is a square matrix with TI rows and columns. Note that within domain, non-zero covariances are allowed over time. Alternatively, vardir can be a list of D covariance matrices, each with TI rows and columns.

For the multivariate model, the square covariance matrix for the $D \times NV \times TI$ elements of the dependent variables. The matrix must be in the form of a square matrix with $D \times NV \times TI$ rows and columns. The variances and covariances should be in the sort order of time within dependent variable within domain. Non-zero covariances between domains are not allowed, but non-zero covariances may be present across time and between components. Alternatively, vardir can be a list of D covariance matrices, each with $NV \times TI$ rows and columns.

method
Whether restricted maximum likelihood REML or maximum likelihood ML should be used.

MAXITER
The maximum number of iterations allowed for the Fisher-scoring algorithm.

PRECISION
The convergence tolerance limit for the Fisher-scoring algorithm.

data
An optional data frame containing the variables named in formula. By default the variables are taken from the environment from which eblupDyn is called. Because vardir will be of a different size than the variables in formula, data will not be searched for vardir.

max.rho
If not NULL, the maximum value allowed for ρ. Note the different defaults for eblupDyn and eblupRY.

dampening
A multiplier of the computed update to parameters after iteration 5. A value less than 1 may slow the iterations but lessens the chance of overshooting the optimum choice. The default values were determined experimentally, but may be modified.

...
Other parameters passed to dynRYfit that affect convergence, provide starting values, or request specific results. The exceptions are y, X, NV, M, ncolx, and model, which will be set by either eblupDyn or eblupRY.

Details

A typical model has the form $\text{response} \sim \text{terms}$ where response is the (numeric) response vector and terms is a series of terms that specifies a linear predictor for response.

A formula has an implied intercept term. To remove this use either $y \sim x - 1$ or $y \sim 0 + x$. See formula for more details of allowed formulae.
eblupDyn and eblupRY parse formula by calling core R functions to determine X, then calling `dynRYfit`. As a last step, eblupDyn or eblupRY finalize the list that they return.

The additional parameters passed to `dynRYfit` may include `contrast.matrix`, which specifies linear combinations of estimates within domains, such as the sum over dependent variables or moving averages across time. Corresponding MSE estimates are provided for the contrasts.

The argument `ids` accepts a data frame with D rows of domain identifiers. These ids are returned in the list from `eblupDyn` or `eblupRY`.

If `iter.history` is set to `TRUE`, the returned object will include additional items with values of statistics at each step of the iteration; see `dynRYfit` for details on `delta.hist`, `likelihood.hist`, `adj.hist`, `inf.mat.hist`, `s.hist`, `ix.hist`, `adj.factor.hist`, and `warning.hist`. The default action is to include the history only if the iterations fail, in which case the history might suggest what went wrong. In the case of convergence, the history is usually not of interest, in which case omitting it reduces the size of the returned object.

MSE estimation for REML for both the Rao-Yu and dynamic models follows the results summarized in Rao and Molina (2015, pp. 98-111). The MSE estimates incorporate g_1, g_2, and g_3 terms. Our simulations show that the REML estimates have somewhat smaller MSEs than the ML estimates, but this is not reflected in the comparison of the estimated MSEs returned by the functions. The MSE estimates under REML perform quite well on average. The MSE estimates for ML use the same estimator as for REML, but they are modest underestimates of the true MSE in the same simulations.

Value

- **eblup**
 In the univariate case, a vector of length $D\times T_I$ with the eblup estimates. In the multivariate case, a data frame of $D\times T_I$ rows and N_V columns.

- **fit**
 A list summarizing the fit of the model with the following:
 - `model`: form of the model: T - Dynamic or Rao-Yu; REML or ML.
 - `convergence`: a logical value indicating whether the convergence criterion was met.
 - `iterations`: number of iterations performed by the Fisher-scoring algorithm.
 - `estcoef`: a data frame with the estimated model coefficients (β) in the first column, their asymptotic standard errors (std.error) in the second column, the t statistics (tvalue) in the third column, and the p-values (pvalue) of the significance of each coefficient in last column.
 - `estvarcomp`: a data frame with the estimated values of the variances and correlation coefficients in the first column (estimate) and their asymptotic standard errors in the second column (std.error).
 - `goodness`: the log-likelihood and, if REML, the restricted log-likelihood.

- **parm**
 A labelled vector with the estimated variance components, correlations, and number of iterations.

- **coef**
 A labelled vector of coefficients of the model or models.

- **ids**
 A data frame with D rows and one or more columns of numeric or character domain identifiers.
delta An ordered vector of the variance components, which may be used as starting values for additional iterations, see dynRYfit.
eblup.mse MSE estimates for eblup.
eblup.g1 The g1 term of the MSE estimate.
eblup.g2 The g2 term of the MSE estimate.
eblup.g3 The g3 term of the MSE estimate.
est.fixed Estimates based on fixed effects only.
est.fixed.var The variance-covariance matrix for the estimates in coef.
eblup.wt1 Weights given to the direct estimate in forming eblup.
eblup.wt2 Weights given to the direct estimate, including effects through estimating the fixed effect coefficients.
contrast.est Estimates requested by the specified contrasts.
contrast.mse MSE estimates for contrast.est.
contrast.g1 The g1 term in the estimation of contrast.mse.
contrast.g2 The g2 term in the estimation of contrast.mse.
contrast.g3 The g3 term in the estimation of contrast.mse.
contrast.fixed.est Contrast estimates based on the fixed effect model.
contrast.fixed.var Variance estimates for the fixed effect model.
contrast.wt1 Weight wt1 given to the direct estimate in estimating the contrasts.
contrast.wt2 Weight wt2 in estimating the contrasts.
inf.mat Information matrix for the components of delta.
var.coef Variance covariance matrix for coef.
model The formula or list of formulas implemented.

Author(s)

Robert E. Fay, Mamadou Diallo

References

Examples

```r
D <- 20 # number of domains
TI <- 5 # number of years
set.seed(1)
data <- data.frame(Y= mvrnormSeries(D=D, TI=TI, rho.dyn=.9, sigma.v.dyn=1,
   sigma.u.dyn=.19, sigma.e=diag(5)), X=rep(1:TI, times=D))
result.dyn <- eblupDyn(Y ~ X, D, TI, vardir = diag(100), data=data)
result.dyn$fit
```

```r
require(sae)
data(spacetime) # Load data set from sae package
data(spacetimeprox) # Load proximity matrix

D <- nrow(spacetimeprox) # number of domains
TI <- length(unique(spacetime$Time)) # number of time instants
# Fit model ST with AR(1) time effects for each domain
resultST <- eblupSTFH(Y ~ X1 + X2, D, TI, Var, spacetimeprox, data=spacetime)
resultST$fit
resultT <- eblupDyn(Y ~ X1 + X2, D, TI, vardir = diag(spacetime$Var), data=spacetime, ids=spacetime$Area)
resultT$fit
resultT.RY <- eblupRY(Y ~ X1 + X2, D, TI, vardir = diag(spacetime$Var), data=spacetime, ids=spacetime$Area)
resultT.RY$fit
rowsT <- seq(TI, TI*D, by=TI)
data.frame(Domain=spacetime$Area[rowsT], Y= spacetime$Y[rowsT],
   EBLUP_ST=resultST$eblup[rowsT],
   EBLUP_Dyn=resultT$eblup[rowsT],
   EBLUP_RY=resultT.RY$eblup[rowsT])
```

geo_ratios

Compute rates or ratios for a set of geographic entities over a set of years

Description

The function computes rates or ratios by a geographic code and the variable Year. If **designvars** is specified, the function also returns a data frame with linear substitutes to compute Taylor series variances.

Usage

```r
geo_ratios(data, geocode, numerators, denominators, geonames, new.names, designvars)
```
Arguments

data A data frame with the required variables, including a variable named Year.
geocode A character variable with the name of the geographic variable for which separate estimates are of interest.
umerators A character vector listing the names in data of the numerators of the ratios.
denominators A character vector listing the names in data of the denominators of the ratios. If a single value is given, it will be used for all of the ratios.
geonames An optional data frame containing geocode and one or more geographic variables, such as names, that will be merged into the results. There should be only one row for each value of geocode.
new.names An optional character vector of the same length as numerators naming the resulting ratios. If new.names is not specified, the output ratios will have the same names as numerators.
designvars Optional. If given, a character vector naming one or more survey design variables in data to use in forming linear substitutes for variance calculation of the ratios cross-classified by Year and the variable named by geocode. The vector should not include the geocode variable or Year.

Details

For programming simplicity, the function enforces the requirement that names should not be repeated in either numerators or new.names. Names may be repeated in denominators.

Rather than a typical survey file, the function expects the data frame data to contain weighted estimates for each analytic variable. As a simple example, to find the variance of the weighted mean of y with weights w, data should contain w and y * w. For convenience, the weighted estimates can still be assigned their original names in data, such as y. In this case,

numerator = y, denominators = w

would create the appropriate linear substitutes for the variance of the weighted mean.

This design of the function allows complex possibilities, such as estimating the variance of a rate where the numerator is based on one weight and the denominator is based on another. For example, estimation for the National Crime Victimization Survey requires this capability.

Value

If designvars is not specified, a named list with one element, a data frame containing the ratios sorted by geocode and Year.

If designvars is specified, a second element is added to the list, a data frame giving the totals of the linear substitutes by Year, geocode, and designvars. The elements of the list are named estimates and linear.subs.

Author(s)

Robert E. Fay
geo_ratios

References

See Also

covgen

Examples

```r
require(survey)
require(MASS)
D <- 20  # number of domains
T <- 5   # number of years
samp <- 16  # number of sample cases per domain
set.seed(1)
# use conditional.mean=TRUE to generate true small area values
# without sampling error
Y.list <- mvrnormSeries(D=D, T=T, rho.dyn=.9, sigma.v.dyn=1,
    sigma.u.dyn=.19, sigma.e=diag(5), conditional.mean=TRUE)
# generate sampling errors
e <- rnorm(samp * T * D, mean=0, sd=4)
Y <- Y.list[[2]] + tapply(e, rep(1:100, each=16), mean)
data <- data.frame(Y=Y, X=rep(1:T, times=D))
# model fit with the true sampling variances
result.dyn <- eblupDyn(Y ~ X, D, T, vardir = diag(100), data=data)
# individual level observations consistent with Y
Y2 <- rep(Y.list[[2]], each=16) + e
data2 <- data.frame(Y=Y2, X=rep(rep(1:T, each=samp), times=D),
            Year=rep(rep(1:T, each=samp), times=D),
            weight=rep(1, times=samp*T*D),
            d=rep(1:D, each=samp*T),
            strata=rep(1:(D*T), each=samp),
            ids=1:(D*T*samp))
# geo_ratios with designvars specified
geo.results <- geo_ratios(data2, geocode="d", numerators="Y",
            denominators="weight",
            designvars=c("strata", "ids"))
# illustrative check
max(abs(geo.results[[1]]$Y - Y))
cov.list <- vcovgen(geo.results[[2]], year.list=1:5, geocode="d",
        designvars=c("strata", "ids"))
cov.list[[1]]
# model fitted with directly estimated variance-covariances
result2.dyn <- eblupDyn(Y ~ X, D, T, vardir=vcov.list, data=data)
cor(result.dyn$eblup, result2.dyn$eblup)
```
Function to generate data under a Rao-Yu time series model, a dynamic model, or a mixture of both. The function can produce either univariate or multivariate observations. All components of the returned random variable have unconditional mean zero. The function calls `mvrnorm` in `MASS`.

Usage

```r
mvrnormSeries(NV=1, D, TI, sigma.e, 
    rho.dyn, sigma.v.dyn, sigma.u.dyn, rho.u.dyn, 
    rho.RY, sigma.v.RY, sigma.u.RY, rho.u.RY, tol=1e-6, 
    conditional.mean=FALSE)
```

Arguments

- **NV** The number of variables.
- **D** The number of domains.
- **TI** The number of time instances (constant for all domains).
- **sigma.e** The covariance matrix for the variation due to sampling, specified either as a single square matrix with NV*TI rows and columns, or as a list of D matrices, each with NV*TI rows and columns. The rows should vary over TI more quickly than over NV. Sampling covariances between domains are assumed to be zero.
- **rho.dyn** The temporal correlation parameter in the dynamic model. This parameter is not a true correlation, however, and it may exceed 1.
- **sigma.v.dyn** A vector of length NV with the v (nu) component of the variance under the dynamic model. This component measures the variance of the random effect at the beginning of the series.
- **sigma.u.dyn** A vector of length NV with the u component of the variance under the dynamic model.
- **rho.u.dyn** For NV>1, the cross-sectional correlation(s) under the model. The vector should specify (NV*(NV-1))/2 correlations, in lower triangular form. For example, for NV=3, the correlations should be specified in the order (2,1), (3,1), (3,2).
- **rho.RY** The temporal correlation parameter in the Rao-Yu model. This is a true correlation, unlike the parameter in the dynamic model.
- **sigma.v.RY** A vector of length NV with the v (nu) component of the variance under the Rao-Yu model. This component reflects a constant random effect for each domain unchanging over time.
- **sigma.u.RY** A vector of length NV with the u component of the variance under the Rao-Yu model.
rho.u.RY
For NV>1, the cross-sectional correlation under the model. The vector should specify (NV*(NV-1))/2 correlations, in lower triangular form. For example, for NV=3, the correlations should be specified in the order (2,1), (3,1), (3,2).

tol
A tolerance parameter used by mvrnorm in MASS to determine if the covariance matrix is non-singular.

conditional.mean
If true, the function will also return the generated values of the random effects.

Details
The function assembles the covariance matrix from the covariance matrix under the dynamic model (if specified), the Rao-Yu model (if specified) and a required sampling covariance matrix.

Value
If conditional.mean=FALSE, then for NV=1, a multivariate normal random vector with mean zero and length D*TI. For NV>1, a matrix with D*TI rows and NV columns.
If conditional.mean=TRUE, a list with the first element as above and a second element that is the sum of the random effects without the sampling error. Simulation studies can evaluate the small area estimates using the first element of the list as input against the second element of the list, which is the target of the small area estimation.

Author(s)
Robert E. Fay

See Also
mvrnorm

Examples
set.seed(7)
mvnrmSeries(D=2, TI=5, sigma.e=diag(5), rho.dyn=.8, sigma.v.dyn=2, sigma.u.dyn=.72, conditional.mean=TRUE)
mvnrmSeries(NV=2, D=2, TI=5, sigma.e=diag(10), rho.dyn=.8, sigma.v.dyn=2, sigma.u.dyn=.72, rho.u.dyn=.8)

vcovgen
Estimate variance/covariance matrices using linear substitutes

Description
The function computes estimates of variance/covariance matrices for sampling with replacement at the first stage from a stratified sample, using the linear substitutes produced by geo.ratios. The function produces a list of estimated covariance matrices corresponding the geographic areas identified by geocode.
Usage

vcovgen(linear.subs, year.list, geocode, designvars)

Arguments

linear.subs A data frame with linear substitutes for each Y variable, Year, and the variables with the names given by geocode and designvars.
year.list A character or numeric vector of the years to include.
geocode A character variable with the name of the geographic variable for which separate estimates are of interest.
designvars A character vector of length 2, naming the strata and first-stage units.

Details

The function reformatsthe second element of the list output from geo_ratios in order to estimate covariances across time for each separate geographic area identified by the variable with the name indicated by geocode. It then calls functions from the survey package to estimate covariances.
See the example in geo_ratios.

Value

A list of estimated covariance matrices, sorted by the geographic names. The list may be used by eblupDyn or eblupRY, although many applications require the estimated variance/covariance matrices to be smoothed.

Author(s)

Robert E. Fay
Index

dynRYfit, 3, 9
eblupDyn, 7
eblupRY, 5
eblupRY (eblupDyn), 7
formula, 8
geo_ratios, 11, 15, 16
mvrnorm, 15
mvrnormSeries, 14
sae, 3
sae2 (sae2-package), 2
sae2-package, 2
vcovgen, 15