Package ‘samplesize4surveys’

January 17, 2020

Type Package
Title Sample Size Calculations for Complex Surveys
Version 4.1.1
Date 2020-01-16
Author Hugo Andres Gutierrez Rojas
Maintainer Hugo Andres Gutierrez Rojas <hagutierrezro@gmail.com>
Description Computes the required sample size for estimation of totals, means and proportions under complex sampling designs.
License GPL (>= 2)
Depends R (>= 3.1), TeachingSampling, timeDate, dplyr, magrittr
Suggests knitr
LazyData true
VignetteBuilder knitr
RoxygenNote 7.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-01-17 13:20:02 UTC

R topics documented:

 b4ddm .. 2
 b4ddp .. 4
 b4dm .. 5
 b4dp .. 7
 b4m .. 8
 b4p .. 9
 b4S2 .. 10
 BigLucyT0T1 ... 12
 DEFF .. 13
 e4ddm .. 15
 e4ddp .. 17
Description

This function computes the power for a (right tail) test of double difference of means.

Usage

```r
b4ddm(N, n, mu1, mu2, mu3, mu4, sigma1, sigma2,
```

Statistical power for a hyphotesis testing on a double difference of means.
Arguments

- **N**: The population size.
- **n**: The sample size.
- **mu1**: The value of the estimated mean of the variable of interest for the first population.
- **mu2**: The value of the estimated mean of the variable of interest for the second population.
- **mu3**: The value of the estimated mean of the variable of interest for the third population.
- **mu4**: The value of the estimated mean of the variable of interest for the fourth population.
- **sigma1**: The value of the estimated variance of the variable of interest for the first population.
- **sigma2**: The value of the estimated mean of a variable of interest for the second population.
- **sigma3**: The value of the estimated variance of the variable of interest for the third population.
- **sigma4**: The value of the estimated mean of a variable of interest for the fourth population.
- **D**: The value of the null effect.
- **DEFF**: The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
- **conf**: The statistical confidence. By default conf = 0.95.
- **T**: The overlap between waves. By default T = 0.
- **R**: The correlation between waves. By default R = 1.
- **plot**: Optionally plot the power achieved for a specific sample size.

Details

We note that the power is defined as:

\[
1 - \Phi(Z_{1-\alpha} - \frac{(D - [(\mu_1 - \mu_2) - (\mu_3 - \mu_4)])}{\sqrt{\frac{1}{n}(1 - \frac{n}{N})S^2}})
\]

where

\[
S^2 = DEFF(\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2)
\]
Value

The power of the test.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomás

See Also

ss4p

Examples

b4ddm(N = 100000, n = 400, mu1=50, mu2=55, mu3=50, mu4=55, sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, D = 7)
b4ddm(N = 100000, n = 400, mu1=50, mu2=55, mu3=50, mu4=65, sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, D = 12, plot = TRUE)
b4ddm(N = 100000, n = 4000, mu1=50, mu2=55, mu3=50, mu4=65, sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, D = 11, DEFF = 2, conf = 0.99, plot = TRUE)

Description

This function computes the power for a (right tail) test of difference of proportions.

Usage

b4ddp(N, n, P1, P2, P3, P4, D, DEFF = 1, conf = 0.95, plot = FALSE)

Arguments

N
The population size.
n
The sample size.
P1
The value of the first estimated proportion.
P2
The value of the second estimated proportion.
P3
The value of the third estimated proportion.
P4
The value of the fourth estimated proportion.
D
The value of the null effect.
The design effect of the sample design. By default \(\text{DEFF} = 1 \), which corresponds to a simple random sampling design.

\(\text{conf} \)
The statistical confidence. By default \(\text{conf} = 0.95 \).

\(\text{plot} \)
 Optionally plot the power achieved for a specific sample size.

Details

We note that the power is defined as:

\[
1 - \Phi \left(Z_{1-\alpha} - \frac{(D - [(P_1 - P_2) - (P_3 - P_4)])}{\sqrt{\frac{\text{DEFF}}{n} (1 - \frac{n}{N}) (P_1 Q_1 + P_2 Q_2 + P_3 Q_3 + P_4 Q_4)}} \right)
\]

Value

The power of the test.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

\texttt{ss4p}

Examples

\begin{verbatim}
b4ddp(N = 10000, n = 400, P1 = 0.5, P2 = 0.5, P3 = 0.5, P4 = 0.5, D = 0.03)
b4ddp(N = 10000, n = 400, P1 = 0.5, P2 = 0.5, P3 = 0.5, P4 = 0.5, D = 0.03, plot = TRUE)
b4ddp(N = 10000, n = 4000, P1 = 0.5, P2 = 0.5, P3 = 0.5, P4 = 0.5, D = 0.05, DEFF = 2, conf = 0.99, plot = TRUE)
\end{verbatim}
Arguments

\textbf{N} \hspace{1cm} \text{The population size.}

\textbf{n} \hspace{1cm} \text{The sample size.}

\textbf{mu1} \hspace{1cm} \text{The value of the estimated mean of the variable of interes for the first population.}

\textbf{mu2} \hspace{1cm} \text{The value of the estimated mean of the variable of interes for the second population.}

\textbf{sigma1} \hspace{1cm} \text{The value of the estimated variance of the variable of interes for the first population.}

\textbf{sigma2} \hspace{1cm} \text{The value of the estimated mean of a variable of interes for the second population.}

\textbf{D} \hspace{1cm} \text{The value of the null effect.}

\textbf{DEFF} \hspace{1cm} \text{The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.}

\textbf{conf} \hspace{1cm} \text{The statistical confidence. By default conf = 0.95.}

\textbf{plot} \hspace{1cm} \text{Optionally plot the power achieved for an specific sample size.}

Details

We note that the power is defined as:

\[
1 - \Phi\left(Z_{1-\alpha} - \frac{(D - (\mu_1 - \mu_2))}{\sqrt{\frac{n}{N}(1 - \frac{n}{N})S^2}}\right)
\]

where

\[
S^2 = DEFF(\sigma_1^2 + \sigma_2^2)
\]

Value

The power of the test.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

\textbf{ss4p}
b4dp

Examples

b4dm(N = 100000, n = 400, mu1 = 5, mu2 = 5, sigma1 = 10, sigma2 = 15, D = 5)
b4dm(N = 100000, n = 400, mu1 = 5, mu2 = 5, sigma1 = 10, sigma2 = 15, D = 0.03, plot = TRUE)
b4dm(N = 100000, n = 4000, mu1 = 5, mu2 = 5, sigma1 = 10, sigma2 = 15, D = 0.05, DEFF = 2, conf = 0.99, plot = TRUE)

b4dp Statistical power for a hypothesis testing on a difference of proportions

Description

This function computes the power for a (right tail) test of difference of proportions.

Usage

b4dp(N, n, P1, P2, D, DEFF = 1, conf = 0.95, plot = FALSE)

Arguments

N
The population size.
n
The sample size.
P1
The value of the first estimated proportion.
P2
The value of the second estimated proportion.
D
The value of the null effect.
DEFF
The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf
The statistical confidence. By default conf = 0.95.
plot
Optionally plot the power achieved for a specific sample size.

Details

We note that the power is defined as:

\[1 - \Phi(Z_{1-\alpha} - \frac{(D - (P_1 - P_2))}{\sqrt{\frac{DEFF}{n}(1 - \frac{n}{N})(P_1Q_1 + P_2Q_2)}}) \]

Value

The power of the test.

Author(s)

Hugo Andres Gutierrez Rojas <chagutierrezro at gmail.com>
References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

b4dp(N = 100000, n = 400, P1 = 0.5, P2 = 0.5, D = 0.03)
b4dp(N = 100000, n = 400, P1 = 0.5, P2 = 0.5, D = 0.03, plot = TRUE)
b4dp(N = 100000, n = 4000, P1 = 0.5, P2 = 0.5, D = 0.05, DEFF = 2, conf = 0.99, plot = TRUE)

b4m

Statistical power for a hypothesis testing on a single mean

Description

This function computes the power for a (right tail) test of means.

Usage

b4m(N, n, mu, sigma, D, DEFF = 1, conf = 0.95, plot = FALSE)

Arguments

N The population size.
n The sample size.
mu The value of the estimated mean of the variable of interest.
sigma The value of the standard deviation of the variable of interest.
D The value of the null effect. Note that D must be strictly greater than mu.
DEFF The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf The statistical confidence. By default conf = 0.95.
plot Optionally plot the power achieved for an specific sample size.

Details

We note that the power is defined as:

\[1 - \Phi(Z_{1-\alpha} - \frac{(D - \mu)}{\sqrt{\frac{1}{n}(1 - \frac{n}{N})S^2}}) \]

where

\[S^2 = DEFF\sigma^2 \]
Value

The power of the test.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseno de encuestas y estimacion de parametros*. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

```r
b4m(N = 100000, n = 400, mu = 3, sigma = 1, D = 3.1)
b4m(N = 100000, n = 400, mu = 5, sigma = 10, D = 7, plot = TRUE)
b4m(N = 100000, n = 400, mu = 50, sigma = 100, D = 100, DEFF = 3.4, conf = 0.99, plot = TRUE)
```

Description

This function computes the power for a (right tail) test of proportions.

Usage

```r
b4p(N, n, P, D, DEFF = 1, conf = 0.95, plot = FALSE)
```

Arguments

- **N**
 - The population size.
- **n**
 - The sample size.
- **P**
 - The value of the first estimated proportion.
- **D**
 - The value of the null effect. Note that D must be strictly greater than P.
- **DEFF**
 - The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
- **conf**
 - The statistical confidence. By default conf = 0.95.
- **plot**
 - Optionally plot the power achieved for an specific sample size.
Details

We note that the power is defined as:

\[1 - \Phi(Z_{1-\alpha} - \frac{(D - P)}{\sqrt{\text{DEFF} \frac{n}{N} \left(1 - \frac{n}{N}\right)(P(1-P))}}) \]

Value

The power of the test.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

- `b4p(N = 100000, n = 400, P = 0.5, D = 0.55)`
- `b4p(N = 100000, n = 400, P = 0.5, D = 0.9, plot = TRUE)`
- `b4p(N = 100000, n = 4000, P = 0.5, D = 0.55, DEFF = 2, conf = 0.99, plot = TRUE)`

b4S2

Statistical power for a hypothesis testing on a single variance

Description

This function computes the power for a (right tail) test of variance.

Usage

`b4S2(N, n, S2, S02, K = 0, DEFF = 1, conf = 0.95, power = 0.8, plot = FALSE)`
Arguments

N The population size.
n The sample size.
S2 The value of the first estimated proportion.
S20 The value of the null effect. Note that S2 must be strictly smaller than S2.
K The excess kurtosis of the variable in the population.
DEFF The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf The statistical confidence. By default conf = 0.95.
power The statistical power. By default power = 0.80.
plot Optionally plot the power achieved for an specific sample size.

Details

We note that the power is defined as:

\[1 - \Phi(Z_{1-\alpha} - \frac{(D - P)}{\sqrt{\frac{DEFF}{n}}(1 - \frac{n}{N})(P(1 - P))}) \]

Value

The power of the test.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

b4S2(N = 100000, n = 400, S2 = 120, S20 = 100, K = 0, DEFF = 1)
b4S2(N = 100000, n = 400, S2 = 120, S20 = 100, K = 2, DEFF = 1)
b4S2(N = 100000, n = 400, S2 = 120, S20 = 100, K = 2, DEFF = 2.5, plot = TRUE)
Description

This data set corresponds to a random sample of BigLucy. It contains some financial variables of 85296 industrial companies of a city in a particular fiscal year.

Usage

BigLucyT0T1

Format

- **ID** The identifier of the company. It correspond to an alphanumeric sequence (two letters and three digits)
- **Ubication** The address of the principal office of the company in the city
- **Level** The industrial companies are discriminated according to the Taxes declared. There are small, medium and big companies
- **Zone** The city is divided by geograhical zones. A company is classified in a particular zone according to its address
- **Income** The total ammount of a company’s earnings (or profit) in the previous fiscal year. It is calculated by taking revenues and adjusting for the cost of doing business
- **Employees** The total number of persons working for the company in the previous fiscal year
- **Taxes** The total ammount of a company’s income Tax
- **SPAM** Indicates if the company uses the Internet and WEBmail options in order to make self-propaganda.
- **Segments** The cartographic divisions.
- **Outgoing** Expenses per year.
- **Years** Age of the company.
- **ISO** Indicates whether the company is quality-certified.
- **ISOLYear** Indicates the time company has been certified.
- **CountyP** Indicates whether the county is participating in the intervention. That is if the county contains companies that have been certified by ISO
- **Time** Refers to the time of observation.

Author(s)

Hugo Andres Gutierrez Rojas <hugogutierrez@usantotomas.edu.co>

References

Examples

data(Lucy)
attach(Lucy)
The variables of interest are: Income, Employees and Taxes
This information is stored in a data frame called estima
estima <- data.frame(Income, Employees, Taxes)
The population totals
colSums(estima)
Some parameters of interest
table(SPAM, Level)
xtabs(Income ~ Level + SPAM)
Correlations among characteristics of interest
cor(estima)
Some useful histograms
hist(Income)
hist(Taxes)
hist(Employees)
Some useful plots
boxplot(Income ~ Level)
barplot(table(Level))
pie(table(SPAM))

DEFF

Estimated sample Effects of Design (DEFF)

Description

This function returns the estimated design effects for a set of inclusion probabilities and the variables of interest.

Usage

DEFF(y, pik)

Arguments

y Vector, matrix or data frame containing the recollected information of the variables of interest for every unit in the selected sample.
pik Vector of inclusion probabilities for each unit in the selected sample.

Details

The design effect is somehow defined to be the ratio between the variance of a complex design and the variance of a simple design. When the design is stratified and the allocation is proportional, this measures reduces to

\[\text{DEFF}_{\text{Kish}} = 1 + CV(w) \]

where \(w \) is the set of weights (defined as the inverse of the inclusion probabilities) along the sample, and \(CV \) refers to the classical coefficient of variation. Although this measure is \# motivated by a
stratified sampling design, it is commonly applied to any kind of survey where sampling weight are unequal. On the other hand, the Spencer’s DEFF is motivated by the idea that a set of weights may be efficient even when they vary, and is defined by:

$$DEFF_{Spencer} = (1 - R^2) * DEFF_{Kish} + \frac{\hat{\sigma}^2_y}{\hat{\sigma}^2_y} * (DEFF_{Kish} - 1)$$

where

$$\hat{\sigma}^2_y = \frac{\sum_s w_k (y_k - \bar{y}_w)^2}{\sum_s w_k}$$

and \hat{a} is the estimation of the intercept in the following model

$$y_k = a + b * p_k + e_k$$

with $p_k = \pi_k/n$ is an standardized sampling weight. Finally, R^2 is the R-squared of this model.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Examples

```r
# Example with BigLucy data#

# The sample size
n <- 400
res <- S.piPS(n, Income)
sam <- res[,1]
# The information about the units in the sample is stored in an object called data
data <- BigLucy[sam,]
attach(data)
names(data)
# Pik.s is the inclusion probability of every single unit in the selected sample
pik <- res[,2]
# The variables of interest are: Income, Employees and Taxes
# This information is stored in a data frame called estima
estima <- data.frame(Income, Employees, Taxes)
E.piPS(estima,pik)
DEFF(estima,pik)
```
Statistical errors for the estimation of a double difference of means

Description
This function computes the coefficient of variation and the standard error when estimating a double difference of means under a complex sample design.

Usage
e4ddm(
 N,
 n,
 mu1,
 mu2,
 mu3,
 mu4,
 sigma1,
 sigma2,
 sigma3,
 sigma4,
 DEFF = 1,
 conf = 0.95,
 T = 0,
 R = 1,
 plot = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>The population size.</td>
</tr>
<tr>
<td>n</td>
<td>The sample size.</td>
</tr>
<tr>
<td>mu1</td>
<td>The value of the estimated mean of the variable of interes for the first population.</td>
</tr>
<tr>
<td>mu2</td>
<td>The value of the estimated mean of the variable of interes for the second population.</td>
</tr>
<tr>
<td>mu3</td>
<td>The value of the estimated mean of the variable of interes for the third population.</td>
</tr>
<tr>
<td>mu4</td>
<td>The value of the estimated mean of the variable of interes for the fourth population.</td>
</tr>
<tr>
<td>sigma1</td>
<td>The value of the estimated variance of the variable of interes for the first population.</td>
</tr>
<tr>
<td>sigma2</td>
<td>The value of the estimated mean of a variable of interes for the second population.</td>
</tr>
<tr>
<td>sigma3</td>
<td>The value of the estimated variance of the variable of interes for the third population.</td>
</tr>
</tbody>
</table>
sigma4 The value of the estimated mean of a variable of interest for the fourth population.
DEFF The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf The statistical confidence. By default conf = 0.95.
T The overlap between waves. By default T = 0.
R The correlation between waves. By default R = 1.
plot Optionally plot the errors (cve and margin of error) against the sample size.

Details

We note that the coefficient of variation is defined as:
\[
cve = \sqrt{\text{Var}(\bar{y}_1 - \bar{y}_2) - (\bar{y}_1 - \bar{y}_2)^2}
\]

Also, note that the margin of error is defined as:
\[
\varepsilon = z_{1-\frac{\alpha}{2}} \sqrt{\text{Var}(\bar{y}_1 - \bar{y}_2) - (\bar{y}_3 - \bar{y}_4)}
\]

Value

The coefficient of variation and the margin of error for a predefined sample size.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), * Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

```r
e4ddm(N=10000, n=400, mu1=50, mu2=55, mu3=50, mu4=65, sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12)
e4ddm(N=10000, n=400, mu1=50, mu2=55, mu3=50, mu4=65, sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, plot=TRUE)
e4ddm(N=10000, n=400, mu1=50, mu2=55, mu3=50, mu4=65, sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, DEFF=3.45, conf=0.99, plot=TRUE)
```
Description
This function computes the coefficient of variation and the standard error when estimating a double difference of proportions under a complex sample design.

Usage
```
e4ddp(N, n, P1, P2, P3, P4, DEFF = 1, conf = 0.95, plot = FALSE)
```

Arguments
- `N`: The population size.
- `n`: The sample size.
- `P1`: The value of the first estimated proportion.
- `P2`: The value of the second estimated proportion.
- `P3`: The value of the third estimated proportion.
- `P4`: The value of the fourth estimated proportion.
- `DEFF`: The design effect of the sample design. By default `DEFF = 1`, which corresponds to a simple random sampling design.
- `conf`: The statistical confidence. By default `conf = 0.95`.
- `plot`: Optionally plot the errors (cve and margin of error) against the sample size.

Details
We note that the margin of error is defined as:

\[
c_{ve} = \sqrt{\text{Var}((\hat{P}_1 - \hat{P}_2) - (\hat{P}_3 - \hat{P}_4))} / (\hat{P}_1 - \hat{P}_2 - (\hat{P}_3 - \hat{P}_4))
\]

Also, note that the margin of error is defined as:

\[
\varepsilon = z_{1-\frac{\alpha}{2}} \sqrt{\text{Var}((\hat{P}_1 - \hat{P}_2) - (\hat{P}_3 - \hat{P}_4))}
\]

Value
The coefficient of variation and the margin of error for a predefined sample size.

Author(s)
Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>
e4dm

Statistical errors for the estimation of a difference of means

Description

This function computes the coefficient of variation and the standard error when estimating a difference of means under a complex sample design.

Usage

e4dm(N, n, mu1, mu2, sigma1, sigma2, DEFF = 1, conf = 0.95, plot = FALSE)

Arguments

N The population size.
n The sample size.
mu1 The value of the estimated mean of the variable of interes for the first population.
mu2 The value of the estimated mean of the variable of interes for the second population.
sigma1 The value of the estimated variance of the variable of interes for the first population.
sigma2 The value of the estimated mean of a variable of interes for the second population.
DEFF The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf The statistical confidence. By default conf = 0.95.
plot Optionally plot the errors (cve and margin of error) against the sample size.

Examples

e4ddp(N=10000, n=400, P1=0.5, P2=0.6, P3=0.5, P4=0.7)
e4ddp(N=10000, n=400, P1=0.5, P2=0.6, P3=0.5, P4=0.7, plot=TRUE)
e4ddp(N=10000, n=400, P1=0.5, P2=0.6, P3=0.5, P4=0.7, DEFF=3.45, conf=0.99, plot=TRUE)

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametos. Editorial Universidad Santo Tomas

See Also

ss4p
Details

We note that the coefficient of variation is defined as:

\[cve = \sqrt{\frac{Var(\bar{y}_1 - \bar{y}_2)}{\bar{y}_1 - \bar{y}_2}} \]

Also, note that the margin of error is defined as:

\[\varepsilon = z_{\frac{\alpha}{2}} \sqrt{Var(\bar{y}_1 - \bar{y}_2)} \]

Value

The coefficient of variation and the margin of error for a predefined sample size.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

e4dm(N=10000, n=400, mu1 = 100, mu2 = 12, sigma1 = 10, sigma2=8)
e4dm(N=10000, n=400, mu1 = 100, mu2 = 12, sigma1 = 10, sigma2=8, plot=TRUE)
e4dm(N=10000, n=400, mu1 = 100, mu2 = 12, sigma1 = 10, sigma2=8, DEFF=3.45, conf=0.99, plot=TRUE)

e4dp
Statistical errors for the estimation of a difference of proportions

Description

This function computes the coefficient of variation and the standard error when estimating a difference of proportions under a complex sample design.

Usage

e4dp(N, n, P1, P2, DEFF = 1, T = 0, R = 1, conf = 0.95, plot = FALSE)
Arguments

- **N**: The population size.
- **n**: The sample size.
- **P1**: The value of the first estimated proportion.
- **P2**: The value of the second estimated proportion.
- **DEFF**: The design effect of the sample design. By default `DEFF = 1`, which corresponds to a simple random sampling design.
- **T**: The overlap between waves. By default `T = 0`.
- **R**: The correlation between waves. By default `R = 1`.
- **conf**: The statistical confidence. By default `conf = 0.95`.
- **plot**: Optionally plot the errors (cve and margin of error) against the sample size.

Details

We note that the margin of error is defined as:

\[cve = \sqrt{\text{Var}(\hat{P}_1 - \hat{P}_2)} \frac{\hat{P}_1 - \hat{P}_2}{\hat{P}_1 - \hat{P}_2} \]

Also, note that the margin of error is defined as:

\[\epsilon = z_{1-\frac{\alpha}{2}} \sqrt{\text{Var}(\hat{P}_1 - \hat{P}_2)} \]

Value

The coefficient of variation and the margin of error for a predefined sample size.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

- `ss4p`

Examples

```
e4dp(N=10000, n=400, P1=0.5, P2=0.6)
e4dp(N=10000, n=400, P1=0.5, P2=0.6, plot=TRUE)
e4dp(N=10000, n=400, P1=0.5, P2=0.6, DEFF=3.45, conf=0.99, plot=TRUE)
e4dp(N=10000, n=400, P1=0.5, P2=0.6, T=0.5, R=0.5, DEFF=3.45, conf=0.99, plot=TRUE)
```
Description

This function computes the coefficient of variation and the standard error when estimating a single mean under a complex sample design.

Usage

e4m(N, n, mu, sigma, DEFF = 1, conf = 0.95, plot = FALSE)

Arguments

- **N**: The population size.
- **n**: The sample size.
- **mu**: The value of the estimated mean of the variable of interest.
- **sigma**: The value of the standard deviation of the variable of interest.
- **DEFF**: The design effect of the sample design. By default, **DEFF = 1**, which corresponds to a simple random sampling design.
- **conf**: The statistical confidence. By default, **conf = 0.95**.
- **plot**: Optionally plot the errors (cve and margin of error) against the sample size.

Details

We note that the coefficient of variation is defined as:

\[cve = \frac{\sqrt{Var(\bar{y}_S)}}{\bar{y}_S} \]

Also, note that the margin of error is defined as:

\[\varepsilon = z_{1-\frac{\alpha}{2}} \sqrt{Var(\bar{y}_S)} \]

Value

The coefficient of variation and the margin of error for a predefined sample size.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas
See Also

ss4p

Examples

e4m(N=10000, n=400, mu = 10, sigma = 10)
e4m(N=10000, n=400, mu = 10, sigma = 10, plot=TRUE)
e4m(N=10000, n=400, mu = 10, sigma = 10, DEFF=3.45, conf=0.99, plot=TRUE)

d4p

Statistical errors for the estimation of a single proportion

Description

This function computes the coefficient of variation and the standard error when estimating a single proportion under a sample design.

Usage

e4p(N, n, P, DEFF = 1, conf = 0.95, plot = FALSE)

Arguments

N
 The population size.

n
 The sample size.

P
 The value of the estimated proportion.

DEFF
 The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.

conf
 The statistical confidence. By default conf = 0.95.

plot
 Optionally plot the errors (cve and margin of error) against the sample size.

Details

We note that the coefficient of variation is defined as:

\[
\text{cve} = \sqrt{\frac{\text{Var}(\hat{p})}{\hat{p}}}
\]

Also, note that the margin of error is defined as:

\[
\varepsilon = z_{1-\frac{\alpha}{2}} \sqrt{\text{Var}(\hat{p})}
\]

Value

The coefficient of variation, the margin of error and the relative margin of error for a predefined sample size.
Statistical errors for the estimation of a single variance

Description

This function computes the coefficient of variation and the margin of error when estimating a single variance under a sample design.

Usage

```r
e4S2(N, n, K = 0, DEFF = 1, conf = 0.95, plot = FALSE)
```

Arguments

- `N` The population size.
- `n` The sample size.
- `K` The excess kurtosis of the variable in the population.
- `DEFF` The design effect of the sample design. By default `DEFF = 1`, which corresponds to a simple random sampling design.
- `conf` The statistical confidence. By default `conf = 0.95`.
- `plot` Optionally plot the errors (cve and margin of error) against the sample size.
Details

We note that the coefficient of variation is defined as:

\[cve = \frac{\sqrt{\text{Var}(\hat{S}^2)}}{\hat{S}^2} \]

Also, note that the margin of error is defined as:

\[\varepsilon = z_{1-\alpha/2} \sqrt{\text{Var}(\hat{S}^2)} \]

Value

The coefficient of variation and the margin of error for a predefined sample size.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

\[
\begin{align*}
\text{e4S2}(N=10000, n=400, K = 0) \\
\text{e4S2}(N=10000, n=400, K = 1, \text{DEFF} = 2, \text{conf} = 0.99) \\
\text{e4S2}(N=10000, n=400, K = 2, \text{DEFF} = 2, \text{conf} = 0.99, \text{plot}=\text{TRUE})
\end{align*}
\]

ICC

Intraclass Correlation Coefficient

Description

This function computes the intraclass correlation coefficient.

Usage

\[\text{ICC}(y, cl) \]

Arguments

- **y**: The variable of interest.
- **cl**: The variable indicating the membership of each element to a specific cluster.
Details

The intraclass correlation coefficient is defined as:

$$\rho = 1 - \frac{m \ WSS}{m - 1 \ TSS}$$

Where m is the average sample size of units selected inside each sampled cluster.

Value

The total sum of squares (TSS), the between sum of squares (BSS), the within sum of squares (WSS) and the intraclass correlation coefficient.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

ss4p

Examples

Almost same mean in each cluster
- Heterogeneity within clusters
- Homogeneity between clusters

Population size
N <- 100000
Number of clusters in the population
NI <- 1000
Number of elements per cluster
N/NI

The variable of interest
y <- c(1:N)
The clustering factor
cl <- rep(1:NI, length.out=N)

table(cl)
tapply(y, cl, FUN=mean)
boxplot(y~cl)
rho = ICC(y,cl)$ICC
rho

Very different means per cluster
- Heterogeneity between clusters
- Homogeneity within clusters

Population size
N <- 100000
Number of clusters in the population
NI <- 1000
Number of elements per cluster
N/NI

The variable of interest
y <- c(1:N)
The clustering factor
cl <- kronecker(c(1:NI), rep(1, N/NI))
table(cl)
tapply(y, cl, FUN=mean)
boxplot(y~cl)
rho = ICC(y, cl)$ICC
rho

data(Lucy)
attach(Lucy)
N <- nrow(Lucy)
y <- Income
cl <- Zone
ICC(y, cl)

Example 1 with Lucy data

data(Lucy)
attach(Lucy)
N <- nrow(Lucy)
y <- as.double(SPAM)
cl <- Zone
ICC(y, cl)
Sample Sizes in Two-Stage sampling Designs for Estimating Single Means

Description

This function computes a grid of possible sample sizes for estimating single means under two-stage sampling designs.

Usage

```r
ss2s4m(N, mu, sigma, conf = 0.95, delta = 0.03, M, to = 20, rho)
```

Arguments

- `N`: The population size.
- `mu`: The value of the estimated mean of a variable of interest.
- `sigma`: The value of the estimated standard deviation of a variable of interest.
- `conf`: The statistical confidence. By default `conf = 0.95`. By default `conf = 0.95`.
- `delta`: The maximum relative margin of error that can be allowed for the estimation.
- `M`: Number of clusters in the population.
- `to`: (integer) maximum number of final units to be selected per cluster. By default `to = 20`.
- `rho`: The Intraclass Correlation Coefficient.

Details

In two-stage (2S) sampling, the design effect is defined by

\[
DEFF = 1 + (m - 1) \rho
\]

Where \(\rho \) is defined as the intraclass correlation coefficient, \(m \) is the average sample size of units selected inside each cluster. The relationship of the full sample size of the two stage design (2S) with the simple random sample (SI) design is given by

\[
n_{2S} = n_{SI} \times DEFF
\]

Value

This function returns a grid of possible sample sizes. The first column represent the design effect, the second column is the number of clusters to be selected, the third column is the number of units to be selected inside the clusters, and finally, the last column indicates the full sample size induced by this particular strategy.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>
References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseno de encuestas y estimacion de parametros*. Editorial Universidad Santo Tomas

See Also

ICC

Examples

```r
ss2s4m(N=1000000, mu=10, sigma=2, conf=0.95, delta=0.03, M=50, rho=0.01)
ss2s4m(N=100000, mu=10, sigma=2, conf=0.95, delta=0.03, M=50, to=40, rho=0.1)
ss2s4m(N=100000, mu=10, sigma=2, conf=0.95, delta=0.03, M=50, to=40, rho=0.2)
ss2s4m(N=1000000, mu=10, sigma=2, conf=0.95, delta=0.05, M=50, to=40, rho=0.3)
```

Almost same mean in each cluster
#
- Heterogeneity within clusters
- Homogeneity between clusters
#
Decision rule:
* Select a lot of units per cluster#
* Select a few of clusters#
#

```r
# Population size
N <- 1000000
# Number of clusters in the population
M <- 1000
# Number of elements per cluster
N/M

# The variable of interest
y <- c(1:N)
# The clustering factor
cl <- rep(1:M, length.out=N)

rho = ICC(y, cl)$ICC
rho

ss2s4m(N, mu=mean(y), sigma=sd(y), conf=0.95, delta=0.03, M=M, rho=rho)
```

Very different means per cluster
#
- Heterogeneity between clusters
- Homogeneity within clusters
#
Decision rule:
#
```
# Select a few of units per cluster 
# Select a lot of clusters 

# Population size
N <- 1000000
# Number of clusters in the population
M <- 1000
# Number of elements per cluster
N/M

# The variable of interest
y <- c(1:N)
# The clustering factor
cl <- kronecker(c(1:M),rep(1,N/M))

rho = ICC(y,cl)$ICC
rhostarh

ss2s4m(N, mu=mean(y), sigma=sd(y), conf=0.95, delta=0.03, M=M, rho=rho)

# Example with Lucy data 

data(BigLucy)
attach(BigLucy)
N <- nrow(BigLucy)
P <- prop.table(table(SPAM))[1]
y <- Income
cl <- Segments

rho <- ICC(y,cl)$ICC
M <- length(levels(Segments))

ss2s4m(N, mu=mean(y), sigma=sd(y), conf=0.95, delta=0.03, M=M, rho=rho)

# Example with Lucy data 

data(BigLucy)
attach(BigLucy)
N <- nrow(BigLucy)
P <- prop.table(table(SPAM))[1]
y <- Years
cl <- Segments

rho <- ICC(y,cl)$ICC
M <- length(levels(Segments))

ss2s4m(N, mu=mean(y), sigma=sd(y), conf=0.95, delta=0.03, M=M, rho=rho)
ss2s4p  

Sample Sizes in Two-Stage sampling Designs for Estimating Single Proportions

Description

This function computes a grid of possible sample sizes for estimating single proportions under two-stage sampling designs.

Usage

ss2s4p(N, P, conf = 0.95, delta = 0.03, M, to = 20, rho)

Arguments

N  The population size.
P  The value of the estimated proportion.
conf  The statistical confidence. By default conf = 0.95.
delta  The maximun margin of error that can be allowed for the estimation.
M  Number of clusters in the population.
to  (integer) maximum number of final units to be selected per cluster. By default to = 20.
rho  The Intraclass Correlation Coefficient.

Details

In two-stage (2S) sampling, the design effect is defined by

$$DEFF = 1 + (\bar{m} - 1)\rho$$

Where $\rho$ is defined as the intraclass correlation coefficient, $\bar{m}$ is the average sample size of units selected inside each cluster. The relationship of the full sample size of the two stage design (2S) with the simple random sample (SI) design is given by

$$n_{2S} = n_{SI} * DEFF$$

Value

This function returns a grid of possible sample sizes. The first column represent the design effect, the second column is the number of clusters to be selected, the third column is the number of units to be selected inside the clusters, and finally, the last column indicates the full sample size induced by this particular strategy.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>
ss4ddm

The required sample size for estimating a double difference of means

Description

This function returns the minimum sample size required for estimating a double difference of means subject to predefined errors.

Usage

ss4ddm(
    N, 
    mu1, 
    mu2, 
    mu3, 
    mu4, 
    sigma1, 
    sigma2,
sigma3,
sigma4,
DEFF = 1,
conf = 0.95,
cve = 0.05,
rme = 0.03,
T = 0,
R = 1,
plot = FALSE
)

Arguments

N
The maximun population size between the groups (strata) that we want to compare.

mu1
The value of the estimated mean of the variable of interes for the first population.

mu2
The value of the estimated mean of the variable of interes for the second population.

mu3
The value of the estimated mean of the variable of interes for the third population.

mu4
The value of the estimated mean of the variable of interes for the fourth population.

sigma1
The value of the estimated variance of the variable of interes for the first population.

sigma2
The value of the estimated mean of a variable of interes for the second population.

sigma3
The value of the estimated variance of the variable of interes for the third population.

sigma4
The value of the estimated mean of a variable of interes for the fourth population.

DEFF
The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.

conf
The statistical confidence. By default conf = 0.95. By default conf = 0.95.

cve
The maximun coefficient of variation that can be allowed for the estimation.

rme
The maximun relative margin of error that can be allowed for the estimation.

T
The overlap between waves. By default T = 0.

R
The correlation between waves. By default R = 1.

plot
Optionally plot the errors (cve and margin of error) against the sample size.

Details

Note that the maximun sample size to achieve a relative margin of error $\varepsilon$ is defined by:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$
Where
\[ n_0 = \frac{\alpha^2}{z^2 \mu^2 S^2} \]
and \( S^2 = \sigma^2_1 + \sigma^2_2 + \sigma^2_3 + \sigma^2_4 \times (1 - (T \times R)) \times DEFF \) Also note that the minimum sample size to achieve a coefficient of variation \( cve \) is defined by:
\[ n = \frac{S^2}{|\bar{y}_1 - \bar{y}_2| - |\bar{y}_3 - \bar{y}_4|^2 cve^2 + \frac{S^2}{N}} \]

Author(s)
Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References
Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also
e4p

Examples

```r
ss4ddm(N=100000, mu1=50, mu2=55, mu3=50, mu4=65,
sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, cve=0.05, rme=0.03)
ss4ddm(N=100000, mu1=50, mu2=55, mu3=50, mu4=65,
sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, cve=0.05, rme=0.03, plot=TRUE)
ss4ddm(N=100000, mu1=50, mu2=55, mu3=50, mu4=65,
sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, DEFF=3.45, conf=0.99, cve=0.03,
rme=0.03, plot=TRUE)
```

# Example with BigLucy data #

```r
data(BigLucyT0T1)
attach(BigLucyT0T1)

BigLucyT0 <- BigLucyT0T1[Time == 0,]
BigLucyT1 <- BigLucyT0T1[Time == 1,]
N1 <- table(BigLucyT0$ISO)[1]
N2 <- table(BigLucyT0$ISO)[2]
N <- max(N1,N2)

BigLucyT0.yes <- subset(BigLucyT0, ISO == "yes")
BigLucyT0.no <- subset(BigLucyT0, ISO == "no")
BigLucyT1.yes <- subset(BigLucyT1, ISO == "yes")
BigLucyT1.no <- subset(BigLucyT1, ISO == "no")
m1 <- mean(BigLucyT0.yes$Income)
m2 <- mean(BigLucyT0.no$Income)
m3 <- mean(BigLucyT1.yes$Income)
```

```r
```
ss4ddmH

The required sample size for testing a null hypothesis for a double difference of proportions

Description

This function returns the minimum sample size required for testing a null hypothesis regarding a double difference of proportions.

Usage

ss4ddmH(
  N,
  mu1,
  mu2,
  mu3,
  mu4,
  sigma1,
  sigma2,
  sigma3,
  sigma4,
  D,
  DEFF = 1,
  conf = 0.95,
  power = 0.8,
  T = 0,
  R = 1,
  plot = FALSE
)

Arguments

N
The maximum population size between the groups (strata) that we want to compare.

mu1
The value of the estimated mean of the variable of interest for the first population.
mu2  The value of the estimated mean of the variable of interes for the second population.
mu3  The value of the estimated mean of the variable of interes for the third population.
mu4  The value of the estimated mean of the variable of interes for the fourth population.
sigma1  The value of the estimated variance of the variable of interes for the first population.
sigma2  The value of the estimated mean of a variable of interes for the second population.
sigma3  The value of the estimated variance of the variable of interes for the third population.
sigma4  The value of the estimated mean of a variable of interes for the fourth population.
D  The minimum effect to test.
DEFF  The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf  The statistical confidence. By default conf = 0.95.
power  The statistical power. By default power = 0.80.
T  The overlap between waves. By default T = 0.
R  The correlation between waves. By default R = 1.
plot  Optionally plot the effect against the sample size.

Details

We assume that it is of interest to test the following set of hyphotesis:

\[ H_0 : (\mu_1 - \mu_2) - (\mu_3 - \mu_4) = 0 \quad \text{vs.} \quad H_a : (\mu_1 - \mu_2) - (\mu_3 - \mu_4) = D \neq 0 \]

Note that the minimum sample size, restricted to the predefined power \( \beta \) and confidence \( 1 - \alpha \), is defined by:

\[
n = \frac{S^2}{\left(\frac{D^2}{(z_{1-\alpha} + z_{\beta})^2} + \frac{S^2}{N}\right)}\]

where \( S^2 = (\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2) \ast (1 - (T \ast R)) \ast DEFF \)

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

ss4pH
Examples

ss4ddmH(N = 100000, mu1=50, mu2=55, mu3=50, mu4=65, 
 sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, D=3)
ss4ddmH(N = 100000, mu1=50, mu2=55, mu3=50, mu4=65, 
 sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, D=1, plot=TRUE)
ss4ddmH(N = 100000, mu1=50, mu2=55, mu3=50, mu4=65, 
 sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, D=0.5, DEFF = 2, plot=TRUE)
ss4ddmH(N = 100000, mu1=50, mu2=55, mu3=50, mu4=65, 
 sigma1 = 10, sigma2 = 12, sigma3 = 10, sigma4 = 12, D=0.5, DEFF = 2, conf = 0.99, 
 power = 0.9, plot=TRUE)

The required sample size for estimating a double difference of proportions

Description

This function returns the minimum sample size required for estimating a double difference of proportion subject to predefined errors.
Usage

```r
ss4ddp(
 N,
 P1,
 P2,
 P3,
 P4,
 DEFF = 1,
 conf = 0.95,
 cve = 0.05,
 me = 0.03,
 T = 0,
 R = 1,
 plot = FALSE
)
```

Arguments

- **N**: The population size.
- **P1**: The value of the first estimated proportion at first wave.
- **P2**: The value of the second estimated proportion at first wave.
- **P3**: The value of the first estimated proportion at second wave.
- **P4**: The value of the second estimated proportion at second wave.
- **DEFF**: The design effect of the sample design. By default `DEFF = 1`, which corresponds to a simple random sampling design.
- **conf**: The statistical confidence. By default `conf = 0.95`. By default `conf = 0.95`.
- **cve**: The maximum coefficient of variation that can be allowed for the estimation.
- **me**: The maximum margin of error that can be allowed for the estimation.
- **T**: The overlap between waves. By default `T = 0`.
- **R**: The correlation between waves. By default `R = 1`.
- **plot**: Optionally plot the errors (cve and margin of error) against the sample size.

Details

Note that the minimum sample size (for each group at each wave) to achieve a particular margin of error $\varepsilon$ is defined by:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

Where

$$n_0 = \frac{z_{1-\frac{\alpha}{2}}^2 S^2}{\varepsilon^2}$$

and

$$S^2 = (P1 \times Q1 + P2 \times Q2 + P3 \times Q3 + P4 \times Q4) \times (1 - (T \times R)) \times DEFF$$
Also note that the minimum sample size to achieve a particular coefficient of variation \(cve\) is defined by:

\[
n = \frac{S^2}{(ddp)^2 cve^2 + \frac{S^2}{N}}
\]

And \(ddp\) is the expected estimate of the double difference of proportions.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

\texttt{ss4dp}

Examples

\begin{verbatim}
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, cve=0.05, me=0.03)
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, cve=0.05, me=0.03, plot=TRUE)
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, DEFF=3.45, conf=0.99, cve=0.03, me=0.03, plot=TRUE)
ss4ddp(N=100000, P1=0.05, P2=0.55, P3= 0.5, P4= 0.6, DEFF=3.45, conf=0.99, cve=0.03, me=0.03, T = 0.5, R = 0.9, plot=TRUE)

# Example with BigLucyT0T1 data #
data(BigLucyT0T1)
attach(BigLucyT0T1)

BigLucyT0 <- BigLucyT0T1[Time == 0,]
BigLucyT1 <- BigLucyT0T1[Time == 1,]
N1 <- table(BigLucyT0$SPAM)[1]
N2 <- table(BigLucyT1$SPAM)[1]
N <- max(N1,N2)
P1 <- prop.table(table(BigLucyT0$ISO))[1]
P2 <- prop.table(table(BigLucyT1$ISO))[1]
P3 <- prop.table(table(BigLucyT0$ISO))[2]
P4 <- prop.table(table(BigLucyT1$ISO))[2]

# The minimum sample size for simple random sampling
ss4ddp(N, P1, P2, P3, P4, conf=0.95, cve=0.05, me=0.03, plot=TRUE)
# The minimum sample size for a complex sampling design
ss4ddp(N, P1, P2, P3, P4, T = 0.5, R = 0.5, conf=0.95, cve=0.05, me=0.03, plot=TRUE)
\end{verbatim}
ss4ddpH  The required sample size for testing a null hypothesis for a double difference of proportions

Description

This function returns the minimum sample size required for testing a null hypothesis regarding a double difference of proportion.

Usage

ss4ddpH(
  N,
  P1,
  P2,
  P3,
  P4,
  D,
  DEFF = 1,
  conf = 0.95,
  power = 0.8,
  T = 0,
  R = 1,
  plot = FALSE
)

Arguments

N  The maximum population size between the groups (strata) that we want to compare.

P1  The value of the first estimated proportion.

P2  The value of the second estimated proportion.

P3  The value of the third estimated proportion.

P4  The value of the fourth estimated proportion.

D  The minimum effect to test.

DEFF  The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.

conf  The statistical confidence. By default conf = 0.95.

power  The statistical power. By default power = 0.80.

T  The overlap between waves. By default T = 0.

R  The correlation between waves. By default R = 1.

plot  Optionally plot the effect against the sample size.
Details

We assume that it is of interest to test the following set of hyphotesis:

\[ H_0 : (P_1 - P_2) - (P_3 - P_4) = 0 \quad \text{vs.} \quad H_a : (P_1 - P_2) - (P_3 - P_4) = D \neq 0 \]

Note that the minimum sample size, restricted to the predefined power \(\beta\) and confidence \(1 - \alpha\), is defined by:

\[
n = \frac{S^2 D^2}{(z_{1-\alpha} + z_{1-\beta})^2 + \frac{N^2}{N}}
\]

Where \(S^2 = (P_1 \times Q_1 + P_2 \times Q_2 + P_3 \times Q_3 + P_4 \times Q_4) \times (1 - (T \times R)) \times DEFF\) and \(Q_i = 1 - P_i\) for \(i = 1, 2, 3, 4\).

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

ss4ph

Examples

```r
ss4ddpH(N = 100000, P1 = 0.5, P2 = 0.5, P3 = 0.5, P4 = 0.5, D = 0.03)
ss4ddpH(N = 100000, P1 = 0.5, P2 = 0.5, P3 = 0.5, P4 = 0.5, D = 0.03, plot = TRUE)
ss4ddpH(N = 100000, P1 = 0.5, P2 = 0.5, P3 = 0.5, P4 = 0.5, D = 0.03, DEFF = 2, plot = TRUE)
ss4ddpH(N = 100000, P1 = 0.5, P2 = 0.5, P3 = 0.5, P4 = 0.5, D = 0.03, conf = 0.99, power = 0.9, DEFF = 2, plot = TRUE)
```

```
Example with BigLucyT0T1 data

data(BigLucyT0T1)
attach(BigLucyT0T1)
BigLucyT0 <- BigLucyT0T1[Time == 0,]
BigLucyT1 <- BigLucyT0T1[Time == 1,]
N1 <- table(BigLucyT0$SPAM)[1]
N2 <- table(BigLucyT1$SPAM)[1]
N <- max(N1, N2)
P1 <- prop.table(table(BigLucyT0$ISO))[1]
P2 <- prop.table(table(BigLucyT1$ISO))[1]
P3 <- prop.table(table(BigLucyT0$ISO))[2]
P4 <- prop.table(table(BigLucyT1$ISO))[2]

The minimum sample size for simple random sampling
ss4ddpH(N, P1, P2, P3, P4, D = 0.05, plot = TRUE)
```
# The minimum sample size for a complex sampling design

```r
ss4ddpH(N, P1, P2, P3, P4, D = 0.05, DEFF = 2, T = 0.5, R = 0.5, conf=0.95, plot=TRUE)
```

---

**ss4dm**  
*The required sample size for estimating a single difference of proportions*

## Description

This function returns the minimum sample size required for estimating a single proportion subject to predefined errors.

## Usage

```r
ss4dm(
 N,
 mu1,
 mu2,
 sigma1,
 sigma2,
 DEFF = 1,
 conf = 0.95,
 cve = 0.05,
 rme = 0.03,
 T = 0,
 R = 1,
 plot = FALSE
)
```

## Arguments

- **N**: The maximum population size between the groups (strata) that we want to compare.
- **mu1**: The value of the estimated mean of the variable of interest for the first population.
- **mu2**: The value of the estimated mean of the variable of interest for the second population.
- **sigma1**: The value of the estimated variance of the variable of interest for the first population.
- **sigma2**: The value of the estimated mean of a variable of interest for the second population.
- **DEFF**: The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
- **conf**: The statistical confidence. By default conf = 0.95. By default conf = 0.95.
- **cve**: The maximum coefficient of variation that can be allowed for the estimation.
- **rme**: The maximum relative margin of error that can be allowed for the estimation.
The overlap between waves. By default $T = 0$.

The correlation between waves. By default $R = 1$.

Optionally plot the errors (cve and margin of error) against the sample size.

Details

Note that the minimum sample size to achieve a relative margin of error $\varepsilon$ is defined by:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

Where

$$n_0 = \frac{\alpha^2 S^2}{\varepsilon^2 (\mu_1 - \mu_2)^2}$$

and $S^2 = (\sigma_1^2 + \sigma_2^2) \cdot (1 - (T \cdot R)) \cdot DEFF$ Also note that the minimum sample size to achieve a coefficient of variation cve is defined by:

$$n = \frac{S^2}{|\bar{y}_1 - \bar{y}_2|^2 cve^2 + \frac{S^2}{N}}$$

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estadísticas de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

e4p

Examples

```r
ss4dm(N=100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, cve=0.05, rme=0.03)
ss4dm(N=100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, cve=0.05, rme=0.03, plot=TRUE)
ss4dm(N=100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, DEFF=3.45, conf=0.99, cve=0.03, rme=0.03, plot=TRUE)
```

```
Example with BigLucy data
data(BigLucy)
attach(BigLucy)
N1 <- table(SPAM)[1]
N2 <- table(SPAM)[2]
N <- max(N1,N2)
```
BigLucy.yes <- subset(BigLucy, SPAM == 'yes')
BigLucy.no <- subset(BigLucy, SPAM == 'no')
mu1 <- mean(BigLucy.yes$Income)
mu2 <- mean(BigLucy.no$Income)
sigma1 <- sd(BigLucy.yes$Income)
sigma2 <- sd(BigLucy.no$Income)

# The minimum sample size for simple random sampling
ss4dm(N, mu1, mu2, sigma1, sigma2, DEFF=1, conf=0.99, cve=0.03, rme=0.03, plot=TRUE)
# The minimum sample size for a complex sampling design
ss4dm(N, mu1, mu2, sigma1, sigma2, DEFF=3.45, conf=0.99, cve=0.03, rme=0.03, plot=TRUE)

ss4dmH
The required sample size for testing a null hyphotesis for a single difference of proportions

Description
This function returns the minimum sample size required for testing a null hyphotesis regarding a single difference of proportions.

Usage
ss4dmH(
  N,
  mu1,
  mu2,
  sigma1,
  sigma2,
  D,
  DEFF = 1,
  conf = 0.95,
  power = 0.8,
  T = 0,
  R = 1,
  plot = FALSE
)

Arguments
N The maximum population size between the groups (strata) that we want to compare.
mu1 The value of the estimated mean of the variable of interes for the first population.
mu2 The value of the estimated mean of the variable of interes for the second population.
sigma1 The value of the estimated variance of the variable of interes for the first population.
**sigma2**
The value of the estimated mean of a variable of interest for the second population.

**D**
The minimum effect to test.

**DEFF**
The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.

**conf**
The statistical confidence. By default conf = 0.95.

**power**
The statistical power. By default power = 0.80.

**T**
The overlap between waves. By default T = 0.

**R**
The correlation between waves. By default R = 1.

**plot**
Optionally plot the effect against the sample size.

**Details**
We assume that it is of interest to test the following set of hypotheses:

\[ H_0: \mu_1 - \mu_2 = 0 \quad \text{vs.} \quad H_a: \mu_1 - \mu_2 = D \neq 0 \]

Note that the minimum sample size, restricted to the predefined power \( \beta \) and confidence \( 1 - \alpha \), is defined by:

\[
n = \frac{S^2}{\left( \frac{D^2}{(z_{1-\alpha} + z_{1-\beta})^2} + \frac{S^2}{N} \right)}
\]

where \( S^2 = (\sigma_1^2 + \sigma_2^2) \ast (1 - (T \ast R)) \ast DEFF \)

**Author(s)**
Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

**References**
Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

**See Also**

ss4pH

**Examples**

```r
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=3)
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=1, plot=TRUE)
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=0.5, DEFF = 2, plot=TRUE)
ss4dmH(N = 100000, mu1=50, mu2=55, sigma1 = 10, sigma2 = 12, D=0.5, DEFF = 2, conf = 0.99, power = 0.9, plot=TRUE)
```

```r
#############################
Example with BigLucy data
#############################
data(BigLucy)
```
attach(BigLucy)

N1 <- table(SPAM)[1]
N2 <- table(SPAM)[2]
N <- max(N1,N2)

BigLucy.yes <- subset(BigLucy, SPAM == 'yes')
BigLucy.no <- subset(BigLucy, SPAM == 'no')
mu1 <- mean(BigLucy.yes$Income)
mu2 <- mean(BigLucy.no$Income)
sigma1 <- sd(BigLucy.yes$Income)
sigma2 <- sd(BigLucy.no$Income)

# The minimum sample size for testing
# H_0: mu_1 - mu_2 = 0 vs. H_a: mu_1 - mu_2 = D = 3
D = 3
ss4dmH(N, mu1, mu2, sigma1, sigma2, D, DEFF = 2, plot=TRUE)

# The minimum sample size for testing
# H_0: mu_1 - mu_2 = 0 vs. H_a: mu_1 - mu_2 = D = 3
D = 3
ss4dmH(N, mu1, mu2, sigma1, sigma2, D, conf = 0.99, power = 0.9, DEFF = 3.45, plot=TRUE)

---

ss4dp

The required sample size for estimating a single difference of proportions

Description

This function returns the minimum sample size required for estimating a single proportion subject to predefined errors.

Usage

ss4dp(
  N,
  P1,
  P2,
  DEFF = 1,
  conf = 0.95,
  cve = 0.05,
  me = 0.03,
  T = 0,
  R = 1,
  plot = FALSE
)
Arguments

N  The maximun population size between the groups (strata) that we want to compare.
P1  The value of the first estimated proportion.
P2  The value of the second estimated proportion.
DEFF  The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf  The statistical confidence. By default conf = 0.95. By default conf = 0.95.
cve  The maximun coeficient of variation that can be allowed for the estimation.
me  The maximun margin of error that can be allowed for the estimation.
T  The overlap between waves. By default T = 0.
R  The correlation between waves. By default R = 1.
plot  Optionally plot the errors (cve and margin of error) against the sample size.

Details

Note that the minimun sample size to achieve a particular margin of error $\varepsilon$ is defined by:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

Where

$$n_0 = \frac{\frac{z^2_{\alpha/2}}{\varepsilon^2} S^2}{}$$

and

$$S^2 = (P1 \times Q1 + P2 \times Q2) \times (1 - (T \times R)) \times DEFF$$

Also note that the minimun sample size to achieve a particular coefficient of variation cve is defined by:

$$n = \frac{S^2}{p^2 cve^2 + \frac{S^2}{N}}$$

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseno de encuestas y estimacion de parametros*. Editorial Universidad Santo Tomas

See Also
e4p
Examples

ss4dp(N=100000, P1=0.5, P2=0.55, cve=0.05, me=0.03)
ss4dp(N=100000, P1=0.5, P2=0.55, cve=0.05, me=0.03, plot=TRUE)
ss4dp(N=100000, P1=0.5, P2=0.55, DEFF=3.45, conf=0.99, cve=0.03, me=0.03, plot=TRUE)
ss4dp(N=100000, P1=0.5, P2=0.55, DEFF=3.45, T=0.5, R=0.5, conf=0.99, cve=0.03, me=0.03, plot=TRUE)

#############################
# Example with BigLucy data #
#############################
data(BigLucy)
attach(BigLucy)

N1 <- table(SPAM)[1]
N2 <- table(SPAM)[2]
N <- max(N1,N2)
P1 <- prop.table(table(SPAM))[1]
P2 <- prop.table(table(SPAM))[2]

# The minimum sample size for simple random sampling
ss4dp(N, P1, P2, DEFF=1, conf=0.99, cve=0.03, me=0.03, plot=TRUE)
# The minimum sample size for a complex sampling design
ss4dp(N, P1, P2, DEFF=3.45, conf=0.99, cve=0.03, me=0.03, plot=TRUE)

ss4dpH

The required sample size for testing a null hypothesis for a single difference of proportions

Description

This function returns the minimum sample size required for testing a null hypothesis regarding a single proportion.

Usage

ss4dpH(
  N,
  P1,
  P2,
  D,
  DEFF = 1,
  conf = 0.95,
  power = 0.8,
  T = 0,
  R = 1,
  plot = FALSE
)
Arguments

N  The maximun population size between the groups (strata) that we want to compare.
P1  The value of the first estimated proportion.
P2  The value of the second estimated proportion.
D  The minimun effect to test.
DEFF  The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf  The statistical confidence. By default conf = 0.95.
power  The statistical power. By default power = 0.80.
T  The overlap between waves. By default T = 0.
R  The correlation between waves. By default R = 1.
plot  Optionally plot the effect against the sample size.

Details

We assume that it is of interest to test the following set of hyphotesis:

\[ H_0 : P_1 - P_2 = 0 \quad \text{vs.} \quad H_a : P_1 - P_2 = D \neq 0 \]

Note that the minimun sample size, restricted to the predefined power \( \beta \) and confidence \( 1 - \alpha \), is defined by:

\[ n = \frac{S^2}{D^2 + \frac{S^2}{N}} \]

Where \( S^2 = (P_1 \times Q_1 + P_2 \times Q_2) \times (1 - (T \times R)) \times DEFF \) and \( Q_i = 1 - P_i \) for \( i = 1, 2 \).

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros.
Editorial Universidad Santo Tomas

See Also

ss4pH

Examples

ss4dpH(N = 100000, P1 = 0.5, P2 = 0.55, D=0.03)
ss4dpH(N = 100000, P1 = 0.5, P2 = 0.55, D=0.03, plot=TRUE)
ss4dpH(N = 100000, P1 = 0.5, P2 = 0.55, D=0.03, DEFF = 2, plot=TRUE)
ss4dpH(N = 100000, P1 = 0.5, P2 = 0.55, D=0.03, conf = 0.99, power = 0.9, DEFF = 2, plot=TRUE)
### Example with BigLucy data

```r
data(BigLucy)
attach(BigLucy)

N1 <- table(SPAM)[1]
N2 <- table(SPAM)[2]
N <- max(N1, N2)
P1 <- prop.table(table(SPAM))[1]
P2 <- prop.table(table(SPAM))[2]

The minimum sample size for testing
H_0: P_1 - P_2 = 0 vs. H_a: P_1 - P_2 = D = 0.05
D = 0.05
ss4dpH(N, P1, P2, D, DEFF = 2, plot=TRUE)

The minimum sample size for testing
H_0: P - P_0 = 0 vs. H_a: P - P_0 = D = 0.02
D = 0.01
ss4dpH(N, P1, P2, D, conf = 0.99, power = 0.9, DEFF = 3.45, plot=TRUE)
```

---

**ss4HHSm**

*Sample Sizes for Household Surveys in Two-Stages for Estimating Single Means*

**Description**

This function computes a grid of possible sample sizes for estimating single means under two-stage sampling designs.

**Usage**

`ss4HHSm(N, M, rho, mu, sigma, delta, conf, m)`

**Arguments**

- `N` The population size.
- `M` Number of clusters in the population.
- `rho` The Intraclass Correlation Coefficient.
- `mu` The value of the estimated mean of a variable of interest.
- `sigma` The value of the estimated standard deviation of a variable of interest.
- `delta` The maximum margin of error that can be allowed for the estimation.
- `conf` The statistical confidence. By default `conf = 0.95`.
- `m` (vector) Number of households selected within PSU.
Details

In two-stage (2S) sampling, the design effect is defined by

$$DEFF = 1 + (\bar{m} - 1)\rho$$

Where $\rho$ is defined as the intraclass correlation coefficient, $\bar{m}$ is the average sample size of units selected inside each cluster. The relationship of the full sample size of the two stage design (2S) with the simple random sample (SI) design is given by

$$n_{2S} = n_{SI} \times DEFF$$

Value

This function returns a grid of possible sample sizes. The first column represent the design effect, the second column is the number of clusters to be selected, the third column is the number of units to be selected inside the clusters, and finally, the last column indicates the full sample size induced by this particular strategy.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametos. Editorial Universidad Santo Tomas

See Also

ICC

Examples

```r
ss4HHSm(N = 50000000, M = 3000, rho = 0.034,
 mu = 10, sigma = 2, delta = 0.03, conf = 0.95,
 m = c(5:15))
```

```
library(TeachingSampling)
data(BigCity)

BigCity1 <- BigCity %>%
group_by(HHID) %>%
summarise(IncomeHH = sum(Income),
 PSU = unique(PSU))
```
summary(BigCity1$IncomeHH)
mean(BigCity1$IncomeHH)
sd(BigCity1$IncomeHH)

N <- nrow(BigCity)
M <- length(unique(BigCity$PSU))
rho <- ICC(BigCity1$IncomeHH, BigCity1$PSU)$ICC
mu <- mean(BigCity1$IncomeHH)
sigma <- sd(BigCity1$IncomeHH)
delta <- 0.05
conf <- 0.95
m <- c(5:15)
ss4HHSm(N, M, rho, mu, sigma, delta, conf, m)

---

### ss4HHSp

**Sample Sizes for Household Surveys in Two-Stages for Estimating Single Proportions**

---

**Description**

This function computes a grid of possible sample sizes for estimating single proportions under two-stage sampling designs.

**Usage**

```r
ss4HHSp(N, M, r, b, rho, P, delta, conf, m)
```

**Arguments**

- `N` The population size.
- `M` Number of clusters in the population.
- `r` Percentage of people within the subpopulation of interest.
- `b` Average household size (number of members).
- `rho` The Intraclass Correlation Coefficient.
- `P` The value of the estimated proportion.
- `delta` The maximum margin of error that can be allowed for the estimation.
- `conf` The statistical confidence. By default `conf = 0.95`.
- `m` (vector) Number of households selected within PSU.
Details

In two-stage (2S) sampling, the design effect is defined by

\[ DEFF = 1 + (\bar{m} - 1)\rho \]

Where \( \rho \) is defined as the intraclass correlation coefficient, \( \bar{m} \) is the average sample size of units selected inside each cluster. The relationship of the full sample size of the two stage design (2S) with the simple random sample (SI) design is given by

\[ n_{2S} = n_{SI} \times DEFF \]

Value

This function returns a grid of possible sample sizes. The first column represents the design effect, the second column is the number of clusters to be selected, the third column is the number of units to be selected inside the clusters, and finally, the last column indicates the full sample size induced by this particular strategy.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezrezo at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros. Editorial Universidad Santo Tomas

See Also

ICC

Examples

```r
ss4HHSp(N = 50000000, M = 3000, r = 1, b = 3.5,
 rho = 0.034, P = 0.05, delta = 0.05, conf = 0.95,
m = c(5:15))
```

```
 DEFF n.SI DEFF Sample size Units inside clusters Full sample size
1:1 1.0000000 3000.0 1.0000000 3000000 10000 300000000
```

# Example with BigCity data
# Sample size for the estimation
# of the unemployment rate
# #
library(TeachingSampling)
data(BigCity)
BigCity1 <- BigCity[!is.na(BigCity$Employment), ]
sample(BigCity1$Employment)
BigCity1$Unemp <- Domains(BigCity1$Employment)[, 1]
BigCity1$Active <- Domains(BigCity1$Employment)[, 1] +
The required sample size for estimating a single mean

**Description**

This function returns the minimum sample size required for estimating a single mean subject to predefined errors.

**Usage**

```r
ss4m(
 N,
 mu,
 sigma,
 DEFF = 1,
 conf = 0.95,
 error = "cve",
 delta = 0.03,
 plot = FALSE
)
```

**Arguments**

- **N**
  - The population size.
- **mu**
  - The value of the estimated mean of a variable of interest.
- **sigma**
  - The value of the estimated standard deviation of a variable of interest.
- **DEFF**
  - The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
- **conf**
  - The statistical confidence. By default conf = 0.95. By default conf = 0.95.
- **error**
  - The type of error you want to minimize.
- **delta**
  - The magnitude of the error you want to minimize.
- **plot**
  - Optionally plot the errors (cve and margin of error) against the sample size.
Details

Note that the minimum sample size to achieve a relative margin of error $\varepsilon$ is defined by:

$$ n = \frac{n_0}{1 + \frac{n_0}{N}} $$

Where

$$ n_0 = \frac{z^2_{1-\alpha/2} S^2}{\varepsilon^2 \mu^2} $$

and

$$ S^2 = \sigma^2 \text{DEFF} $$

Also note that the minimum sample size to achieve a coefficient of variation $\text{cve}$ is defined by:

$$ n = \frac{S^2}{\bar{y}_U^2 \text{cve}^2 + \frac{S^2}{N}} $$

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas

See Also

e4p

Examples

```r
ss4m(N=10000, mu=10, sigma=2, DEFF=2, error = "cve", delta = 0.03, plot=TRUE)
ss4m(N=10000, mu=10, sigma=2, DEFF=2, error = "me", delta = 1, plot=TRUE)
ss4m(N=10000, mu=10, sigma=2, DEFF=2, error = "rme", delta = 0.03, plot=TRUE)
```

```
Example with Lucy data

data(Lucy)
attach(Lucy)
N <- nrow(Lucy)
mu <- mean(Income)
sigma <- sd(Income)
The minimum sample size for simple random sampling
ss4m(N, mu, sigma, DEFF=1, conf=0.95, error = "rme", delta = 0.03, plot=TRUE)
The minimum sample size for a complex sampling design
ss4m(N, mu, sigma, DEFF=1, conf=0.95, error = "me", delta = 5, plot=TRUE)
The minimum sample size for a complex sampling design
ss4m(N, mu, sigma, DEFF=3.45, conf=0.95, error = "rme", delta = 0.03, plot=TRUE)
```
ss4mH

The required sample size for testing a null hypothesis for a single mean

Description

This function returns the minimum sample size required for testing a null hypothesis regarding a single mean.

Usage

ss4mH(N, mu, mu0, sigma, DEFF = 1, conf = 0.95, power = 0.8, plot = FALSE)

Arguments

N
The population size.
mu
The population mean of the variable of interest.
mu0
The value to test for the single mean.
sigma
The population variance of the variable of interest.
DEFF
The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
conf
The statistical confidence. By default conf = 0.95.
power
The statistical power. By default power = 0.80.
plot
Optionally plot the effect against the sample size.

Details

We assume that it is of interest to test the following set of hypotheses:

\[ H_0 : \mu - \mu_0 = 0 \quad vs. \quad H_a : \mu - \mu_0 = D \neq 0 \]

Note that the minimum sample size, restricted to the predefined power \( \beta \) and confidence \( 1 - \alpha \), is defined by:

\[
    n = \frac{S^2}{\frac{D^2}{(z_{1-\alpha} + z_\beta)^2} + \frac{\sigma^2}{N}}
\]

Where \( S^2 = \sigma^2 \times DEFF \) and \( \sigma^2 \) is the population variance of the variable of interest.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas
See Also
e4p

Examples

```r
ss4mH(N = 10000, mu = 500, mu0 = 505, sigma = 100)
ss4mH(N = 10000, mu = 500, mu0 = 505, sigma = 100, plot=TRUE)
ss4mH(N = 10000, mu = 500, mu0 = 505, sigma = 100, DEFF = 2, plot=TRUE)
ss4mH(N = 10000, mu = 500, mu0 = 505, sigma = 100, conf = 0.99, power = 0.9, DEFF = 2, plot=TRUE)
```

```
Example with BigLucy data#
data(BigLucy)
attach(BigLucy)

N <- nrow(BigLucy)
mu <- mean(Income)
sigma <- sd(Income)

The minimum sample size for testing
H_0: mu - mu_0 = 0 vs. H_a: mu - mu_0 = D = 15
D = 15
mu0 = mu - D
ss4mH(N, mu, mu0, sigma, conf = 0.99, power = 0.9, DEFF = 2, plot=TRUE)

The minimum sample size for testing
H_0: mu - mu_0 = 0 vs. H_a: mu - mu_0 = D = 32
D = 32
mu0 = mu - D
ss4mH(N, mu, mu0, sigma, conf = 0.99, power = 0.9, DEFF = 3.45, plot=TRUE)
```

---

**ss4p**

The required sample size for estimating a single proportion

Description

This function returns the minimum sample size required for estimating a single proportion subject to predefined errors.

Usage

```r
ss4p(N, P, DEFF = 1, conf = 0.95, error = "cve", delta = 0.03, plot = FALSE)
```

Arguments

- **N**
  The population size.
- **P**
  The value of the estimated proportion.
**DEFF**  
The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.

**conf**  
The statistical confidence. By default conf = 0.95. By default conf = 0.95.

**error**  
The type of error you want to minimize.

**delta**  
The magnitude of the error you want to minimize.

**plot**  
Optionally plot the errors (cve and margin of error) against the sample size.

### Details

Note that the minimum sample size to achieve a particular margin of error $\varepsilon$ is defined by:

$$n = \frac{n_0}{1 + \frac{n_0}{N}}$$

Where

$$n_0 = \frac{z^2 - \frac{2}{\varepsilon^2}S^2}{\varepsilon^2}$$

and

$$S^2 = P(1 - P)DEFF$$

Also note that the minimum sample size to achieve a particular coefficient of variation cve is defined by:

$$n = \frac{S^2}{P^2cve^2 + \frac{S^2}{N}}$$

### Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

### References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseno de encuestas y estimacion de parametros*. Editorial Universidad Santo Tomas

### See Also

e4p

### Examples

```r
ss4p(N=10000, P=0.05, error = "cve", delta=0.05, DEFF = 1, conf = 0.95, plot=TRUE)
ss4p(N=10000, P=0.05, error = "me", delta=0.05, DEFF = 1, conf = 0.95, plot=TRUE)
ss4p(N=10000, P=0.5, error = "rme", delta=0.05, DEFF = 1, conf = 0.95, plot=TRUE)
```

```
Example with Lucy data

data(Lucy)
attach(Lucy)
```
The required sample size for testing a null hypothesis for a single proportion

Description

This function returns the minimum sample size required for testing a null hypothesis regarding a single proportion.

Usage

```r
ss4pH(N, p, p0, DEFF = 1, conf = 0.95, power = 0.8, plot = FALSE)
```

Arguments

- `N`: The population size.
- `p`: The value of the estimated proportion.
- `p0`: The value to test for the single proportion.
- `DEFF`: The design effect of the sample design. By default `DEFF = 1`, which corresponds to a simple random sampling design.
- `conf`: The statistical confidence. By default `conf = 0.95`.
- `power`: The statistical power. By default `power = 0.80`.
- `plot`: Optionally plot the effect against the sample size.

Details

We assume that it is of interest to test the following set of hypotheses:

\[ H_0 : \hat{p} - P_0 = 0 \quad \text{vs.} \quad H_a : \hat{p} - P_0 = D \neq 0 \]

Note that the minimum sample size, restricted to the predefined power \( \beta \) and confidence \( 1 - \alpha \), is defined by:

\[
    n = \frac{S^2}{D^2} \left( \frac{1}{z_{1-\alpha}^2} + \frac{S^2}{N} \right)
\]

Where

\[ S^2 = \hat{p}(1 - \hat{p})DEFF \]
Author(s)
Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References
Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimacion de parametros. Editorial Universidad Santo Tomas

See Also
e4p

Examples

```r
ss4pH(N = 10000, p = 0.5, p0 = 0.55)
ss4pH(N = 10000, p = 0.5, p0 = 0.55, plot=TRUE)
ss4pH(N = 10000, p = 0.5, p0 = 0.55, DEFF = 2, plot=TRUE)
ss4pH(N = 10000, p = 0.5, p0 = 0.55, conf = 0.99, power = 0.9, DEFF = 2, plot=TRUE)
```

```
Example with BigLucy data
data(BigLucy)
attach(BigLucy)
N <- nrow(BigLucy)
p <- prop.table(table(SPAM))[1]
The minimum sample size for testing
H_0: P - P_0 = 0 vs. H_a: P - P_0 = D = 0.1
D = 0.1
p0 = p - D
ss4pH(N, p, p0, conf = 0.99, power = 0.9, DEFF = 2, plot=TRUE)
The minimum sample size for testing
H_0: P - P_0 = 0 vs. H_a: P - P_0 = D = 0.02
D = 0.02
p0 = p - D
ss4pH(N, p, p0, conf = 0.99, power = 0.9, DEFF = 3.45, plot=TRUE)
```

---

**ss4pLN**

The required sample size for estimating a single proportion based on a logarithmic transformation of the estimated proportion

Description
This function returns the minimum sample size required for estimating a single proportion subject to predefined errors.
Usage

ss4pLN(N, P, DEFF = 1, cve = 0.05, plot = FALSE)

Arguments

N  The population size.
P  The value of the estimated proportion.
DEFF The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
cve The maximum coefficient of variation that can be allowed for the estimation.
plot Optionally plot the errors (cve and margin of error) against the sample size.

Details

As for low proportions, the coefficient of variation tends to infinity, it is customary to use a symmetrical transformation of this measure (based on the relative standard error RSE) to report the uncertainty of the estimation. This way, if $p \leq 0.5$, the transformed CV will be:

$$RSE(-ln(p)) = \frac{SE(p)}{-ln(p) \ast p}$$

Otherwise, when $p > 0.5$, the transformed CV will be:

$$RSE(-ln(1 - p)) = \frac{SE(p)}{-ln(1 - p) \ast (1 - p)}$$

Note that, when $p \leq 0.5$ the minimum sample size to achieve a particular coefficient of variation $cve$ is defined by:

$$n = \frac{S^2}{P^2 cve^2 + \frac{S^2}{N}}$$

When $p > 0.5$ the minimum sample size to achieve a particular coefficient of variation $cve$ is defined by:

$$n = \frac{S^2}{P^2 cve^2 + \frac{S^2}{N}}$$

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

ss4p
Examples

```
ss4pLN(N=10000, P=0.8, cve=0.10)
ss4pLN(N=10000, P=0.2, cve=0.10)
ss4pLN(N=10000, P=0.7, cve=0.05, plot=TRUE)
ss4pLN(N=10000, P=0.3, cve=0.05, plot=TRUE)
ss4pLN(N=10000, P=0.05, DEFF=3.45, cve=0.03, plot=TRUE)
ss4pLN(N=10000, P=0.95, DEFF=3.45, cve=0.03, plot=TRUE)
```

# Example with Lucy data #

```
data(Lucy)
attach(Lucy)
N <- nrow(Lucy)
P <- prop.table(table(SPAM))[[1]]
The minimum sample size for simple random sampling
ss4pLN(N, P, DEFF=1, cve=0.03, plot=TRUE)
The minimum sample size for a complex sampling design
ss4pLN(N, P, DEFF=3.45, cve=0.03, plot=TRUE)
```

```
ss4S2

The required sample size for estimating a single variance

Description

This function returns the minimum sample size required for estimating a single variance subject to predefined errors.

Usage

```
ss4S2(N, K = 0, DEFF = 1, conf = 0.95, cve = 0.05, me = 0.03, plot = FALSE)
```

Arguments

- **N**: The population size.
- **K**: The population excess kurtosis of the variable in the population.
- **DEFF**: The design effect of the sample design. By default DEFF = 1, which corresponds to a simple random sampling design.
- **conf**: The statistical confidence. By default conf = 0.95. By default conf = 0.95.
- **cve**: The maximum coefficient of variation that can be allowed for the estimation.
- **me**: The maximum margin of error that can be allowed for the estimation.
- **plot**: Optionally plot the errors (cve and margin of error) against the sample size.
Details

Note that the minimum sample size to achieve a particular relative margin of error ε is defined by:

$$n = \frac{n_0}{N^2(N+K+2N+2)} + \frac{n_0}{N}$$

Where

$$n_0 = \frac{\frac{\varepsilon^2}{2-\alpha^2} \cdot DEFF}{\varepsilon^2}$$

Also note that the minimum sample size to achieve a particular coefficient of variation cve is defined by:

$$n = \frac{N^2(N + K + 2N + 2) \cdot DEFF}{cve^2 \cdot (N^2 - 1) + N(N + K + 2N + 2) \cdot DEFF}$$

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseño de encuestas y estimación de parámetros. Editorial Universidad Santo Tomas

See Also

e4p

Examples

```r
ss4S2(N = 10000, K = 0, cve = 0.05, me = 0.03)
ss4S2(N = 10000, K = 1, cve = 0.05, me = 0.03)
ss4S2(N = 10000, K = 1, cve = 0.05, me = 0.05, DEFF = 2)
ss4S2(N = 10000, K = 1, cve = 0.05, me = 0.03, plot = TRUE)
```

```
data(BigLucy)
attach(BigLucy)
N <- nrow(BigLucy)
K <- kurtosis(BigLucy$Income)
# The minimum sample size for simple random sampling
ss4S2(N, K, DEFF=1, conf=0.99, cve=0.03, me=0.1, plot=TRUE)
# The minimum sample size for a complex sampling design
ss4S2(N, K, DEFF=3.45, conf=0.99, cve=0.03, me=0.1, plot=TRUE)
```
The required sample size for testing a null hypothesis for a single variance

Description

This function returns the minimum sample size required for testing a null hypothesis regarding a single variance.

Usage

ss4S2H(N, S2, S20, K = 0, DEFF = 1, conf = 0.95, power = 0.80, plot = FALSE)

Arguments

- N: The population size.
- S2: The value of the estimated variance.
- S20: The value to test for the single variance.
- K: The excess kurtosis of the variable in the population.
- DEFF: The design effect of the sample design. By default, DEFF = 1, which corresponds to a simple random sampling design.
- conf: The statistical confidence. By default, conf = 0.95.
- power: The statistical power. By default, power = 0.80.
- plot: Optionally plot the effect against the sample size.

Details

We assume that it is of interest to test the following set of hypotheses:

\[H_0 : P - P_0 = 0 \quad vs. \quad H_a : P - P_0 = D > 0 \]

Note that the minimum sample size, restricted to the predefined power \(\beta \) and confidence \(1 - \alpha \), is defined by:

\[
n = \frac{S^2}{\left(\frac{D^2}{(z_{1-\alpha} + z_\beta)^2} + \frac{(N-1)^3}{N^2(N+K+2N+2)} + \frac{S^2}{N}\right)}
\]

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), *Estrategias de muestreo: Diseño de encuestas y estimación de parámetros*. Editorial Universidad Santo Tomas
See Also
e4p

Examples

```r
ss4S2H(N = 10000, S2 = 120, S20 = 110, K = 0)
ss4S2H(N = 10000, S2 = 120, S20 = 110, K = 2, DEFF = 2, power = 0.9)
ss4S2H(N = 10000, S2 = 120, S20 = 110, K = 2, DEFF = 2, power = 0.8, plot = TRUE)
```

Example with BigLucy data
data(BigLucy)
attach(BigLucy)
N <- nrow(BigLucy)
S2 <- var(BigLucy$Income)
The minimum sample size for testing
H_0: S2 - S2_0 = 0 vs. H_a: S2 - S2_0 = D = 8000
D = 8000
S20 = S2 - D
K <- kurtosis(BigLucy$Income)
ss4S2H(N, S2, S20, K, DEFF=1, conf = 0.99, power = 0.8, plot=TRUE)
```

---

### ss4stm

**Sample Size for Estimation of Means in Stratified Sampling**

#### Description

This function computes the minimum sample size required for estimating a single mean, in a stratified sampling, subject to predefined errors.

#### Usage

```r
ss4stm(Nh, muh, sigmah, DEFFh = 1, conf = 0.95, rme = 0.03)
```

#### Arguments

- **Nh**
  - Vector. The population size for each stratum.
- **muh**
  - Vector. The means of the variable of interest in each stratum.
- **sigmah**
  - Vector. The standard deviation of the variable of interest in each stratum.
- **DEFFh**
  - Vector. The design effect of the sample design in each stratum. By default DEFFh = 1, which corresponds to a stratified simple random sampling design.
- **conf**
  - The statistical confidence. By default conf = 0.95.
- **rme**
  - The maximum relative margin of error that can be allowed for the estimation.
Details

Let assume that the population $U$ is partitioned in $H$ strata. Under a stratified sampling, the necessary sample size to achieve a relative margin of error $\varepsilon$ is defined by:

$$n = \left( \frac{\sum_{h=1}^{H} w_h S_h}{\varepsilon^2} + \frac{\sum_{h=1}^{H} w_h S_h^2}{N} \right)^{1/2}$$

Where

$$S_h^2 = DEFF_h \sigma_h^2$$

Then, the required sample size in each stratum is given by:

$$n_h = n \frac{w_h S_h}{\sum_{h=1}^{H} w_h S_h}$$

Value

The required sample size for the sample and the required sample size per stratum.

Author(s)

Hugo Andres Gutierrez Rojas <hagutierrezro at gmail.com>

References

Gutierrez, H. A. (2009), Estrategias de muestreo: Diseno de encuestas y estimacion de parametros. Editorial Universidad Santo Tomas

See Also

ss4m

Examples

Nh <- c(15000, 10000, 5000)
muh <- c(300, 200, 100)
sigmah <- c(200, 100, 20)
DEFFh <- c(1, 1.2, 1.5)

ss4stm(Nh, muh, sigmah, rme=0.03)
ss4stm(Nh, muh, sigmah, conf = 0.99, rme=0.03)
ss4stm(Nh, muh, sigmah, DEFFh, conf= 0.99, rme=0.03)

##########################
# Example with Lucy data #
##########################
data(Lucy)
attach(Lucy)
```r
Strata <- as.factor(paste(Zone, Level))
levels(Strata)

Nh <- summary(Strata)
muh <- tapply(Income, Strata, mean)
sigmah <- tapply(Income, Strata, sd)

ss4stm(Nh, muh, sigmah, DEFFh=1, conf = 0.95, rme = 0.03)
ss4stm(Nh, muh, sigmah, DEFFh=1.5, conf = 0.95, rme = 0.03)

Example with BigLucy data
data(BigLucy)
attach(BigLucy)

Nh <- summary(Zone)
muh <- tapply(Income, Zone, mean)
sigmah <- tapply(Income, Zone, sd)

ss4stm(Nh, muh, sigmah, DEFFh=1, conf = 0.95, rme = 0.03)
ss4stm(Nh, muh, sigmah, DEFFh=1.5, conf = 0.95, rme = 0.03)
```
Index

*Topic datasets
  BigLucyT0T1, 12
  ss4S2, 61
  ss4S2H, 63
  ss4stm, 64

b4ddm, 2
b4ddp, 4
b4dm, 5
b4dp, 7
b4m, 8
b4p, 9
b4S2, 10
BigLucyT0T1, 12

DEFF, 13

e4ddm, 15
e4ddp, 17
e4dm, 18
e4dp, 19
e4m, 21
e4p, 22, 33, 42, 46, 54, 56, 57, 59, 62, 64
e4S2, 23

ICC, 24, 28, 31, 50, 52

ss2s4m, 26
ss2s4p, 30
ss4ddm, 31
ss4ddmH, 34
ss4ddp, 36
ss4ddpH, 39
ss4dm, 41
ss4dmH, 43
ss4dp, 38, 45
ss4dpH, 47
ss4HHSm, 49
ss4HHSp, 51
ss4m, 53, 65
ss4mH, 55
ss4p, 4–6, 8–11, 16, 18–20, 22–25, 56, 60
ss4pH, 35, 40, 44, 48, 58
ss4pLN, 59

67