Package ‘saeHB.ME.beta’

July 8, 2023

Title SAE with Measurement Error using HB under Beta Distribution
Version 1.1.0
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.3
URL https://github.com/ratihrodliyah/saeHB.ME.beta
BugReports https://github.com/ratihrodliyah/saeHB.ME.beta/issues
NeedsCompilation no
Imports coda, graphics, grDevices, rjags, stats, stringr
Suggests covr, knitr, R.rsp, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Depends R (>= 3.5.0)
LazyData true
Author Azka Ubaidillah [aut],
 Ratih Rodliyah [aut, cre]
Maintainer Ratih Rodliyah <ratihrodliyah2@gmail.com>
VignetteBuilder R.rsp, knitr
Repository CRAN
Date/Publication 2023-07-08 12:50:02 UTC

R topics documented:

dataHBMEbeta ... 2
dataHBMEbetaNS ... 3
meHBbeta ... 3
saeHB.ME.beta ... 5
Sample Data for Small Area Estimation with Measurement Error using Hierarchical Bayesian Method under Beta Distribution

Description

This data generated by simulation based on Hierarchical Bayesian Method under Normal Distribution with Measurement Error by following these steps:

1. Generate $x_1 \sim \text{UNIF}(0, 1)$, $x_2 \sim \text{UNIF}(0, 1)$, $x_3 \sim \text{UNIF}(0, 1)$, and $x_4 \sim \text{UNIF}(0, 1)$
2. Generate $v.x_1 \sim \text{Gamma}(2,1)$ and $v.x_2 \sim \text{Gamma}(2,5)$
3. Generate $x_{1h} \sim \text{N}(x_1, \sqrt{v.x_1})$ and $x_{2h} \sim \text{N}(x_2, \sqrt{v.x_2})$
4. Set Coefficient $\beta_0 = \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$
5. Generate $u \sim \text{N}(0,1)$ and $\pi \sim \text{Gamma}(1,0.5)$
6. Calculate $\mu = \frac{\beta_0 + \beta_1 * x_{1h} + \beta_2 * x_{2h} + \beta_3 * x_3 + \beta_4 * x_4 + u}{\beta_0 + \beta_1 * x_{1h} + \beta_2 * x_{2h} + \beta_3 * x_3 + \beta_4 * x_4 + u}$
7. Calculate $A = \mu \pi$ and $B = (1-\mu)\pi$
8. Generate $Y \sim \text{UNIF}(A,B)$
9. Calculate Mean of Variable Y with $E(Y) = \frac{A}{A + B}$
10. Calculate Variance of Variable Y with $Var(Y) = \frac{AB}{(A + B + 1)(A + B)^2}$

Direct estimation Y, auxiliary variables $x_1 \ x_2 \ x_3 \ x_4$, sampling variance v, and mean squared error of auxiliary variables $v.x_1 \ v.x_2$ are arranged in a dataframe called dataHBMEbeta.

Usage

data(dataHBMEbeta)

Format

A data frame with 30 rows and 8 variables:

- Y direct estimation of Y.
- x_1 auxiliary variable of x_1.
- x_2 auxiliary variable of x_2.
- x_3 auxiliary variable of x_3.
- x_4 auxiliary variable of x_4.
- vardir sampling variances of Y.
- $v.x_1$ mean squared error of x_1.
- $v.x_2$ mean squared error of x_2.

Sample Data for Small Area Estimation with Measurement Error using Hierarchical Bayesian Method under Beta Distribution with Non-sampled Area

Description

This data to simulate Small Area Estimation using Hierarchical Bayesian Method with Measurement Error under Beta Distribution with non-sampled areas. This data contains NA values that indicates no sampled at one or more small areas. It uses the `dataHBMEbeta` with the direct estimates and the related variances in 5 small areas are missing.

Usage

```r
data(dataHBMEbetaNS)
```

Format

A data frame with 30 rows and 8 variables:

- `Y` direct estimation of Y.
- `x1` auxiliary variable of x1.
- `x2` auxiliary variable of x2.
- `x3` auxiliary variable of x3.
- `x4` auxiliary variable of x4.
- `vardir` sampling variances of Y.
- `v.x1` mean squared error of x1.
- `v.x2` mean squared error of x2.

Description

This function is implemented to variable of interest (`Y`) that assumed to be a Beta Distribution when auxiliary variable is measured with error. The range of data must be $0 < Y < 1$. The data proportion is supposed to be implemented with this function.
Usage

meHBbeta(
 formula,
 var.x,
 coef,
 var.coef,
 iter.update = 3,
 iter.mcmc = 10000,
 thin = 2,
 tau.u = 1,
 burn.in = 2000,
 data
)

Arguments

- **formula**: an object of class `formula` (or one that can be coerced to that class): a symbolic description of the model to be fitted. The variables included in `formula` must have a length equal to the number of domains \(m \). This formula can provide auxiliary variable either measured with error or combination between measured with error and without error. If the auxiliary variable are combination between error and without error, input the error variable first followed by without error variable.

- **var.x**: vector containing mean squared error of \(X \). The values must be sorted as the \(X \).

- **coef**: a vector contains prior initial value of Coefficient of Regression Model for fixed effect with default vector of 0 with the length of the number of regression coefficients.

- **var.coef**: a vector contains prior initial value of variance of Coefficient of Regression Model with default vector of 1 with the length of the number of regression coefficients.

- **iter.update**: number of updates with default 3.

- **iter.mcmc**: number of total iterations per chain with default 10000.

- **thin**: thinning rate, must be a positive integer with default 2.

- **tau.u**: prior initial value of inverse of Variance of area random effect with default 1.

- **burn.in**: burn.in number of iterations to discard at the beginning with default 2000.

- **data**: the data frame.

Value

This function returns a list with the following objects:

- **Est**: A vector with the values of Small Area mean Estimates using Hierarchical bayesian method

- **refvar**: Estimated random effect variances

- **coefficient**: A data frame with the estimated model coefficient

- **plot**: Trace, Dencity, Autocorrelation Function Plot of MCMC samples
Examples

```r
## it may take time
## Load dataset
data(dataHBMEbeta)

## Auxiliary variables only contains variable with error in aux variable
eexample <- meHBbeta(Y~x1+x2, var.x = c("v.x1","v.x2"),
                      iter.update = 3, iter.mcmc = 1010,
                      thin = 1, burn.in = 1000, data = dataHBMEbeta)
```

you can use dataHBMEbetaNS for using dataset with non-sampled area
and you can use this function for aux variables contains variable with error and without error

saeHB.ME.beta

saeHB.ME.beta: Small Area Estimation with Measurement Error using Hierarchical Bayesian Method under Beta Distribution

Description

Implementation of small area estimation using Hierarchical Bayesian (HB) Method when auxiliary variable measured with error under Beta Distribution. The `rjags` package is employed to obtain parameter estimates.

Authors

Azka Ubaidillah, Ratih Rodliyah

Email

Ratih Rodliyah <ratihrodliyah2@gmail.com>

Functions

- **meHBbeta**: Produces HB estimators, standard error, random effect variance, coefficient and plot under beta distribution.

References

Index

dataHBMebeta, 2, 3
dataHBMebetaNS, 3

formula, 4

meHbbeta, 3, 5

saeHBMebeta, 5