Package ‘salso’

July 17, 2023

Type Package
Title Search Algorithms and Loss Functions for Bayesian Clustering
Version 0.3.35
Description The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022) <doi:10.1080/10618600.2022.2069779>.
License MIT + file LICENSE | Apache License 2.0
URL https://github.com/dbdahl/salso
BugReports https://github.com/dbdahl/salso/issues
Depends R (>= 4.2.0)
SystemRequirements Cargo (Rust's package manager), rustc (>= 1.65)
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.2.3
NeedsCompilation yes
Enthought, Inc. [cph] (Rust crate: ndarray.),
Gilad Naaman [cph] (Rust crate: memoffset.),
Jim Turner [cph] (Rust crate: ndarray.),
Josh Stone [cph] (Rust crate: autocfg.),
Melissa O’Neill [cph] (Rust crate: rand_pcg.),
Paul Dicker [cph] (Rust crate: rand_pcg.),
PCG Project contributors [cph] (Rust crate: rand_pcg.),
Ralf Jung [cph] (Rust crate: memoffset.),
rawpointer developers [cph] (Rust crate: rawpointer.),
R. Janis Goldschmidt [cph] (Rust crate: matrixmultiply.),
SciPy Developers [cph] (Rust crate: ndarray.),
Sean McArthur [cph] (Rust crate: num_cpus.),
Stefan Lankes [cph] (Rust crate: hermit-abi.),
The Cranelift Project Developers [cph] (Rust crate: wasi.),
The Crossbeam Project Developers [cph] (Rust crates: crossbeam,
crossbeam-channel, crossbeam-deque, crossbeam-epoch,
crossbeam-queue, crossbeam-utils.),
The CryptoCorrosion Contributors [cph] (Rust crates: ppv-lite86,
rand_chacha.),
The Go Authors [cph] (Rust crate: crossbeam-channel.),
The PCG Project Contributors [cph] (Rust crate: rand_pcg.),
The matrixmultiply Authors [cph] (Rust crate: matrixmultiply.),
The ndarray Authors [cph] (Rust crate: ndarray.),
The Rand Project Developers [cph] (Rust crates: rand_core, rand_chacha,
rand_pcg, rand, getrandom.),
The Rust Project Developers [cph] (Rust crates: crossbeam-channel,
rand_chacha, num-integer, rand_core, num-complex, libc, num-traits,
rand.),
The scopeguard Developers [cph] (Rust crate: scopeguard.),
Unicode, Inc. [cph] (Rust crate: unicode-ident.)

Maintainer David B. Dahl <dahl@stat.byu.edu>

Repository CRAN

Date/Publication 2023-07-17 20:20:02 UTC

R topics documented:

bell .. 3
dlso .. 3
enumerate.partitions 5
enumerate.permutations 5
iris.clusterings 6
partition.loss 6
plot.salos.summary 10
psm .. 12
salso ... 13
summary.salos.estimate 15
bell

Index

bell

Compute the Bell Number

Description

These functions compute the Bell number (the number of partitions of a given number of items) or its natural logarithm.

Usage

- `bell(nItems)`
- `lbell(nItems)`

Arguments

- `nItems`
 - The size of the set $1, 2, \ldots, n$.

Value

A numeric vector of length one giving the Bell number or its natural logarithm.

Examples

```r
# R_CARGO \dontrun{
# R_CARGO # Example disabled since Cargo was not found when installing from source package.
# R_CARGO # You can still run the example if you install Cargo. Hint: cargo::install().
bell(12)
lbell(300)
all.equal(bell(5), exp(lbell(5)))
# R_CARGO }
```

dlso

Latent Structure Optimization Based on Draws

Description

This function provides a partition to summarize a partition distribution using the draws-based latent structure optimization (DLSO) method, which is also known as the least-squares clustering method (Dahl 2006). The method seeks to minimize an estimation criterion by picking the minimizer among the partitions supplied. The implementation currently supports the minimization of several partition estimation criteria. For details on these criteria, see `partition.loss`.
Usage

dlso(truth, loss = VI(), estimate = NULL)

Arguments

truth
An integer vector of cluster labels for \(n \) items representing the true clustering. Two items are in the same cluster if their labels are equal. Or, a matrix of \(n \) columns where each row is a clustering.

loss
The loss function to use, as indicated by "binder", "omARI", "VI", "NVI", "ID", "NID", or the result of calling a function with these names. Also supported are "binder.psm", "VI.lb", "omARI.approx", or the result of calling a function with these names, in which case \(x \) above can optionally be a pairwise similarity matrix, i.e., \(n \)-by-\(n \) symmetric matrix whose \((i,j)\) element gives the (estimated) probability that items \(i \) and \(j \) are in the same subset (i.e., cluster) of a partition (i.e., clustering).

estimate
An integer vector of cluster labels having the same length as \(truth \) representing the estimated clustering. Or, a matrix of \(n \) columns where each row is a clustering.

Value

An integer vector giving the estimated partition, encoded using cluster labels.

References

See Also

partition.loss, psm, summary.salso.estimate, salso

Examples

data(iris.clusterings)

R_CARGO \
dontrun{
R_CARGO
Example disabled since Cargo was not found when installing from source package.
R_CARGO
You can still run the example if you install Cargo. Hint: cargo::install().
dlso(iris.clusterings, loss=VI())
dlso(iris.clusterings, loss=binder())

Compute expected loss using all draws, but pick the best among the first 10.
dlso(iris.clusterings, loss=VI(), estimate=iris.clusterings[1:10,])
R_CARGO }
enumerate.partitions

Enumerate Partitions of a Set

Description

This function produces a matrix whose rows provide all possible partitions of the set \(1, 2, \ldots, n\). These partitions are provided as cluster labels, where two items are in the same subset (i.e., cluster) if their labels are equal.

Usage

\[
\text{enumerate.partitions}(\text{nItems})
\]

Arguments

\[
\text{nItems} \quad \text{The size of the set} \ 1, 2, \ldots, n, \text{ i.e., } n.
\]

Value

A matrix of integers, where each row is a partition encoded as a vector of cluster labels.

Examples

\[
\begin{align*}
\text{# R_CARGO } & \text{ \texttt{\textbackslash dontrun{}} } \\
\text{# R_CARGO } & \text{ \texttt{\# Example disabled since Cargo was not found when installing from source package.}} \\
\text{# R_CARGO } & \text{ \texttt{\# You can still run the example if you install Cargo. Hint: cargo::install().}} \\
\text{# R_CARGO } & \text{ \texttt{enumerate.partitions(5)}} \\
\text{# R_CARGO } & \text{ \texttt{)}}
\end{align*}
\]

enumerate.permutations

Enumerate Permutations of Items

Description

This function produces a matrix whose rows provide all possible permutations of the set \(1, 2, \ldots, n\).

Usage

\[
\text{enumerate.permutations}(\text{nItems})
\]

Arguments

\[
\text{nItems} \quad \text{The size of the set} \ 1, 2, \ldots, n, \text{ i.e., } n.
\]
Value

A matrix of integers, where each row is a permutation.

Examples

```r
enumerate.permutations(5)
```

iris.clusterings
Clusterings of the Iris Data

Description

Randomly generated clusterings for the `iris` dataset.

Usage

```r
iris.clusterings
```

Format

A 1000-by-150 matrix of 1000 randomly generated clusterings of the 150 observations in the `iris` dataset.

Source

Unknown.

See Also

`iris`

partition.loss
Compute Partition Loss or the Expectation of Partition Loss

Description

Given two partitions \(\pi^* \) and \(\pi \), these functions compute the specified loss when using \(\pi^* \) to estimate \(\pi \). Smaller loss values indicate higher concordance between partitions. These functions also compute a Monte Carlo estimate of the expectation for the specified loss based on samples or a pairwise similarity matrix. This function also supports computing approximations to the expectation of several losses. Supported criteria are described below. Some criteria only require the pairwise similarity matrix (as computed, for example, by `psm`) whereas others require samples from a partition distribution. For those criteria that only need the pairwise similarity matrix, posterior samples can still be provided in the `truth` argument and the pairwise similarity matrix will automatically be computed as needed.
Usage

partition.loss(truth, estimate, loss = VI())
nbinder(truth, estimate, a = 1)
RI(truth, estimate)
omARI(truth, estimate)
omARI.approx(truth, estimate)
ARI(truth, estimate)
VI(truth, estimate, a = 1)
VI.lb(truth, estimate)
NVI(truth, estimate)
ID(truth, estimate)
NID(truth, estimate)

Arguments

truth
An integer vector of cluster labels for \(n\) items representing the true clustering. Two items are in the same cluster if their labels are equal. Or, a matrix of \(n\) columns where each row is a clustering.

estimate
An integer vector of cluster labels having the same length as truth representing the estimated clustering. Or, a matrix of \(n\) columns where each row is a clustering.

loss
The loss function to use, as indicated by "binder", "omARI", "VI", "NVI", "ID", "NID", or the result of calling a function with these names. Also supported are "binder.psm", "VI.lb", "omARI.approx", or the result of calling a function with these names, in which case x above can optionally be a pairwise similarity matrix, i.e., \(n\)-by-\(n\) symmetric matrix whose \((i,j)\) element gives the (estimated) probability that items \(i\) and \(j\) are in the same subset (i.e., cluster) of a partition (i.e., clustering).

a
(Only used for Binder and VI loss) The argument a is either: i. a nonnegative scalar in \([0, 2]\) giving (for Binder loss) the cost of placing two items in separate clusters when in truth they belong to the same cluster, ii. NULL, in which case a that maximizes the expected loss is found, and iii. a list containing the desired number of clusters ("nClusters") when searching for a that yields this number of clusters. In all but the first case, one may want to modifying maxSize in the salso function. To increase the probability of hitting exactly the desired number of clusters, the nRuns in the salso function may need to be increased. Without loss of generality, the cost (under Binder loss) of placing two items in the same
cluster when in truth they belong to separate clusters is fixed $2-a$. For VI, a has a similar interpretation, although is not a unit cost. See Dahl, Johnson, Müller (2021).

Details

The partition estimation criterion can be specified using the *loss* argument, which is either a string or a result of calling the associated functions. These losses are described below:

"binder" Binder. Whereas high values of the Rand index R between π^* and π correspond to high concordance between the partitions, the N-invariant Binder loss L for a partition π^* in estimating π is $L = (1 - R) \cdot (n - 1)/n$, meaning that low values correspond to high concordance between the partitions. This package reports the N-invariant Binder loss. The original Binder loss equals the N-invariant Binder loss multiplied by $n^2/2$. Only the pairwise similarity matrix is required for this loss, but samples can be provided. As originally discussed by Binder (1978), two mistakes are possible: 1. Placing two items in separate clusters when in truth they belong to the same cluster, and 2. Placing two items in the same cluster when in truth they belong to separate clusters. The default cost of the first mistake is one, but can be specified with the argument a in $[0, 2]$. Without loss of generality, the cost of the second mistake is set as $2-a$. For a discussion of general weights, see Dahl, Johnson, and Müller (2021). For a discussion of the equal weights case, see also Dahl (2006), Lau and Green (2007), Dahl and Newton (2007), Fritsch and Ickstadt (2009), and Wade and Ghahramani (2018).

"omARI" One Minus Adjusted Rand Index. Computes the expectation of one minus the adjusted Rand index (Hubert and Arabie, 1985). Whereas high values of the adjusted Rand index between π^* and π correspond to high concordance between the partitions, the loss associated with the adjusted Rand index for a partition π^* in estimating π is one minus the adjusted Rand index between the partitions, meaning that low values correspond to high concordance between the partitions. Samples from a partition distribution are required for this loss. See Fritsch and Ickstadt (2009).

"omARI.approx" Approximation of One Minus Adjusted Rand Index. Computes the first-order approximation of the expectation of one minus the adjusted Rand index. The adjusted Rand index involves a ratio and the first-order approximation of the expectation is based on $E(X/Y) \approx E(X)/E(Y)$. Only the pairwise similarity matrix is required for this criterion, but samples can be provided. See Fritsch and Ickstadt (2009).

"VI" Variation of Information. Computes the expectation of the (generalized) variation of information loss. Samples from a partition distribution are required for this loss. See Meilă (2007), Wade and Ghahramani (2018), and Rastelli and Friel (2018). The original variation of information of Meilă (2007) has been extended to the generalized variation of information of Dahl, Johnson, and Müller (2021) to allow for unequal weighting of two possible mistakes: 1. Placing two items in separate clusters when in truth they belong to the same cluster, and 2. Placing two items in the same cluster when in truth they belong to separate clusters. The value a controls the cost of the first mistake and defaults to one, but can be specified with the argument a in $[0, 2]$. Without loss of generality, the cost of the second mistake is controlled by $2-a$. See Dahl, Johnson, Müller (2021).

"VI.lb" Lower Bound of the Variation of Information. Computes the lower bound of the expectation of the variation of information loss, where the lower bound is obtained by Jensen's
inequality. Only the pairwise similarity matrix is required for this criterion, but samples can be provided. See Wade and Ghahramani (2018).

"NVI" Normalized Variation of Information. Computes the expectation of the normalized variation of information loss. Samples from a partition distribution are required for this loss. See Vinh, Epps, and Bailey (2010) and Rastelli and Friel (2018).

"ID" Information Distance. Computes the expectation of the information distance (D_{max}) loss. Samples from a partition distribution are required for this loss. See Vinh, Epps, and Bailey (2010).

"NID" Normalized Information Distance. Computes the expectation of the normalized information distance loss. Samples from a partition distribution are required for this loss. See Vinh, Epps, and Bailey (2010) and Rastelli and Friel (2018).

The functions RI and ARI are convenience functions. Note that:

- $\text{binder}(p_1, p_2, a=1) = (1 - RI(p_1, p_2)) * (n-1)/n$
- $\text{omARI}(p_1, p_2) = 1 - ARI(p_1, p_2)$

Value

A numeric vector.

References

See Also

`psm`, `salso`, `dlso`

Examples

```r
# For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
partitions <- iris.clusterings[1:5,]

# R_CARGO \
dontrun{
# R_CARGO # Example disabled since Cargo was not found when installing from source package.
# R_CARGO # You can still run the example if you install Cargo. Hint: cargo::install().
all.equal(partition.loss(partitions, partitions, loss=binder(a=1.4)),
binder(partitions, partitions, a=1.4))
all.equal(partition.loss(partitions, partitions, loss=omARI()),
  omARI(partitions, partitions))
all.equal(partition.loss(partitions, partitions, loss=VI(a=0.8)),
  VI(partitions, partitions, a=0.8))

truth <- iris.clusterings[1,]
estimate <- iris.clusterings[2,]

VI(truth, estimate, a=1.0)
n <- length(truth)
all.equal(binder(truth, estimate), (1 - RI(truth, estimate)) * (n-1) / n)
all.equal(omARI(truth, estimate), 1 - ARI(truth, estimate))
# R_CARGO }
```

Description

This function produces one of four plots: 1. "heatmap": A heatmap showing the pairwise allocation probabilities that items are clustered. 2. "mds": A scatter plot using classical multidimensional scaling (also known as principal coordinates analysis) with the exemplar (i.e., the most representative observation) of each cluster emphasized. 3. "pairs": Pairs plots of all the variables with the exemplar (i.e., the most representative observation) of each cluster emphasized. 4. "dendrogram": A dendrogram based on expected partition loss showing the relationships among clusters when merging pairs of clusters such that the increase in the expectation of the posterior loss is minimized.
Usage

S3 method for class 'salso.summary'
plot(
 x,
 type = c("heatmap", "mds", "pairs", "dendrogram")[1],
 data = NULL,
 showLabels = TRUE,
 showIDs = length(x$estimate) <= 50,
 ...
)

Arguments

x
An object returned by summary(y), where y itself is returned by the salso function.

type
A string equal to "heatmap", "mds", "pairs", or "dendrogram".

data
The data from which the partition estimation was obtained. This is required when type='pairs' and ignored otherwise.

showLabels
Should the cluster labels be shown in the plot when type="heatmap"?

showIDs
Should the ID of the items be shown in the plot?

...
Arguments to be passed to methods, such as graphical parameters (see par).

Value

NULL, invisibly.

See Also

salso, summary.salso.estimate, cmdscale.

Examples

For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
draws <- iris.clusterings
R_CARGO \dontrun{
R_CARGO # Example disabled since Cargo was not found when installing from source package.
R_CARGO # You can still run the example if you install Cargo. Hint: cargo::install().
est <- salso(draws, nCores=1)
summ <- summary(est)
plot(summ, type="heatmap")
plot(summ, type="mds")
plot(summ, type="pairs", data=iris)
plot(summ, type="dendrogram")
R_CARGO }
Compute an Adjacency or Pairwise Similarity Matrix

Description

If only one sample is provided, this function computes an adjacency matrix, i.e., a binary matrix whose \((i,j)\) element is one if and only if elements \(i\) and \(j\) in the partition have the same cluster label. If multiple samples are provided (as rows of the \(x\) matrix), this function computes the \(n\)-by-\(n\) matrix whose \((i,j)\) element gives the relative frequency (i.e., estimated probability) that items \(i\) and \(j\) are in the same subset (i.e., cluster). This is the mean of the adjacency matrices of the provided samples.

Usage

```r
psm(x, nCores = 0)
```

Arguments

- **x**: A \(B\)-by-\(n\) matrix, where each of the \(B\) rows represents a clustering of \(n\) items using cluster labels. For the \(b\)th clustering, items \(i\) and \(j\) are in the same cluster if \(x[b,i] == x[b,j]\).
- **nCores**: The number of CPU cores to use, i.e., the number of simultaneous runs at any given time. A value of zero indicates to use all cores on the system.

Value

A \(n\)-by-\(n\) symmetric matrix whose \((i,j)\) element gives the relative frequency that that items \(i\) and \(j\) are in the same subset (i.e., cluster).

Examples

```r
# For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
partition <- iris.clusterings[1,]
# R_CARGO \dontrun{
# R_CARGO # Example disabled since Cargo was not found when installing from source package.
# R_CARGO # You can still run the example if you install Cargo. Hint: cargo::install().
psm(partition, nCores=1)
# R_CARGO }

dim(iris.clusterings)
# R_CARGO \dontrun{
# R_CARGO # Example disabled since Cargo was not found when installing from source package.
# R_CARGO # You can still run the example if you install Cargo. Hint: cargo::install().
probs <- psm(iris.clusterings, nCores=1)
dim(probs)
probs[1:6, 1:6]
# R_CARGO }
```
Description

This function provides a partition to summarize a partition distribution using the SALSO greedy search method (Dahl, Johnson, and Müller, 2022). The implementation currently supports the minimization of several partition estimation criteria. For details on these criteria, see `partition.loss`.

Usage

```r
salso(
  x,
  loss = VI(),
  maxNClusters = 0,
  nRuns = 16,
  maxZealousAttempts = 10,
  probSequentialAllocation = 0.5,
  nCores = 0,
  ...
)
```

Arguments

- **x**: A `B`-by-`n` matrix, where each of the `B` rows represents a clustering of `n` items using cluster labels. For the `b`th clustering, items `i` and `j` are in the same cluster if `x[b,i] == x[b,j].`

- **loss**: The loss function to use, as indicated by "binder", "omARI", "VI", "NVI", "ID", "NID", or the result of calling a function with these names. Also supported are "binder.psm", "VI.lb", "omARI.approx", or the result of calling a function with these names, in which case `x` above can optionally be a pairwise similarity matrix, i.e., `n`-by-`n` symmetric matrix whose `(i,j)` element gives the (estimated) probability that items `i` and `j` are in the same subset (i.e., cluster) of a partition (i.e., clustering). The loss functions "binder.psm", "VI.lb", and "omARI.approx" are generally not recommended and the current implementation requires that `maxZealousAttempts = 0` and `probSequentialAllocation = 1.0`.

- **maxNClusters**: The maximum number of clusters that can be considered by the optimization algorithm, which has important implications for the interpretability of the resulting clustering and can greatly influence the RAM needed for the optimization algorithm. If the supplied value is zero and `x` is a matrix of clusterings, the optimization is constrained by the maximum number of clusters among the clusterings in `x`. If the supplied value is zero and `x` is a pairwise similarity matrix, there is no constraint.
nRuns

The number of runs to try, although the actual number may differ for the following reasons: 1. The actual number is a multiple of the number of cores specified by the nCores argument, and 2. The search is curtailed when the seconds threshold is exceeded.

maxZealousAttempts

The maximum number of attempts for zealous updates, in which entire clusters are destroyed and items are sequentially reallocated. While zealous updates may be helpful in optimization, they also take more CPU time which might be better used trying additional runs.

probSequentialAllocation

For the initial allocation, the probability of sequential allocation instead of using sample(1:K, ncol(x), TRUE), where K is set according to the maxNClusters argument.

nCores

The number of CPU cores to use, i.e., the number of simultaneous runs at any given time. A value of zero indicates to use all cores on the system.

... Extra arguments not intended for the end user, including: 1. seconds: Instead of performing all the requested number of runs, curtail the search after the specified expected number of seconds. Note that the function will finish earlier if all the requested runs are completed. The specified seconds does not account for the overhead involved in starting the search and returning results. 2. maxScans The maximum number of full reallocation scans. The actual number of scans may be less than maxScans since the method stops if the result does not change between scans, and 3. probSingletonsInitialization: When doing a sequential allocation to obtain the initial allocation, the probability of placing the first maxNClusters randomly-selected items in singletons subsets.

Value

An integer vector giving the estimated partition, encoded using cluster labels.

References

See Also

partition.loss, psm, summary.salso.estimate, dlso

Examples

For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
draws <- iris.clusterings
R_CARGO \dontrun{
R_CARGO # Example disabled since Cargo was not found when installing from source package.
R_CARGO # You can still run the example if you install Cargo. Hint: cargo::install().
salso(draws, loss=VI(), nRuns=1, nCores=1)
summary.salso.estimate

Summary of Partitions Estimated Using Posterior Expected Loss

Description

Assessing the quality of clusters in a partition estimate is added by this function. The result can then be plotted with `plot.salso.summary`. The current implementation of the calculation of these summaries is not terribly efficient and may be improved in the future.

Usage

```r
## S3 method for class 'salso.estimate'
summary(object, alternative, orderingMethod = 1, ...)
```

Arguments

- `object`: An object returned by the `salso` function.
- `alternative`: An optional argument specifying an alternative clustering to use instead of that provided by `object`. Use this feature to obtain numerical and graphical summaries of a clustering estimate from other procedures. This clustering must be provided in canonical form: cluster labels as integers starting at 1 for the first observation and incrementing by one for each new label.
- `orderingMethod`: An integer giving method to use to order the observations for a heatmap plot. Currently values 1 or 2 are supported.
- `...`: Currently ignored.

Value

A list containing the estimate, the pairwise similarity matrix, the mean pairwise similarity matrix, the score and mean pairwise similarity for each observation, exemplar observation for each cluster, a dendrogram object, a vector for ordering observations in the heatmap plot, the size of each cluster, and the number of clusters.

Examples

```r
# For examples, use 'nCores=1' per CRAN rules, but in practice omit this.
data(iris.clusterings)
draws <- iris.clusterings
# R_CARGO \dontrun{
```
est <- salso(draws, nCores=1)
summ <- summary(est)
plot(summ, type="heatmap")
plot(summ, type="mds")
plot(summ, type="pairs", data=iris)
plot(summ, type="dendrogram")
R_CARGO }
Index

* datasets
 iris.clusterings, 6

ARI, 9
ARI (partition.loss), 6

bell, 3
binder (partition.loss), 6

cmdscale, 11

dlso, 3, 10, 14
enumerate.partitions, 5
enumerate.permutations, 5

ID (partition.loss), 6
iris, 6
iris.clusterings, 6

lbell (bell), 3

NID (partition.loss), 6
NVI (partition.loss), 6

omARI (partition.loss), 6

par, 11
partition.loss, 3, 4, 6, 13, 14
plot.salso.summary, 10, 15
psm, 4, 6, 10, 12, 14

RI, 9
RI (partition.loss), 6

salso, 4, 7, 10, 11, 13, 15
summary.salso.estimate, 4, 11, 14, 15

VI (partition.loss), 6