Package ‘saeHB.panel.beta’

July 4, 2023

Type     Package
Title    Small Area Estimation using HB for Rao Yu Model under Beta Distribution
Version  0.1.3
Maintainer Dian Rahmawati Salis <dianrahmawatisalis03@gmail.com>
Description Several functions are provided for small area estimation at the area level using the hierarchical bayesian (HB) method with panel data under beta distribution for variable interest. This package also provides a dataset produced by data generation. The 'rjags' package is employed to obtain parameter estimates. Model-based estimators involve the HB estimators, which include the mean and the variation of the mean. For the reference, see Rao and Molina (2015, ISBN: 978-1-118-73578-7).
License   GPL-3
URL       https://github.com/DianRahmawatiSalis/saeHB.panel.beta
BugReports https://github.com/DianRahmawatiSalis/saeHB.panel.beta/issues
Depends   R(>= 2.10)
Imports   coda, dplyr, graphics, grDevices, rjags, stats, stringr
Suggests  knitr, R.rsp, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr, R.rsp
Config/testthat/edition  3
Encoding  UTF-8
LazyData  true
NeedsCompilation no
RoxygenNote  7.2.3
SystemRequirements JAGS (http://mcmc-jags.sourceforge.net)
Author     Dian Rahmawati Salis [aut, cre],
            Azka Ubaidillah [aut]
Repository CRAN
Date/Publication 2023-07-04 07:10:02 UTC
Description

Dataset under Beta Distribution to simulate Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model This data is generated by these following steps:

1. Generate random effect area \( v \), random effect for area \( i \) at time point \( j \), epsilon \( \epsilon \), variance of ydi \( \text{vardir}_{ij} \), sampling error \( e \), auxiliary \( x_{di1} \) and \( x_{di2} \)
   - Set coefficient \( \beta_0 = \beta_1 = \beta_2 = 2 \) and \( \rho = -0.5 \)
   - Generate random effect area \( v_{(i)} \sim N(0,1) \)
   - Generate auxiliary variable \( x_{di1_{ij}} \sim U(0,1) \)
   - Generate auxiliary variable \( x_{di2_{ij}} \sim U(0,1) \)
   - Generate epsilon \( \epsilon_{ij} \sim N(0,1) \)
   - Generate sampling error \( e_{ij} \sim N(0,\text{vardir}_{ij}) \)
   - Generate \( \phi_{ij} \sim \text{Gamma}(1,0.5) \)
   - Calculate random effect for area \( i \) at time point \( j \) \( u_{ij} = \rho * u_{ij-1} + \epsilon_{ij} \)
   - Calculate \( \mu_{ij} = \frac{\exp(\beta_0 + \beta_1 x_{di1_{ij}} + \beta_2 x_{di2_{ij}} + v_{(i)} + \epsilon_{ij})}{1 + \exp(\beta_0 + \beta_1 x_{di1_{ij}} + \beta_2 x_{di2_{ij}} + v_{(i)} + \epsilon_{ij})} \)
   - Calculate \( A_{ij} = \mu_{ij} * \phi_{ij} \)
   - Calculate \( B_{ij} = (1 - \mu_{ij}) * \phi_{ij} \)
   - Generate ydi \( y_{(ij)} \sim \text{Beta}(A_{ij},B_{ij}) \)
   - Calculate variance of ydi with \( \text{vardir}_{ij} = \frac{(A_{ij})(B_{ij})}{(A_{ij}+B_{ij})^2(A_{ij}+B_{ij}+1)} \)
   - Set area=20 and period=5

2. Auxiliary variables \( x_{di1}, x_{di2} \), direct estimation \( y \), area, period, and \( \text{vardir} \) are combined in a dataframe called dataAr1

Usage

dataBetaAr1
**dataBetaAr1Ns**

**Format**

A data frame with 100 rows and 6 variables:

- **ydi** Direct Estimation of y
- **area** Area (domain) of the data
- **period** Period (subdomain) of the data
- **vardir** Sampling Variance of y
- **xdi1** Auxiliary variable of xdi1
- **xdi2** Auxiliary variable of xdi2

---

Description

1. A dataset under Beta Distribution to simulate Small Area Estimation using Hierarchical Bayesian method for Rao-Yu Model with Non-sampled Area
2. This data contains NA values that indicates no sampled in at least one area.

**Usage**

dataBetaAr1Ns

**Format**

A data frame with 100 row and 6 column:

- **ydi** Direct Estimation of y
- **area** Area (domain) of the data
- **period** Period (subdomain) of the data
- **vardir** Sampling Variance of y
- **xdi1** Auxiliary variable of xdi1
- **xdi2** Auxiliary variable of xdi2
Sample Data under Beta Distribution for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model when $\rho = 0$

Description

Dataset under Beta Distribution to simulate Small Area Estimation using Hierarchical Bayesian Method for Rao-Yu Model with $\rho = 0$ This data is generated by these following steps:

1. Generate random effect area $v$, random effect for area $i$ at time point $j$ $u$, epsilon $\epsilon$, variance of $y_{di}$ $\text{vardir}$, sampling error $e$, auxiliary $x_{di1}$ and $x_{di2}$
   - Set coefficient $\beta_0 = \beta_1 = \beta_2 = 2$
   - Generate random effect area $v_{i} \sim N(0,1)$
   - Generate auxiliary variable $x_{di1_{ij}} \sim U(0,1)$
   - Generate auxiliary variable $x_{di2_{ij}} \sim U(0,1)$
   - Generate epsilon $\epsilon_{ij} \sim N(0,1)$
   - Generate $\phi_{ij} \sim \text{Gamma}(1,0.5)$
   - Calculate $\mu_{ij} = \exp(\beta_0 + \beta_1 x_{di1_{ij}} + \beta_2 x_{di2_{ij}} + v_i + \epsilon_{ij}) / (1 + \exp(\beta_0 + \beta_1 x_{di1_{ij}} + \beta_2 x_{di2_{ij}} + v_i + \epsilon_{ij}))$
   - Calculate $A_{ij} = \mu_{ij} * \phi_{ij}$
   - Calculate $B_{ij} = (1 - \mu_{ij}) * \phi_{ij}$
   - Generate ydi $y_{ij} \sim \text{Beta}(A_{ij}, B_{ij})$
   - Calculate variance of ydi with $\text{vardir}_{ij} = \frac{(A_{ij})(B_{ij})}{(A_{ij} + B_{ij})^2(A_{ij} + B_{ij} + 1)}$

2. Auxiliary variables $x_{di1}, x_{di2}$, direct estimation $y$, area, period, and $\text{vardir}$ are combined in a dataframe called dataPanel

Usage

dataPanelbeta

Format

A data frame with 100 rows and 6 variables:

- **ydi** Direct Estimation of $y$
- **area** Area (domain) of the data
- **period** Period (subdomain) of the data
- **vardir** Sampling Variance of $y$
- **xdi1** Auxiliary variable of xdi1
- **xdi2** Auxiliary variable of xdi2
dataPanelbetaNs

Sample Data under Beta Distribution for Small Area Estimation using Hierarchical Bayesian Method for Rao Yu Model when \( \rho = 0 \) with Non Sampled Area

Description

1. A dataset under Beta Distribution to simulate Small Area Estimation using Hierarchical Bayesian method for Rao-Yu Model with Non-sampled area
2. This data contains NA values that indicates no sampled in at least one area.

Usage

dataPanelbetaNs

Format

A data frame with 100 row and 6 column:

- \texttt{ydi} Direct Estimation of \( y \)
- \texttt{area} Area (domain) of the data
- \texttt{period} Period (subdomain) of the data
- \texttt{vardir} Sampling Variance of \( y \)
- \texttt{xdi1} Auxiliary variable of \( xdi1 \)
- \texttt{xdi2} Auxiliary variable of \( xdi2 \)

Panel.beta

Small Area Estimation using Hierarchical Bayesian for Rao-Yu Model under Beta Distribution with \( \rho = 0 \)

Description

This function is implemented to variable of interest \( ydi \)

Usage

\begin{verbatim}
Panel.beta(
    formula, \
    area, \
    period, \
    iter.update = 3, \
    iter.mcmc = 2000, \
    thin = 1, \
    burn.in = 1000,
)\end{verbatim}
Panel.beta

tau.e = 1,
tau.v = 1,
data
)

Arguments

formula Formula that describe the fitted model
area Number of areas (domain) of the data
period Number of periods (subdomains) for each area of the data
iter.update Number of updates with default 3
iter.mcmc Number of total iterations per chain with default 2000
thin Thinning rate, must be a positive integer with default 1
burn.in Number of iterations to discard at the beginning with default 1000
tau.e Variance of area-by-time effect of variable interest with default 1
tau.v Variance of random area effect of variable interest with default 1
data The data frame

Value

This function returns a list of the following objects:

Est A vector with the values of Small Area mean Estimates using Hierarchical
bayesian method
refVar Estimated random effect variances
coef A dataframe with the estimated model coefficient
plot Trace, Density, Autocorrelation Function Plot of MCMC samples
convergence.test Convergence diagnostic for Markov chains based on Geweke test

Examples

##For data without any non-sampled area
data(dataPanelbeta) # Load dataset
dataPanelbeta = dataPanelbeta[1:25,] #for the example only use part of the dataset
formula = ydi ~ xdi1 + xdi2
area = max(dataPanelbeta[, "area"])
period = max(dataPanelbeta[, "period"])

result <- Panel.beta(formula, area, period, data = dataPanelbeta)

result$Est
result$refVar
result$coef
result$plot
result$convergence.test
## For data with non-sampled area use dataPanelbetaNs

---

**RaoYuAr1.beta**  
*Small Area Estimation using Hierarchical Bayesian for Rao-Yu Model under Beta Distribution*

### Description

This function is implemented to variable of interest ydi

### Usage

```r
RaoYuAr1.beta(
  formula,
  area,
  period,
  iter.update = 3,
  iter.mcmc = 2000,
  thin = 1,
  burn.in = 1000,
  tau.e = 1,
  tau.v = 1,
  data
)
```

### Arguments

- `formula`: Formula that describe the fitted model
- `area`: Number of areas (domain) of the data
- `period`: Number of periods (subdomains) for each area of the data
- `iter.update`: Number of updates with default 3
- `iter.mcmc`: Number of total iterations per chain with default 2000
- `thin`: Thinning rate, must be a positive integer with default 1
- `burn.in`: Number of iterations to discard at the beginning with default 1000
- `tau.e`: Variance of area-by-time effect of variable interest with default 1
- `tau.v`: Variance of random area effect of variable interest with default 1
- `data`: The data frame
Value

This function returns a list of the following objects:

Est A vector with the values of Small Area mean Estimates using Hierarchical bayesian method
refVar Estimated random effect variances
coefficient A dataframe with the estimated model coefficient
alpha Parameter dispersion of Generalized Poisson distribution
plot Trace, Density, Autocorrelation Function Plot of MCMC samples
convergence.test Convergence diagnostic for Markov chains based on Geweke test

Examples

##For data without any non-sampled area
data(dataBetaAr1) # Load dataset
dataBetaAr1 = dataBetaAr1[1:25,] #for the example only use part of the dataset
formula = ydi ~ xdi1 + xdi2
area = max(dataBetaAr1[, “area”])
period = max(dataBetaAr1[, “period”])

result <- RaoYuAr1.beta(formula, area, period, data = dataBetaAr1)

result$Est
result$refVar
result$coefficient
result$plot
result$convergence.test

## For data with non-sampled area use dataBetaAr1Ns
Index

* datasets
  dataBetaAr1, 2
  dataBetaAr1Ns, 3
  dataPanelbeta, 4
  dataPanelbetaNs, 5

dataBetaAr1, 2
dataBetaAr1Ns, 3
dataPanelbeta, 4
dataPanelbetaNs, 5

Panel.beta, 5
RaoYuAr1.beta, 7