Package ‘sandwich’

June 15, 2022

Version 3.0-2
Date 2022-06-13
Title Robust Covariance Matrix Estimators
Description Object-oriented software for model-robust covariance matrix estimators. Starting out from the basic robust Eicker-Huber-White sandwich covariance methods include: heteroscedasticity-consistent (HC) covariances for cross-section data; heteroscedasticity- and autocorrelation-consistent (HAC) covariances for time series data (such as Andrews' kernel HAC, Newey-West, and WEAVE estimators); clustered covariances (one-way and multi-way); panel and panel-corrected covariances; outer-product-of-gradients covariances; and (clustered) bootstrap covariances. All methods are applicable to (generalized) linear model objects fitted by lm() and glm() but can also be adapted to other classes through S3 methods. Details can be found in Zeileis et al. (2020) <doi:10.18637/jss.v095.i01>, Zeileis (2004) <doi:10.18637/jss.v011.i10> and Zeileis (2006) <doi:10.18637/jss.v016.i09>.

Depends R (>= 3.0.0)
Imports stats, utils, zoo
Suggests AER, car, geepack, lattice, lme4, lmtest, MASS, multiwayvcov, parallel, pcse, plm, pscl, scatterplot3d, stats4, strucchange, survival
License GPL-2 | GPL-3
BugReports https://sandwich.R-Forge.R-project.org/contact.html
NeedsCompilation no
Author Achim Zeileis [aut, cre] (<https://orcid.org/0000-0003-0918-3766>), Thomas Lumley [aut], Nathaniel Graham [ctb], Susanne Koell [ctb]
Maintainer Achim Zeileis <Achim.Zeileis@R-project.org>
Repository CRAN
Date/Publication 2022-06-15 07:10:05 UTC
R topics documented:

- bread .. 2
- estfun .. 3
- InstInnovation .. 4
- Investment ... 7
- isoacf ... 8
- kweights ... 9
- lrvar .. 10
- meat ... 12
- NeweyWest ... 13
- PetersenCL ... 15
- PublicSchools .. 16
- sandwich ... 17
- vcovBS ... 19
- vcovCL .. 22
- vcovHAC .. 26
- vcovHC .. 28
- vcovOPG ... 30
- vcovPC ... 32
- vcovPL .. 34
- weightsAndrews .. 37
- weightsLumley ... 39

Index

<table>
<thead>
<tr>
<th>bread</th>
<th>Bread for Sandwiches</th>
</tr>
</thead>
</table>

Description

Generic function for extracting an estimator for the bread of sandwiches.

Usage

```r
bread(x, ...)
```

Arguments

- `x`
 a fitted model object.
- `...`
 arguments passed to methods.

Value

A matrix containing an estimator for the expectation of the negative derivative of the estimating functions, usually the Hessian. Typically, this should be an $k \times k$ matrix corresponding to k parameters. The rows and columns should be named as in `coef` or `terms`, respectively.

The default method tries to extract `vcov` and `nobs` and simply computes their product.
References

See Also

`lm`, `glm`

Examples

```r
## linear regression
x <- sin(1:10)
y <- rnorm(10)
fm <- lm(y ~ x)

## bread: n * (x'x)^{-1}
bread(fm)
solve(crossprod(cbind(1, x))) * 10
```

estfun

Extract Empirical Estimating Functions

Description

Generic function for extracting the empirical estimating functions of a fitted model.

Usage

`estfun(x, ...)`

Arguments

- `x` a fitted model object.
- `...` arguments passed to methods.

Value

A matrix containing the empirical estimating functions. Typically, this should be an $n \times k$ matrix corresponding to n observations and k parameters. The columns should be named as in `coef` or `terms`, respectively.

The estimating function (or score function) for a model is the derivative of the objective function with respect to the parameter vector. The empirical estimating functions is the evaluation of the estimating function at the observed data (n observations) and the estimated parameters (of dimension k).
References

See Also

lm, glm

Examples

```r
## linear regression
x <- sin(1:10)
y <- rnorm(10)
fm <- lm(y ~ x)

## estimating function: (y - x'beta) * x
estfun(fm)
residuals(fm) * cbind(1, x)
```

InstInnovation

Innovation and Institutional Ownership

Description

Firm-level panel data on innovation and institutional ownership from 1991 to 1999 over 803 firms. The observations refer to different firms over different years.

Usage

```r
data("InstInnovation")
```

Format

A data frame containing 6208 observations on 25 variables.

- **company** factor. Company names.
- **sales** numeric. Sales (in millions of dollars).
- **acompetition** numeric. Constant inverse Lerner index.
- **competition** numeric. Varying inverse Lerner index.
- **capital** numeric. Net stock of property, plant, and equipment.
- **cites** integer. Future cite-weighted patents.
- **precites** numeric. Presample average of cite-weighted patents.
- **dpprecites** factor. Indicates zero precites.
patents integer. Granted patents.
drandd factor. Indicates a zero R&D stock.
randd numeric. R&D stock (in millions of dollars).
employment numeric. Employment (in 1000s).
sp500 factor. Membership of firms in the S&P500 index.
tobinq numeric. Tobin’s q.
value numeric. Stock market value.
institutions numeric. Proportion of stock owned by institutions.
industry factor. Four-digit industry code.
year factor. Estimation period.
top1 numeric. Share of the largest institution.
quasiindexed numeric. Share of "quasi-indexed" institutional owners.
nonquasiindexed numeric. Share of "non-quasi-indexed" institutional owners.
transient numeric. Share of "transient" institutional owners.
dedicated numeric. Share of "dedicated" institutional owners.
competition4 numeric. Varying inverse Lerner index in the firm’s four-digit industry.
subsample factor. Subsample for the replication of columns 1–5 from Table 4 in Aghion et al. (2013).

Details

Aghion et al. (2013) combine several firm level panel datasets (e.g., USPTO, SEC and Compustat) to examine the role of institutional investors in the governance of innovation. Their baseline to model innovation is the Poisson model, but they also consider negative binomial models. Berger et al. (2017) argue that nonlinearities in the innovation process emerge in case that the first innovation is especially hard to obtain in comparison to succeeding innovations. Then, hurdle models offer a useful way that allows for a distinction between these two processes. Berger et al. (2017) show that an extended analysis with negative binomial hurdle models differs materially from the outcomes of the single-equation Poisson approach of Aghion et al. (2013).

Institutional ownership (institutions) is defined as the proportion of stock owned by institutions. According to Aghion et al. (2013), an institutional owner is defined as an institution that files a Form 13-F with the Securities and Exchange Commission (SEC).

Future cite-weighted patents (cites) are used as a proxy for innovation. They are calculated using ultimately granted patent, dated by year of application, and weight these by future citations through 2002 (see Aghion et al. (2013)).

The presample average of cite-weighted patents (precites) is used by Aghion et al. (2013) as a proxy for unobserved heterogeneity, employing the "presample mean scaling" method of Blundell et al. (1999).

The inverse Lerner index in the firm’s three-digit industry is used as a time-varying measure for product market competition (competition), where the Lerner is calculated as the median gross margin from the entire Compustat database in the firm’s three-digit industry (see Aghion et al. (2013)). A time-invariant measure for competition (acompetition) is constructed by averaging the Lerner over the sample period.
The classification of institutions into "quasi-indexed", "transient" and "dedicated" follows Bushee (1998) and distinguishes between institutional investors based on their type of investing. Quasi-indexed institutions do not trade much and are widely diversified, dedicated institution do not trade much and have more concentrated holdings, and transient institutions often trade and have diversified holdings (see Aghion et al. (2013) and Bushee (1998)).

Source

Data and online appendix of Aghion et al. (2013).

References

Examples

```r
## Poisson models from Table I in Aghion et al. (2013)

## load data set
data(“InstInnovation”, package = “sandwich”)

## log-scale variable
InstInnovation$lograndd <- log(InstInnovation$randd)
InstInnovation$lograndd[InstInnovation$lograndd == -Inf] <- 0

## regression formulas
f1 <- cites ~ institutions + log(capital/employment) + log(sales) + industry + year
f2 <- cites ~ institutions + log(capital/employment) + log(sales) +
    industry + year + logranddd + dranddd
f3 <- cites ~ institutions + log(capital/employment) + log(sales) +
    industry + year + logranddd + dranddd + dprecites + log(precites)

## Poisson models
tab_I_3_pois <- glm(f1, data = InstInnovation, family = poisson)
tab_I_4_pois <- glm(f2, data = InstInnovation, family = poisson)
tab_I_5_pois <- glm(f3, data = InstInnovation, family = poisson)

## one-way clustered covariances
vCL_I_3 <- vcovCL(tab_I_3_pois, cluster = ~ company)
vCL_I_4 <- vcovCL(tab_I_4_pois, cluster = ~ company)
vCL_I_5 <- vcovCL(tab_I_5_pois, cluster = ~ company)
```
Investment

replication of columns 3 to 5 from Table I in Aghion et al. (2013)
```
cbind(coef(tab_I_3_pois), sqrt(diag(vCL_I_3)))[2:4, ]
cbind(coef(tab_I_4_pois), sqrt(diag(vCL_I_4)))[c(2:4, 148), ]
cbind(coef(tab_I_5_pois), sqrt(diag(vCL_I_5)))[c(2:4, 148), ]
```

Investment

Description

US data for fitting an investment equation.

Usage

```
data(Investment)
```

Format

An annual time series from 1963 to 1982 with 7 variables.

- **GNP** nominal gross national product (in billion USD),
- **Investment** nominal gross private domestic investment (in billion USD),
- **Price** price index, implicit price deflator for GNP,
- **Interest** interest rate, average yearly discount rate charged by the New York Federal Reserve Bank,
- **RealGNP** real GNP (= GNP/Price),
- **RealInv** real investment (= Investment/Price),
- **RealInt** approximation to the real interest rate (= Interest - 100 * diff(Price)/Price).

Source

Table 15.1 in Greene (1993)

References

Examples

```r
## Willam H. Greene, Econometric Analysis, 2nd Ed.
## Chapter 15
## load data set, p. 411, Table 15.1
data(Investment)

## fit linear model, p. 412, Table 15.2
fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment)
summary(fm)

## visualize residuals, p. 412, Figure 15.1
plot(ts(residuals(fm), start = 1964),
     type = "b", pch = 19, ylim = c(-35, 35), ylab = "Residuals")
sigma <- sqrt(sum(residuals(fm)^2)/fm$df.residual)  ## maybe used df = 26 instead of 16 ?
sigma <- sqrt(sum(residuals(fm)^2)/fm$df.residual)  ## maybe used df = 26 instead of 16 ?
abline(h = c(-2, 0, 2) * sigma, lty = 2)

if(require(lmtest)) {
  ## Newey-West covariances, Example 15.3
coeftest(fm, vcov = NeweyWest(fm, lag = 4))

  ## Note, that the following is equivalent:
  coeftest(fm, vcov = kernHAC(fm, kernel = "Bartlett", bw = 5, prewhite = FALSE, adjust = FALSE))

  ## Durbin-Watson test, p. 424, Example 15.4
dwtest(fm)

  ## Breusch-Godfrey test, p. 427, Example 15.6
bgtest(fm, order = 4)
}

## visualize fitted series
plot(Investment[, "RealInv"], type = "b", pch = 19, ylab = "Real investment")
lines(ts(fitted(fm), start = 1964), col = 4)

## 3-d visualization of fitted model
if(require(scatterplot3d)) {
  s3d <- scatterplot3d(Investment[,c(5,7,6)],
                      type = "b", angle = 65, scale.y = 1, pch = 16)
s3d$plane3d(fm, lty.box = "solid", col = 4)
}
```

isoacf

Isotonic Autocorrelation Function

Description

Autocorrelation function (forced to be decreasing by isotonic regression).

Usage

`isoacf(x, lagmax = NULL, weave1 = FALSE)`
Arguments

- **x**: numeric vector.
- **lagmax**: numeric. The maximal lag of the autocorrelations.
- **weave1**: logical. If set to `TRUE` `isoacf` uses the `acf.R` and `pava.blocks` function from the original `weave` package, otherwise R’s own `acf` and `isoreg` functions are used.

Details

`isoacf` computes the autocorrelation function (ACF) of `x` enforcing the ACF to be decreasing by isotonic regression. See also Robertson et al. (1988).

Value

`isoacf` returns a numeric vector containing the ACF.

References

See Also

`weave`, `weightsLumley`

Examples

```r
x <- filter(rnorm(100), 0.9, "recursive")
isoacf(x)
acf(x, plot = FALSE)$acf
```

kweights

Kernel Weights

Description

Usage

```r
kweights(x, kernel = c("Truncated", "Bartlett", "Parzen", "Tukey-Hanning", "Quadratic Spectral"), normalize = FALSE)
```
Arguments

- **x**: numeric.
- **kernel**: a character specifying the kernel used. All kernels used are described in Andrews (1991).
- **normalize**: logical. If set to TRUE the kernels are normalized as described in Andrews (1991).

Value

Value of the kernel function at \(x \).

References

See Also

`kernHAC`, `weightsAndrews`

Examples

```r
curve(kweights(x, kernel = "Quadratic", normalize = TRUE),
     from = 0, to = 3.2, xlab = "x", ylab = "k(x)"
)
curve(kweights(x, kernel = "Bartlett", normalize = TRUE),
     from = 0, to = 3.2, col = 2, add = TRUE)
curve(kweights(x, kernel = "Parzen", normalize = TRUE),
     from = 0, to = 3.2, col = 3, add = TRUE)
curve(kweights(x, kernel = "Tukey", normalize = TRUE),
     from = 0, to = 3.2, col = 4, add = TRUE)
curve(kweights(x, kernel = "Truncated", normalize = TRUE),
     from = 0, to = 3.2, col = 5, add = TRUE)
```

lrvar

Long-Run Variance of the Mean

Description

Convenience function for computing the long-run variance (matrix) of a (possibly multivariate) series of observations.

Usage

```r
lrvar(x, type = c("Andrews", "Newey-West"), prewhite = TRUE, adjust = TRUE, ...)
```
Arguments

- **x**: numeric vector, matrix, or time series.
- **type**: character specifying the type of estimator, i.e., whether kernHAC for the Andrews quadratic spectral kernel HAC estimator is used or NeweyWest for the Newey-West Bartlett HAC estimator.
- **prewhite**: logical or integer. Should the series be prewhitened? Passed to kernHAC or NeweyWest.
- **adjust**: logical. Should a finite sample adjustment be made? Passed to kernHAC or NeweyWest.
- ... further arguments passed on to kernHAC or NeweyWest.

Details

lrvar is a simple wrapper function for computing the long-run variance (matrix) of a (possibly multivariate) series x. First, this simply fits a linear regression model x ~ 1 by lm. Second, the corresponding variance of the mean(s) is estimated either by kernHAC (Andrews quadratic spectral kernel HAC estimator) or by NeweyWest (Newey-West Bartlett HAC estimator).

Value

For a univariate series x a scalar variance is computed. For a multivariate series x the covariance matrix is computed.

See Also

kernHAC, NeweyWest, vcovHAC

Examples

```r
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
## iid series (with variance of mean 1/n)
## and Andrews kernel HAC (with prewhitening)
x <- rnorm(100)
lrvar(x)

## analogous multivariate case with Newey-West estimator (without prewhitening)
y <- matrix(rnorm(200), ncol = 2)
lrvar(y, type = "Newey-West", prewhite = FALSE)

## AR(1) series with autocorrelation 0.9
z <- filter(rnorm(100), 0.9, method = "recursive")
lrvar(z)
```
Description

Estimating the variance of the estimating functions of a regression model by cross products of the
empirical estimating functions.

Usage

meat(x, adjust = FALSE, ...)

Arguments

x
 a fitted model object.
adjust
 logical. Should a finite sample adjustment be made? This amounts to multiplication with \(n/(n-k)\) where \(n\) is the number of observations and \(k\) the number of estimated parameters.
...
 arguments passed to the estfun function.

Details

For some theoretical background along with implementation details see Zeileis (2006).

Value

A \(k \times k\) matrix corresponding containing the scaled cross products of the empirical estimating
functions.

References

Software, 16(9), 1–16. doi:10.18637/jss.v016.i09

See Also

sandwich, bread, estfun
Examples

```r
x <- sin(1:10)
y <- rnorm(10)
fm <- lm(y ~ x)
meat(fm)
meatHC(fm, type = "HC")
meatHAC(fm)
```

NeweyWest

Newey-West HAC Covariance Matrix Estimation

Description

A set of functions implementing the Newey & West (1987, 1994) heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimators.

Usage

```r
NeweyWest(x, lag = NULL, order.by = NULL, prewhite = TRUE, adjust = FALSE,  
          diagnostics = FALSE, sandwich = TRUE, ar.method = "ols", data = list(),  
          verbose = FALSE)
```

```r
bwNeweyWest(x, order.by = NULL, kernel = c("Bartlett", "Parzen",  
           "Quadratic Spectral", "Truncated", "Tukey-Hanning"), weights = NULL,  
           prewhite = 1, ar.method = "ols", data = list(), ...)
```

Arguments

- `x`: a fitted model object. For `bwNeweyWest` it can also be a score matrix (as returned by `estfun`) directly.
- `lag`: integer specifying the maximum lag with positive weight for the Newey-West estimator. If set to `NULL` `floor(bwNeweyWest(x, ...))` is used.
- `order.by`: Either a vector `z` or a formula with a single explanatory variable like `~ z`. The observations in the model are ordered by the size of `z`. If set to `NULL` (the default) the observations are assumed to be ordered (e.g., a time series).
- `prewhite`: logical or integer. Should the estimating functions be prewhitened? If `TRUE` or greater than 0 a VAR model of order as.integer(prewhte) is fitted via ar with method "ols" and demean = FALSE. The default is to use VAR(1) prewhitening.
- `kernel`: a character specifying the kernel used. All kernels used are described in Andrews (1991). `bwNeweyWest` can only compute bandwidths for "Bartlett", "Parzen" and "Quadratic Spectral".
- `adjust`: logical. Should a finite sample adjustment be made? This amounts to multiplication with `n/(n - k)` where `n` is the number of observations and `k` the number of estimated parameters.
NeweyWest

diagnostics logical. Should additional model diagnostics be returned? See vcovHAC for details.
sandwich logical. Should the sandwich estimator be computed? If set to FALSE only the middle matrix is returned.
ar.method character. The method argument passed to ar for prewhitening (only, not for bandwidth selection).
data an optional data frame containing the variables in the order by model. By default the variables are taken from the environment which the function is called from.
verbose logical. Should the lag truncation parameter used be printed?
weights numeric. A vector of weights used for weighting the estimated coefficients of the approximation model (as specified by approx). By default all weights are 1 except that for the intercept term (if there is more than one variable).
... currently not used.

Details

NeweyWest is a convenience interface to vcovHAC using Bartlett kernel weights as described in Newey & West (1987, 1994). The automatic bandwidth selection procedure described in Newey & West (1994) is used as the default and can also be supplied to kernHAC for the Parzen and quadratic spectral kernel. It is implemented in bwNeweyWest which does not truncate its results - if the results for the Parzen and Bartlett kernels should be truncated, this has to be applied afterwards. For Bartlett weights this is implemented in NeweyWest.

To obtain the estimator described in Newey & West (1987), prewhitening has to be suppressed.

Value

NeweyWest returns the same type of object as vcovHAC which is typically just the covariance matrix.
bwNeweyWest returns the selected bandwidth parameter.

References

See Also

vcovHAC, weightsAndrews, kernHAC
Examples

```r
## fit investment equation
data(Investment)
fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment)

## Newey & West (1994) compute this type of estimator
NeweyWest(fm)

## The Newey & West (1987) estimator requires specification
## of the lag and suppression of prewhitening
NeweyWest(fm, lag = 4, prewhite = FALSE)

## bwNeweyWest() can also be passed to kernHAC(), e.g.
## for the quadratic spectral kernel
kernHAC(fm, bw = bwNeweyWest)
```

PetersenCL

Petersen’s Simulated Data for Assessing Clustered Standard Errors

Description

Artificial balanced panel data set from Petersen (2009) for illustrating and benchmarking clustered standard errors.

Usage

```r
data("PetersenCL")
```

Format

A data frame containing 5000 observations on 4 variables.

- **firm** integer. Firm identifier (500 firms).
- **year** integer. Time variable (10 years per firm).
- **x** numeric. Independent regressor variable.
- **y** numeric. Dependent response variable.

Details

This simulated data set was created to illustrate and benchmark clustered standard errors. The residual and the regressor variable both contain a firm effect, but no year effect. Thus, standard errors clustered by firm are different from the OLS standard errors and similarly double-clustered standard errors (by firm and year) are different from the standard errors clustered by year.

Source

https://www.kellogg.northwestern.edu/faculty/petersen/htm/papers/se/test_data.htm
PublicSchools

References

Description

Per capita expenditure on public schools and per capita income by state in 1979.

Usage

```r
data("PublicSchools")
```

Format

A data frame containing 51 observations of 2 variables.

- **Expenditure**: per capita expenditure on public schools,
- **Income**: per capita income.

Source

Table 14.1 in Greene (1993)

References

Examples

```r
## Willam H. Greene, Econometric Analysis, 2nd Ed.
## Chapter 14
## load data set, p. 385, Table 14.1
data("PublicSchools", package = "sandwich")

## omit NA in Wisconsin and scale income
ps <- na.omit(PublicSchools)
p$Income <- ps$Income * 0.0001

## fit quadratic regression, p. 385, Table 14.2
fmq <- lm(Expenditure ~ Income + I(Income^2), data = ps)
```
summary(fmq)

compare standard and HC0 standard errors
p. 391, Table 14.3
ccoef(fmq)
sqrt(diag(vcovHC(fmq, type = "const")))
sqrt(diag(vcovHC(fmq, type = "HC0")))

if(require(lmtest)) {
compare t ratio
coeftest(fmq, vcov = vcovHC(fmq, type = "HC0"))

White test, p. 393, Example 14.5
wt <- lm(residuals(fmq)^2 ~ poly(Income, 4), data = ps)
wstat <- summary(wt)$r.squared * nrow(ps)
c(wstat, pchisq(wstat, df = 3, lower = FALSE))

Bresch-Pagan test, p. 395, Example 14.7
bptest(fmq, studentize = FALSE)
bptest(fmq)

Francisco Cribari-Neto, Asymptotic Inference, CSDA 45
quasi z-tests, p. 229, Table 8
with Alaska
coeftest(fmq, df = Inf)[3,4]
coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC0"))[3,4]
coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC3"))[3,4]
coeftest(fmq, df = Inf, vcov = vcovHC(fmq, type = "HC4"))[3,4]
without Alaska (observation 2)
fmq1 <- lm(Expenditure ~ Income + I(Income^2), data = ps[-2,])
coeftest(fmq1, df = Inf)[3,4]
coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC0"))[3,4]
coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC3"))[3,4]
coeftest(fmq1, df = Inf, vcov = vcovHC(fmq1, type = "HC4"))[3,4]
}

visualization, p. 230, Figure 1
plot(Expenditure ~ Income, data = ps,
xlab = "per capita income",
ylab = "per capita spending on public schools")
inc <- seq(0.5, 1.2, by = 0.001)
lines(inc, predict(fmq, data.frame(Income = inc)), col = 4)
fml <- lm(Expenditure ~ Income, data = ps)
abline(fml)
text(ps[2,2], ps[2,1], rownames(ps)[2], pos = 2)
Description

Constructing sandwich covariance matrix estimators by multiplying bread and meat matrices.

Usage

sandwich(x, bread. = bread, meat. = meat, ...)

Arguments

x
 a fitted model object.

bread.
 either a bread matrix or a function for computing this via bread.(x).

meat.
 either a bread matrix or a function for computing this via meat.(x, ...).

... arguments passed to the meat function.

Details

sandwich is a simple convenience function that takes a bread matrix (i.e., estimator of the expectation of the negative derivative of the estimating functions) and a meat matrix (i.e., estimator of the variance of the estimating functions) and multiplies them to a sandwich with meat between two slices of bread. By default bread and meat are called.

Some theoretical background along with implementation details is introduced in Zeileis (2006) and also used in Zeileis et al. (2020).

Value

A matrix containing the sandwich covariance matrix estimate. Typically, this should be an $k \times k$ matrix corresponding to k parameters.

References

See Also

bread, meat, meatHC, meatHAC

Examples

x <- sin(1:10)
y <- rnorm(10)
fm <- lm(y ~ x)
sandwich(fm)
vcovHC(fm, type = "HC")
vcovBS

(Clustered) Bootstrap Covariance Matrix Estimation

Description

Object-oriented estimation of basic bootstrap covariances, using simple (clustered) case-based resampling, plus more refined methods for \texttt{lm} and \texttt{glm} models.

Usage

\begin{verbatim}
vcovBS(x, ...)
Default S3 method:
vcovBS(x, cluster = NULL, R = 250, start = FALSE, ...,
 fix = FALSE, use = "pairwise.complete.obs", applyfun = NULL, cores = NULL)

S3 method for class 'lm'
vcovBS(x, cluster = NULL, R = 250, type = "xy", ...,
 fix = FALSE, use = "pairwise.complete.obs", applyfun = NULL, cores = NULL,
 qrjoint = FALSE)

S3 method for class 'glm'
vcovBS(x, cluster = NULL, R = 250, start = FALSE, ...,
 fix = FALSE, use = "pairwise.complete.obs", applyfun = NULL, cores = NULL)
\end{verbatim}

Arguments

\begin{itemize}
\item \textbf{x} \quad a fitted model object.
\item \textbf{cluster} \quad a variable indicating the clustering of observations, a list (or \texttt{data.frame}) thereof, or a formula specifying which variables from the fitted model should be used (see examples). By default (\texttt{cluster = NULL}), either \texttt{attr(x, "cluster")} is used (if any) or otherwise every observation is assumed to be its own cluster.
\item \textbf{R} \quad integer. Number of bootstrap replications.
\item \textbf{start} \quad logical. Should \texttt{coef(x)} be passed as \texttt{start} to the \texttt{update(x, subset = ...)} call? In case the model \texttt{x} is computed by some numeric iteration, this may speed up the bootstrapping.
\item \textbf{type} \quad character or function. The character string specifies the type of bootstrap to use: One of "xy", "residual", "wild" (or equivalently: "wild-rademacher" or "rademacher"), "mammen" (or "wild-mammen"), "norm" (or "wild-norm"), "webb" (or "wild-webb"). Alternatively, \texttt{type} can be a function \texttt{(n)} for drawing wild bootstrap factors.
\item \ldots \quad arguments passed to methods. For the default method, this is passed to \texttt{update}, and for the \texttt{lm} method to \texttt{lm.fit}.
\item \textbf{fix} \quad logical. Should the covariance matrix be fixed to be positive semi-definite in case it is not?
\end{itemize}
use character. Specification passed to `cov` for handling missing coefficients/parameters.

applyfun an optional `lapply`-style function with arguments `function(X, FUN, ...)`. It is used for refitting the model to the bootstrap samples. The default is to use the basic `lapply` function unless the `cores` argument is specified (see below).

cores numeric. If set to an integer the `applyfun` is set to `mclapply` with the desired number of cores, except on Windows where `parLapply` with `makeCluster(cores)` is used.

qrjoint logical. For residual-based and wild bootstrap (i.e., `type != "xy"`), should the bootstrap sample the dependent variable and then apply the QR decomposition jointly only once? If `FALSE`, the bootstrap applies the QR decomposition separately in each iteration and samples coefficients directly. If the sample size (and the number of coefficients) is large, then `qrjoint = TRUE` maybe significantly faster while requiring much more memory.

Details

Clustered sandwich estimators are used to adjust inference when errors are correlated within (but not between) clusters. See the documentation for `vcovCL` for specifics about covariance clustering. This function allows for clustering in arbitrary many cluster dimensions (e.g., firm, time, industry), given all dimensions have enough clusters (for more details, see Cameron et al. 2011). Unlike `vcovCL`, `vcovBS` uses a bootstrap rather than an asymptotic solution.

Basic (clustered) bootstrap covariance matrix estimation is provided by the default `vcovBS` method. It samples clusters (where each observation is its own cluster by default), i.e., using case-based resampling. For obtaining a covariance matrix estimate it is assumed that an `update` of the model with the resampled subset can be obtained, the `coef` extracted, and finally the covariance computed with `cov`.

The update model is evaluated in the `environment(terms(x))` (if available). To speed up computations two further arguments can be leveraged.

1. Instead of `lapply` a parallelized function such as `parLapply` or `mclapply` can be specified to iterate over the bootstrap replications. For the latter, specifying `cores = ...` is a convenience shortcut.

2. When specifying `start = TRUE`, the `coef(x)` are passed to `update` as `start = coef(x)`. This may not be supported by all model fitting functions and is hence not turned on by default.

The “xy” or “pairs” bootstrap is consistent for heteroscedasticity and clustered errors, and converges to the asymptotic solution used in `vcovCL` as R, n, and g become large (n and g are the number of observations and the number of clusters, respectively; see Efron 1979, or Mammen 1992, for a discussion of bootstrap asymptotics). For small g--particularly under 30 groups--the bootstrap will converge to a slightly different value than the asymptotic method, due to the limited number of distinct bootstrap replications possible (see Webb 2014 for a discussion of this phenomenon). The bootstrap will not necessarily converge to an asymptotic estimate that has been corrected for small samples.

The `xy` approach to bootstrapping is generally only of interest to the practitioner when the asymptotic solution is unavailable (this can happen when using estimators that have no `estfun` function, for example). The residual bootstrap, by contrast, is rarely of practical interest, because while it provides consistent inference for for clustered standard errors, it is not robust to heteroscedasticity.
More generally, bootstrapping is useful when the bootstrap makes different assumptions than the asymptotic estimator, in particular when the number of clusters is small and large n or g assumptions are unreasonable. Bootstrapping is also often effective for nonlinear models, particularly in smaller samples, where asymptotic approaches often perform relatively poorly. See Cameron and Miller (2015) for further discussion of bootstrap techniques in practical applications, and Zeileis et al. (2020) show simulations comparing vcovBS to vcovCL in several settings.

The \texttt{glm} method works essentially like the default method but call \texttt{glm.fit} instead of \texttt{codeupdate}. The \texttt{lm} method provides additional bootstrapping types and computes the bootstrapped coefficient estimates somewhat more efficiently using \texttt{lm.fit} (for case-based resampling) or \texttt{qr.coef} rather than update. The default type is case-based resampling (type = "xy") as in the default method. Alternative type specifications are:

- "residual". The residual cluster bootstrap resamples the residuals (as above, by cluster) which are subsequently added to the fitted values to obtain the bootstrapped response variable: $y^* = \hat{y} + e^*$. Coefficients can then be estimated using \texttt{qr.coef()}, reusing the QR decomposition from the original fit. As Cameron et al. (2008) point out, the residual cluster bootstrap is not well-defined when the clusters are unbalanced as residuals from one cluster cannot be easily assigned to another cluster with different size. Hence a warning is issued in that case.

- "wild" (or equivalently "wild-rademacher" or "rademacher"). The wild cluster bootstrap does not actually resample the residuals but instead reforms the dependent variable by multiplying the residual by a randomly drawn value and adding the result to the fitted value: $y^* = \hat{y} + e \cdot w$ (see Cameron et al. 2008). By default, the factors are drawn from the Rademacher distribution: \texttt{function(n) sample(c(-1, 1), n, replace = TRUE)}.

- "mammen" (or "wild-mammen"). This draws the wild bootstrap factors as suggested by Mammen (1993): \texttt{sample(c(-1, 1) * (sqrt(5) + c(-1, 1))/2, n, replace = TRUE, prob = (sqrt(5) + c(1, -1))/(2 * sqrt(5)))}.

- "webb" (or "wild-webb"). This implements the six-point distribution suggested by Webb (2014), which may improve inference when the number of clusters is small: \texttt{sample(c(-sqrt((3:1)/2), sqrt((1:3)/2)), n, replace = TRUE)}.

- "norm" (or "wild-norm"). The standard normal/Gaussian distribution is used for drawing the wild bootstrap factors: \texttt{function(n) rnorm(n)}.

- User-defined function. This needs of the form as above, i.e., a \texttt{function(n)} returning a vector of random wild bootstrap factors of corresponding length.

\textbf{Value}

A matrix containing the covariance matrix estimate.

\textbf{References}

See Also

vcovCL

Examples

```r
## Petersen's data
data("PetersenCL", package = "sandwich")
m <- lm(y ~ x, data = PetersenCL)

## comparison of different standard errors
suppressWarnings(RNGversion("3.5.0"))
set.seed(1)
bind(
  "classical" = sqrt(diag(vcov(m))),
  "HC-cluster" = sqrt(diag(vcovCL(m, cluster = ~ firm))),
  "BS-cluster" = sqrt(diag(vcovBS(m, cluster = ~ firm)))
)

## two-way wild cluster bootstrap with Mammen distribution
vcovBS(m, cluster = ~ firm + year, type = "wild-mammen")
```

vcovCL
Clustered Covariance Matrix Estimation

Description

Estimation of one-way and multi-way clustered covariance matrices using an object-oriented approach.

Usage

```r
vcovCL(x, cluster = NULL, type = NULL, sandwich = TRUE, fix = FALSE, ...)
meatCL(x, cluster = NULL, type = NULL, cadjust = TRUE, multi0 = FALSE, ...)```

vcovCL
Arguments

- `x` a fitted model object.
- `cluster` a variable indicating the clustering of observations, a list (or data.frame) thereof, or a formula specifying which variables from the fitted model should be used (see examples). By default (cluster = NULL), either attr(x, "cluster") is used (if any) or otherwise every observation is assumed to be its own cluster.
- `type` a character string specifying the estimation type (HC0–HC3). The default is to use "HC1" for lm objects and "HC0" otherwise.
- `sandwich` logical. Should the sandwich estimator be computed? If set to FALSE only the meat matrix is returned.
- `fix` logical. Should the covariance matrix be fixed to be positive semi-definite in case it is not?
- `cadjust` logical. Should a cluster adjustment be applied?
- `multi0` logical. Should the HC0 estimate be used for the final adjustment in multi-way clustered covariances?
- `...` arguments passed to `meatCL`.

Details

Clustered sandwich estimators are used to adjust inference when errors are correlated within (but not between) clusters. `vcovCL` allows for clustering in arbitrary many cluster dimensions (e.g., firm, time, industry), given all dimensions have enough clusters (for more details, see Cameron et al. 2011). If each observation is its own cluster, the clustered sandwich collapses to the basic sandwich covariance.

The function `meatCL` is the work horse for estimating the meat of clustered sandwich estimators. `vcovCL` is a wrapper calling `sandwich` and `bread` (Zeileis 2006). `vcovCL` is applicable beyond `lm` or `glm` class objects.

`bread` and `meat` matrices are multiplied to construct clustered sandwich estimators. The meat of a clustered sandwich estimator is the cross product of the clusterwise summed estimating functions. Instead of summing over all individuals, first sum over cluster.

A two-way clustered sandwich estimator $M$ (e.g., for cluster dimensions "firm" and "industry" or "id" and "time") is a linear combination of one-way clustered sandwich estimators for both dimensions ($M_{id}, M_{time}$) minus the clustered sandwich estimator, with clusters formed out of the intersection of both dimensions ($M_{id\cap time}$):

$$M = M_{id} + M_{time} - M_{id\cap time}$$

Additionally, each of the three terms can be weighted by the corresponding cluster bias adjustment factor (see below and Equation 20 in Zeileis et al. 2020). Instead of subtracting $M_{id\cap time}$ as the last subtracted matrix, Ma (2014) suggests to subtract the basic HC0 covariance matrix when only a single observation is in each intersection of id and time. Set `multi0 = TRUE` to subtract the basic HC0 covariance matrix as the last subtracted matrix in multi-way clustering. For details, see also Petersen (2009) and Thompson (2011).

With the `type` argument, HC0 to HC3 types of bias adjustment can be employed, following the terminology used by MacKinnon and White (1985) for heteroscedasticity corrections. HC0 applies
no small sample bias adjustment. HC1 applies a degrees of freedom-based correction, \((n - 1)/(n - k)\) where \(n\) is the number of observations and \(k\) is the number of explanatory or predictor variables in the model. HC1 is the most commonly used approach, and is the default, though it is less effective than HC2 and HC3 when the number of clusters is relatively small (Cameron et al. 2008). HC2 and HC3 types of bias adjustment are geared towards the linear model, but they are also applicable for GLMs (see Bell and McCaffrey 2002, and Kauermann and Carroll 2001, for details). A precondition for HC2 and HC3 types of bias adjustment is the availability of a hat matrix (or a weighted version thereof for GLMs) and hence these two types are currently only implemented for \texttt{lm} and \texttt{glm} objects.

The \texttt{cadjust} argument allows to switch the cluster bias adjustment factor \(G/(G - 1)\) on and off (where \(G\) is the number of clusters in a cluster dimension \(g\)) See Cameron et al. (2008) and Cameron et al. (2011) for more details about small-sample modifications.

The cluster specification can be made in a number of ways: The cluster can be a single variable or a \texttt{list/data.frame} of multiple clustering variables. If \texttt{expand.model.frame} works for the model object \(x\), the cluster can also be a formula. By default (\texttt{cluster = NULL}), \texttt{attr(x, \texttt{“cluster”})} is checked and used if available. If not, every observation is assumed to be its own cluster. If the number of observations in the model \(x\) is smaller than in the original data due to \texttt{NA} processing, then the same \texttt{NA} processing can be applied to \texttt{cluster} if necessary (and \(x$\texttt{na.action}\) being available).

Cameron et al. (2011) observe that sometimes the covariance matrix is not positive-semidefinite and recommend to employ the eigendecomposition of the estimated covariance matrix, setting any negative eigenvalue(s) to zero. This fix is applied, if necessary, when \texttt{fix = TRUE} is specified.

Value

A matrix containing the covariance matrix estimate.

References


See Also

vovHC

Examples

```r
Petersen's data
data("PetersenCL", package = "sandwich")
m <- lm(y ~ x, data = PetersenCL)

clustered covariances
one-way
vcovCL(m, cluster = ~ firm)
vcovCL(m, cluster = PetersenCL$firm) # same
one-way with HC2
vcovCL(m, cluster = ~ firm, type = "HC2")
two-way
vcovCL(m, cluster = ~ firm + year)
vcovCL(m, cluster = PetersenCL[, c("firm", "year")]) # same

comparison with cross-section sandwiches
HC0
all.equal(sandwich(m), vcovCL(m, type = "HC0", cadjust = FALSE))
HC2
all.equal(vcovHC(m, type = "HC2"), vcovCL(m, type = "HC2"))
HC3
all.equal(vcovHC(m, type = "HC3"), vcovCL(m, type = "HC3"))

Innovation data
data("InstInnovation", package = "sandwich")

replication of one-way clustered standard errors for model 3, Table I
and model 1, Table II in Berger et al. (2017), see ?InstInnovation

count regression formula
f1 <- cites ~ institutions + log(capital/employment) + log(sales) + industry + year

model 3, Table I: Poisson model
one-way clustered standard errors
tab_I_3_pois <- glm(f1, data = InstInnovation, family = poisson)
vcov_pois <- vcovCL(tab_I_3_pois, InstInnovation$company)
```
### vcovHAC

**Heteroscedasticity and Autocorrelation Consistent (HAC) Covariance Matrix Estimation**

**Description**

Heteroscedasticity and autocorrelation consistent (HAC) estimation of the covariance matrix of the coefficient estimates in a (generalized) linear regression model.

**Usage**

```r
vcovHAC(x, ...)
```

## Default S3 method:

```r
vcovHAC(x, order.by = NULL, prewhite = FALSE, weights = weightsAndrews, adjust = TRUE, diagnostics = FALSE, sandwich = TRUE, ar.method = "ols", data = list(), ...)
```

```r
meatHAC(x, order.by = NULL, prewhite = FALSE, weights = weightsAndrews, adjust = TRUE, diagnostics = FALSE, ar.method = "ols", data = list(), ...)
```

**Arguments**

- **x** a fitted model object.
- **order.by** Either a vector \( z \) or a formula with a single explanatory variable like \(~ z \). The observations in the model are ordered by the size of \( z \). If set to `NULL` (the default) the observations are assumed to be ordered (e.g., a time series).
prewhite logical or integer. Should the estimating functions be prewhitened? If TRUE or greater than 0 a VAR model of order as.integer(prewhite) is fitted via ar with method "ols" and demean = FALSE.

weights Either a vector of weights for the autocovariances or a function to compute these weights based on x, order.by, prewhite, ar.method and data. If weights is a function it has to take these arguments. See also details.

adjust logical. Should a finite sample adjustment be made? This amounts to multiplication with $n / (n - k)$ where $n$ is the number of observations and $k$ the number of estimated parameters.

diagnostics logical. Should additional model diagnostics be returned? See below for details.

sandwich logical. Should the sandwich estimator be computed? If set to FALSE only the meat matrix is returned.

ar.method character. The method argument passed to ar for prewhitening.

data an optional data frame containing the variables in the order.by model. By default the variables are taken from the environment which vcovHAC is called from.

... arguments passed to sandwich (in vcovHAC) and estfun (in meatHAC), respectively.

Details

The function meatHAC is the real work horse for estimating the meat of HAC sandwich estimators – the default vcovHAC method is a wrapper calling sandwich and bread. See Zeileis (2006) for more implementation details. The theoretical background, exemplified for the linear regression model, is described in Zeileis (2004).

Both functions construct weighted information sandwich variance estimators for parametric models fitted to time series data. These are basically constructed from weighted sums of autocovariances of the estimating functions (as extracted by estfun). The crucial step is the specification of weights: the user can either supply vcovHAC with some vector of weights or with a function that computes these weights adaptively (based on the arguments x, order.by, prewhite and data). Two functions for adaptively choosing weights are implemented in weightsAndrews implementing the results of Andrews (1991) and in weightsLumley implementing the results of Lumley (1999). The functions kernHAC and weave respectively are to more convenient interfaces for vcovHAC with these functions.

Prewhitening based on VAR approximations is described as suggested in Andrews & Monahan (1992).

The covariance matrix estimators have been improved by the addition of a bias correction and an approximate denominator degrees of freedom for test and confidence interval construction. See Lumley & Heagerty (1999) for details.

Value

A matrix containing the covariance matrix estimate. If diagnostics was set to TRUE this has an attribute "diagnostics" which is a list with

bias.correction multiplicative bias correction

df Approximate denominator degrees of freedom
Heteroscedasticity-consistent estimation of the covariance matrix of the coefficient estimates in regression models.

Usage

```r
covHC(x, ...)
```

## Default S3 method:
covHC(x,  
  type = c("HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5"),  
  omega = NULL, sandwich = TRUE, ...)
meatHC(x, type = , omega = NULL, ...)
```
Arguments

- **x**: a fitted model object.
- **type**: a character string specifying the estimation type. For details see below.
- **omega**: a vector or a function depending on the arguments `residuals` (the working residuals of the model), `diaghat` (the diagonal of the corresponding hat matrix) and `df` (the residual degrees of freedom). For details see below.
- **sandwich**: logical. Should the sandwich estimator be computed? If set to `FALSE` only the meat matrix is returned.
- **...**: arguments passed to `sandwich` (in `vcovHC`) and `estfun` (in `meatHC`), respectively.

Details

The function `meatHC` is the real work horse for estimating the meat of HC sandwich estimators – the default `vcovHC` method is a wrapper calling `sandwich` and `bread`. See Zeileis (2006) for more implementation details. The theoretical background, exemplified for the linear regression model, is described below and in Zeileis (2004). Analogous formulas are employed for other types of models, provided that they depend on a single linear predictor and the estimating functions can be represented as a product of “working residual” and regressor vector (Zeileis 2006, Equation 7).

When `type = "const"` constant variances are assumed and `vcovHC` gives the usual estimate of the covariance matrix of the coefficient estimates:

\[
\hat{\sigma}^2 (X^T X)^{-1}
\]

All other methods do not assume constant variances and are suitable in case of heteroscedasticity. "HC" (or equivalently "HC0") gives White’s estimator, the other estimators are refinements of this. They are all of form

\[
(X^T X)^{-1} X^T \Omega X (X^T X)^{-1}
\]

and differ in the choice of Omega. This is in all cases a diagonal matrix whose elements can be either supplied as a vector `omega` or as a a function `omega` of the residuals, the diagonal elements of the hat matrix and the residual degrees of freedom. For White’s estimator

\[
\text{omega} <- \text{function}(\text{residuals}, \text{diaghat}, \text{df}) \text{residuals}^2
\]

Instead of specifying the diagonal `omega` or a function for estimating it, the `type` argument can be used to specify the HC0 to HC5 estimators. If `omega` is used, `type` is ignored.

Long & Ervin (2000) conduct a simulation study of HC estimators (HC0 to HC3) in the linear regression model, recommending to use HC3 which is thus the default in `vcovHC`. Cribari-Neto (2004), Cribari-Neto, Souza, & Vasconcellos (2007), and Cribari-Neto & Da Silva (2011), respectively, suggest the HC4, HC5, and modified HC4m type estimators. All of them are tailored to take into account the effect of leverage points in the design matrix. For more details see the references.

Value

A matrix containing the covariance matrix estimate.
vcovOPG

Outer-Product-of-Gradients Covariance Matrix Estimation

Description

Outer product of gradients estimation for the covariance matrix of the coefficient estimates in regression models.

References

See Also

`lm`, `hccm`, `bptest`, `ncv.test`

Examples

```r
## generate linear regression relationship
## with homoscedastic variances
x <- sin(1:100)
y <- 1 + x + rnorm(100)
## model fit and HC3 covariance
fm <- lm(y ~ x)
vcovHC(fm)
## usual covariance matrix
vcovHC(fm, type = "const")
vcov(fm)

sigma2 <- sum(residuals(lm(y ~ x))^2)/98
sigma2 * solve(crossprod(cbind(1, x)))
```
Usage

vcovOPG(x, adjust = FALSE, ...)

Arguments

x

a fitted model object.

adjust

logical. Should a finite sample adjustment be made? This amounts to multiplication with \(n/(n-k)\) where \(n\) is the number of observations and \(k\) the number of estimated parameters.

... arguments passed to the estfun function.

Details

In correctly specified models, the “meat” matrix (cross product of estimating functions, see meat) and the inverse of the “bread” matrix (inverse of the derivative of the estimating functions, see bread) are equal and correspond to the Fisher information matrix. Typically, an empirical version of the bread is used for estimation of the information but alternatively it is also possible to use the meat. This method is also known as the outer product of gradients (OPG) estimator (Cameron & Trivedi 2005).

Using the sandwich infrastructure, the OPG estimator could easily be computed via solve(meat(obj)) (modulo scaling). To employ numerically more stable implementation of the inversion, this simple convenience function can be used: vcovOPG(obj).

Note that this only works if the estfun() method computes the maximum likelihood scores (and not a scaled version such as least squares scores for “lm” objects).

Value

A matrix containing the covariance matrix estimate.

References

See Also

meat, bread, sandwich

Examples

generate poisson regression relationship
x <- sin(1:100)
y <- rpois(100, exp(1 + x))
compute usual covariance matrix of coefficient estimates
fm <- glm(y ~ x, family = poisson)
vcov(fm)
vcovOPG(fm)

The function meatPC is the work horse for estimating the meat of Beck and Katz (1995) covariance matrix estimators. vcovPC is a wrapper calling sandwich and bread (Zeileis 2006).
Following Bailey and Katz (2011), there are two alternatives to estimate the meat for unbalanced panels. For `pairwise = FALSE`, a balanced subset of the panel is used, whereas for `pairwise = TRUE`, a pairwise balanced sample is employed.

The `cluster/order.by` specification can be made in a number of ways: Either both can be a single variable or `cluster` can be a `list/data.frame` of two variables. If `expand.model.frame` works for the model object `x`, the `cluster` (and potentially additionally `order.by`) can also be a formula. By default (`cluster = NULL, order.by = NULL`), `attr(x, "cluster")` and `attr(x, "order.by")` are checked and used if available. If not, every observation is assumed to be its own cluster, and observations within clusters are assumed to be ordered accordingly. If the number of observations in the model `x` is smaller than in the original data due to NA processing, then the same NA processing can be applied to `cluster` if necessary (and `x$na.action` being available).

Value

A matrix containing the covariance matrix estimate.

References

See Also

`vcovCL, vcovPL`

Examples

```r
## Petersen's data
data("PetersenCL", package = "sandwich")
m <- lm(y ~ x, data = PetersenCL)

## balanced panel
sqrt(diag(vcovPC(m, cluster = ~ firm + year)))

## unbalanced panel
PU <- subset(PetersenCL, !(firm == 1 & year == 10))
pu_lm <- lm(y ~ x, data = PU)
sqrt(diag(vcovPC(pu_lm, cluster = ~ firm + year, pairwise = TRUE)))
sqrt(diag(vcovPC(pu_lm, cluster = ~ firm + year, pairwise = FALSE)))
```
the following specifications of cluster/order.by are equivalent
vcovPC(m, cluster = ~ firm + year)
vcovPC(m, cluster = PetersenCL[, c("firm", "year")])
vcovPC(m, cluster = ~ firm, order.by = ~ year)
vcovPC(m, cluster = PetersenCL$firm, order.by = PetersenCL$year)

these are also the same when observations within each
cluster are already ordered
vcovPC(m, cluster = ~ firm)
vcovPC(m, cluster = PetersenCL$firm)

vcovPL *Clustered Covariance Matrix Estimation for Panel Data*

Description

Usage

```r
vcovPL(x, cluster = NULL, order.by = NULL, 
       kernel = "Bartlett", sandwich = TRUE, fix = FALSE, ...)
```

```r
meatPL(x, cluster = NULL, order.by = NULL, 
       kernel = "Bartlett", lag = "NW1987", bw = NULL, 
       adjust = TRUE, aggregate = TRUE, ...)
```

Arguments

- **x**: a fitted model object.
- **cluster**: a single variable indicating the clustering of observations, or a list (or data.frame) of one or two variables, or a formula specifying which one ore two variables from the fitted model should be used (see examples). In case two variables are specified, the second variable is assumed to provide the time ordering (instead of using the argument order.by). By default (cluster = NULL), either attr(x, "cluster") is used (if any) or otherwise every observation is assumed to be its own cluster.
- **order.by**: a variable, list/data.frame, or formula indicating the aggregation within time periods. By default attr(x, "order.by") is used (if any) or specified through the second variable in cluster (see above). If neither is available, observations within clusters are assumed to be ordered.
- **kernel**: a character specifying the kernel used. All kernels described in Andrews (1991) are supported, see `kweights`.

The function meatPL is the work horse for estimating the meat of Newey-West (1987) and Driscoll and Kraay (1998) covariance matrix estimators. vcovPL is a wrapper calling sandwich and bread (Zeileis 2006).

Default lag length is the "NW1987". For \(\text{lag} = \text{"NW1987"}, \) the lag length is chosen from the heuristic \(\text{floor}[T^{1/4}] \). More details on lag length selection in Hoechle (2007). For \(\text{lag} = \text{"NW1994"}, \) the lag length is taken from the first step of Newey and West’s (1994) plug-in procedure.

The cluster/order by specification can be made in a number of ways: Either both can be a single variable or cluster can be a list/data.frame of two variables. If expand.model.frame works for the model object \(x \), the cluster (and potentially additionally order.by) can also be a formula. By default \(\text{cluster} = \text{NULL, order.by = NULL, attr(x, "cluster")) \) and \(\text{attr(x, "order.by") \) are checked and used if available. If not, every observation is assumed to be its own cluster, and observations within clusters are assumed to be ordered accordingly. If the number of observations in the model \(x \) is smaller than in the original data due to NA processing, then the same NA processing can be applied to cluster if necessary (and \(x\$\text{na.action} \) being available).

Value

A matrix containing the covariance matrix estimate.
References

See Also

vcovCL, vcovPC

Examples

```r
## Petersen's data
data("PetersenCL", package = "sandwich")
m <- lm(y ~ x, data = PetersenCL)

## Driscoll and Kraay standard errors
## lag length set to: T - 1 (maximum lag length)
## as proposed by Petersen (2009)
sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "max", adjust = FALSE)))

## lag length set to: floor(4 * (T / 100)^2/9)
## rule of thumb proposed by Hoechle (2007) based on Newey & West (1994)
sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "NW1994")))

## lag length set to: floor(T^(1/4))
## rule of thumb based on Newey & West (1987)
sqrt(diag(vcovPL(m, cluster = ~ firm + year, lag = "NW1987")))

## the following specifications of cluster/order.by are equivalent
vcovPL(m, cluster = ~ firm + year)
vcovPL(m, cluster = PetersenCL[, c("firm", "year")])
vcovPL(m, cluster = ~ firm, order.by = ~ year)
```
weightsAndrews

Kernel-based HAC Covariance Matrix Estimation

Description

Usage

kernHAC(x, order.by = NULL, prewhite = 1, bw = bwAndrews,
kernel = c("Quadratic Spectral", "Truncated", "Bartlett", "Parzen", "Tukey-Hanning"),
approx = c("AR(1)", "ARMA(1,1)"), adjust = TRUE, diagnostics = FALSE,
sandwich = TRUE, ar.method = "ols", tol = 1e-7, data = list(), verbose = FALSE, ...)

weightsAndrews(x, order.by = NULL, bw = bwAndrews,
kernel = c("Quadratic Spectral", "Truncated", "Bartlett", "Parzen", "Tukey-Hanning"),
prewhite = 1, ar.method = "ols", tol = 1e-7, data = list(), verbose = FALSE, ...)

bwAndrews(x, order.by = NULL, kernel = c("Quadratic Spectral", "Truncated",
"Bartlett", "Parzen", "Tukey-Hanning"), approx = c("AR(1)", "ARMA(1,1)"),
weights = NULL, prewhite = 1, ar.method = "ols", data = list(), ...)

Arguments

x a fitted model object. For bwAndrews it can also be a score matrix (as returned by estfun) directly.

order.by Either a vector z or a formula with a single explanatory variable like ~ z. The observations in the model are ordered by the size of z. If set to NULL (the default) the observations are assumed to be ordered (e.g., a time series).

prewhite logical or integer. Should the estimating functions be prewhitened? If TRUE or greater than 0 a VAR model of order as.integer(prewhite) is fitted via ar with method "ols" and demean = FALSE. The default is to use VAR(1) prewhitening.

bw numeric or a function. The bandwidth of the kernel (corresponds to the truncation lag). If set to to a function (the default is bwAndrews) it is adaptively chosen.

kernel a character specifying the kernel used. All kernels used are described in Andrews (1991).
approx a character specifying the approximation method if the bandwidth bw has to be chosen by bwAndrews.
adjust logical. Should a finite sample adjustment be made? This amounts to multiplication with \(n/(n-k) \) where \(n \) is the number of observations and \(k \) the number of estimated parameters.
diagnostics logical. Should additional model diagnostics be returned? See vcovHAC for details.
sandwich logical. Should the sandwich estimator be computed? If set to FALSE only the middle matrix is returned.
ar.method character. The method argument passed to ar for prewhitening (only, not for bandwidth selection).
tol numeric. Weights that exceed tol are used for computing the covariance matrix, all other weights are treated as 0.
data an optional data frame containing the variables in the order by model. By default the variables are taken from the environment which the function is called from.
verbose logical. Should the bandwidth parameter used be printed?
... further arguments passed to bwAndrews.
weights numeric. A vector of weights used for weighting the estimated coefficients of the approximation model (as specified by approx). By default all weights are 1 except that for the intercept term (if there is more than one variable).

Details

kernHAC is a convenience interface to vcovHAC using weightsAndrews: first a weights function is defined and then vcovHAC is called.

The kernel weights underlying weightsAndrews are directly accessible via the function kweights and require the specification of the bandwidth parameter bw. If this is not specified it can be chosen adaptively by the function bwAndrews (except for the "Truncated" kernel). The automatic bandwidth selection is based on an approximation of the estimating functions by either AR(1) or ARMA(1,1) processes. To aggregate the estimated parameters from these approximations a weighted sum is used. The weights in this aggregation are by default all equal to 1 except that corresponding to the intercept term which is set to 0 (unless there is no other variable in the model) making the covariance matrix scale invariant.

Further details can be found in Andrews (1991).

The estimator of Newey & West (1987) is a special case of the class of estimators introduced by Andrews (1991). It can be obtained using the "Bartlett" kernel and setting bw to lag + 1. A convenience interface is provided in NeweyWest.

Value

kernHAC returns the same type of object as vcovHAC which is typically just the covariance matrix.
weightsAndrews returns a vector of weights.
bwAndrews returns the selected bandwidth parameter.
weightsLumley

References

See Also

vcovHAC, NeweyWest, weightsLumley, weave

Examples

```r
curve(kweights(x, kernel = "Quadratic", normalize = TRUE),
     from = 0, to = 3.2, xlab = "x", ylab = "k(x)")
curve(kweights(x, kernel = "Bartlett", normalize = TRUE),
     from = 0, to = 3.2, col = 2, add = TRUE)
curve(kweights(x, kernel = "Parzen", normalize = TRUE),
     from = 0, to = 3.2, col = 3, add = TRUE)
curve(kweights(x, kernel = "Tukey", normalize = TRUE),
     from = 0, to = 3.2, col = 4, add = TRUE)
curve(kweights(x, kernel = "Truncated", normalize = TRUE),
     from = 0, to = 3.2, col = 5, add = TRUE)

## fit investment equation
data(Investment)
fm <- lm(RealInv ~ RealGNP + RealInt, data = Investment)

## compute quadratic spectral kernel HAC estimator
kernHAC(fm)
kernHAC(fm, verbose = TRUE)

## use Parzen kernel instead, VAR(2) prewhitening, no finite sample
## adjustment and Newey & West (1994) bandwidth selection
kernHAC(fm, kernel = "Parzen", prewhite = 2, adjust = FALSE,
         bw = bwNeweyWest, verbose = TRUE)

## compare with estimate under assumption of spheric errors
vcov(fm)
```

weightsLumley

Weighted Empirical Adaptive Variance Estimation

Description

A set of functions implementing weighted empirical adaptive variance estimation (WEAVE) as introduced by Lumley and Heagerty (1999). This is implemented as a special case of the general class of kernel-based heteroscedasticity and autocorrelation consistent (HAC) covariance matrix estimators as introduced by Andrews (1991), using a special choice of weights.
Usage

weave(x, order.by = NULL, prewhite = FALSE, C = NULL,
method = c("truncate", "smooth"), acf = isoacf, adjust = FALSE,
diagnostics = FALSE, sandwich = TRUE, tol = 1e-7, data = list(), ...)

weightsLumley(x, order.by = NULL, C = NULL,
method = c("truncate", "smooth"), acf = isoacf, tol = 1e-7, data = list(), ...)

Arguments

x
a fitted model object.

order.by
Either a vector z or a formula with a single explanatory variable like \~ z. The
observations in the model are ordered by the size of z. If set to NULL (the default)
the observations are assumed to be ordered (e.g., a time series).

prewhite
logical or integer. Should the estimating functions be prewhitened? If TRUE or
greater than 0 a VAR model of order as.integer(prewhite) is fitted via
ar with method "ols" and demean = FALSE.

C
numeric. The cutoff constant C is by default 4 for method "truncate" and 1 for
method "smooth".

method
a character specifying the method used, see details.

acf
a function that computes the autocorrelation function of a vector, by default
isoacf is used.

adjust
logical. Should a finite sample adjustment be made? This amounts to multipli-
cation with \(n/(n-k) \) where \(n \) is the number of observations and \(k \) the number
of estimated parameters.

diagnostics
logical. Should additional model diagnostics be returned? See vcovHAC for
details.

sandwich
logical. Should the sandwich estimator be computed? If set to FALSE only the
middle matrix is returned.

tol
numeric. Weights that exceed tol are used for computing the covariance matrix,
all other weights are treated as 0.

data
an optional data frame containing the variables in the order by model. By
default the variables are taken from the environment which the function is called
from.

... currently not used.

Details

weave is a convenience interface to vcovHAC using weightsLumley: first a weights function is
defined and then vcovHAC is called.

Both weighting methods are based on some estimate of the autocorrelation function \(\rho \) (as computed
by acf) of the residuals of the model x. The weights for the "truncate" method are

\[
I\{n\rho^2 > C\}
\]
and the weights for the "smooth" method are

$$\min\{1, Cn\rho^2\}$$

where \(n \) is the number of observations in the model and \(C \) is the truncation constant. Further details can be found in Lumley & Heagerty (1999).

Value

`weave` returns the same type of object as `vcovHAC` which is typically just the covariance matrix.
`weightsLumley` returns a vector of weights.

References

See Also

`vcovHAC`, `weightsAndrews`, `kernHAC`

Examples

```r
x <- sin(1:100)
y <- 1 + x + rnorm(100)
f <- lm(y ~ x)
weave(f)
vcov(f)
```
Index

* **bootstrap**
 vcovBS, 19

* **datasets**
 InstInnovation, 4
 Investment, 7
 PetersenCL, 15
 PublicSchools, 16

* **regression**
 bread, 2
 estfun, 3
 isoacf, 8
 kweights, 9
 lrvar, 10
 meat, 12
 NeweyWest, 13
 sandwich, 17
 vcovBS, 19
 vcovCL, 22
 vcovHAC, 26
 vcovHC, 28
 vcovOPG, 30
 vcovPC, 32
 vcovPL, 34
 weightsAndrews, 37
 weightsLumley, 39

* **ts**
 isoacf, 8
 kweights, 9
 lrvar, 10
 NeweyWest, 13
 vcovHAC, 26
 vcovHC, 28
 vcovOPG, 30
 weightsAndrews, 37
 weightsLumley, 39
 .vcovBSenv (vcovBS), 19

 ar, 14, 27, 38
 bptest, 30

 bread, 2, 12, 18, 23, 27, 29, 31, 32, 35
 bwAndrews (weightsAndrews), 37
 bwNeweyWest (NeweyWest), 13
 coef, 2, 3, 20
 cov, 20
 estfun, 3, 12, 27, 29, 31
 expand.model.frame, 24, 33, 35
 glm, 3, 4, 19, 21, 24
 glm.fit, 21
 hccm, 30
 InstInnovation, 4
 Investment, 7
 isoacf, 8, 40
 kernHAC, 10, 11, 14, 27, 28, 41
 kernHAC (weightsAndrews), 37
 kweights, 9, 34, 38
 lapply, 20
 lm, 3, 4, 11, 19, 21, 24, 30
 lm.fit, 21
 lrvar, 10
 mclapply, 20
 meat, 12, 18, 23, 31
 meatCL (vcovCL), 22
 meatHAC, 18
 meatHAC (vcovHAC), 26
 meatHC, 18
 meatHC (vcovHC), 28
 meatPC (vcovPC), 32
 meatPL (vcovPL), 34
 ncv.test, 30
 NeweyWest, 11, 13, 38, 39
 nobs, 2
INDEX

parLapply, 20
pava.blocks (isoacf), 8
PetersenCL, 15
PublicSchools, 16
qr.coef, 21
sandwich, 12, 17, 23, 27, 29, 31, 32, 35
terms, 2, 3
update, 20
vcov, 2
vcovBS, 19
vcovCL, 20, 22, 22, 33, 36
vcovHAC, 11, 14, 26, 38–41
vcovHC, 25, 28
vcovOPG, 30
vcovPC, 32, 36
vcovPL, 33, 34
weave, 9, 27, 28, 39
weave (weightsLumley), 39
weightsAndrews, 10, 14, 27, 28, 37, 41
weightsLumley, 9, 27, 28, 39, 39