Package ‘saws’

February 20, 2015

Type Package
Title Small-Sample Adjustments for Wald tests Using Sandwich Estimators
Version 0.9-6.1
Date 2013-12-11
Author Michael P. Fay
Maintainer Michael P. Fay <mfay@niaid.nih.gov>
Description Tests coefficients with sandwich estimator of variance and with small samples. Regression types supported are gee, linear regression, and conditional logistic regression.
Depends R (>= 2.6.0), gee, stats
Suggests MASS
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2014-01-23 00:15:29

R topics documented:
saws-package ... 2
clogistCalc .. 3
dietfat ... 5
geeUOmega .. 6
lmfitSaws ... 7
mgee ... 8
micefat ... 9
print.saws .. 10
saws ... 11
SDcorn ... 13

Index 14

1
saws-package

Small-Sample Adjustments for Wald tests Using Sandwich Estimators

Description

Tests coefficients with sandwich estimator of variance and with small samples. Regression types supported are gee, linear regression, and conditional logistic regression.

Details

Package: saws
Type: Package
Version: 0.9-6.0
Date: 2012-04-19
License: GPL-2 or greater

The main function of this package is saws, which takes output from some regression models (gee, linear regression, conditional logistic regression) and gives inferences (confidence intervals, p-values) using small sample adjusted sandwich estimators of variance. Using methods described in Fay and Graubard (2001).

The output from the regression model must be a list including the following three elements: The 'coefficients' is a vector with p parameter estimates, and is a standard output from the regression. The matrix 'u' is K by p with u[i,j] the ith estimating equation, where there are K approximately independent estimating equations. The array 'omega' is K by p by p where omega[i,] is a p by p matrix estimating \(\frac{du}{dbeta} \) (here beta=coefficients). See Fay and Graubard (2001) for details.

Since the 'u' matrix and 'omega' array are not normally part of standard output, there are three specialized functions for creating regression output for use in the saws function: mgee (for gee), lmfitSaws (for linear models) and clogistCalc (for conditional logistic regression). For example, the function mgee does a gee analysis using the gee function of the gee package, takes the output and runs it through the geeUOmega function to create the 'u' matrix and the 'omega' array, and adds those onto the output from the gee (in the process other output from the gee may be corrected, see geeUOmega).

The cox regression function is not included in this version of the package. Unless there is demand (and I have time) it will not be included in a future version. There is a demo recreating the example in Fay and Graubard (2001).

Author(s)

M.P. Fay

Maintainer: Michael Fay <mfay@niaid.nih.gov>
References

Examples

```r
library(gee)
data(warpbreaks)
g <- gee(breaks~tension,id=wool, data=warpbreaks, corstr="exchangeable")
guo <- geeUOmega(g)
saws(guo)
```

clogistCalc Conditional Logistic Regression fit

Description

Perform conditional logistic regression with output formatted for input into `saws` which will give confidence intervals and p-values.

Usage

```r
clogistCalc(n, m, x, set, initb = NA, h = 1e-04, maxitr = 15,
          epsilon = 1e-08, conf.level = 0.95)
clogistLoglike(n, m, x, beta)
clogistInfo(n, m, x, beta, h)
```

Arguments

- `n` vector of number at risk
- `m` vector of number of events
- `x` matrix of covariates
- `set` vector of denoting clusters
- `initb` vector of initial parameter estimates, initb=NA uses unconditional logistic regression for initial estimate
- `h` small value for numeric integration
- `maxitr` maximum number of iterations
- `epsilon` convergence criteria (see details)
- `conf.level` confidence level for confidence intervals
- `beta` vector of current parameter estimate
Details

The main program is clogistCalc. It calls clogistLoglike and clogistInfo which are not to be called explicitly. The function clogistLoglike finds the loglikelihood using recursive methods, and clogistInfo calculates score vector and information matrix using numerical methods. Both methods are described in Gail, Lubin and Rubinstein (1981), and the h value is the same as is defined in that paper.

The algorithm stops when the largest absolute relative change in either the loglikelihood or in any parameter is less than epsilon. For parameters close to zero (i.e., less than 0.01 in absolute value) the relative change is defined as change/0.01.

Value

A list for input into the saws function, containing the following elements (K=number of clusters, p=number of parameters):

- coefficients p by 1 vector of parameter estimates
- u K by p matrix of scores or estimating equations
- omega K by p by p array of -1*information

Author(s)

Michael Fay, modeled after a Fortran program by Doug Midthune

References

Gail, Lubin and Rubinstein (1981) Biometrika, 703-707

See Also

See also saws

Examples

data(micefat)
cout<-clogistCalc(micefat$N,micefat$NTUM,micefat[,c("fatCal","totalCal")],micefat$cluster)
usual model based variance
saws(cout,method="dm")
sandwich based variance with small sample correction
s3<-saws(cout,method="d3")
s3
print.default(s3)
Mammary Tumors and Different Types of Dietary Fat in Rodents

Description
This is a data set from a meta analysis described in Fay, Freedman, Clifford, and Midthune (1997).

Usage
data(dietfat)

Format
A data frame with 442 observations on the following 9 variables.

- ARTICLE a numeric vector
- SET a numeric vector
- N a numeric vector
- RESTRICT a numeric vector
- PN3 a numeric vector
- PN6 a numeric vector
- PZERO a numeric vector
- PMONO a numeric vector
- NTUM a numeric vector

Details
For relationship of article numbers to references see Article.numbers.txt in the /doc/ directory.

References
Fay, MP, Graubard, BI. Biometrics 57: 1198-1206.

Examples
data(dietfat)
maybe str(dietfat) ; plot(dietfat) ...
Modified gee function to output extra objects for saws

Description
This function is normally not to be called directly, but one should usually use `mgee` (see warning below).

This function takes output from the `gee` function from the `gee` package and creates a score matrix (i.e., estimating equation) and information array (i.e., minus the derivative of the estimating equation). Note the function creates the X matrix assuming the data set is the same as it was for the original call to `gee`, see Warning section.

Usage
```r
geeUOmega(geeOutput)
```

Arguments
- `geeOutput` object of class `gee`, output from `gee` function

Value
A `gee` object with two extra elements to the list, u and omega (see `saws`).

Warning
It is safer to use the `mgee` function, which internally calls `gee` then `geeUOmega`. If you do not use `mgee`, and instead call `geeUOmega` directly, there could be a problem if the data set has been changed after the initial `gee` call. This is because the model matrix (i.e., the X matrix) is not saved as part of the `gee` object, we must recreate it from the `gee` call. So it is created assuming that the data argument in `gee` means the same thing that it did when `gee` was called. So if you change the data set between the original `gee` call and using the `geeUOmega` function, there may be problems.

Note
The function recalculates the fitted.values and the residuals to the `gee` object, since in `gee` (version 4.13-18 at least) the fitted.values and residuals can be wrong if there is an offset or if `y` is a matrix (as in the binomial model).

Author(s)
M.P. Fay, with some lines copied from `gee` function

See Also
- `gee`, `mgee`
Examples

```r
## example from gee help
data(warpbreaks)
geeout<-gee(breaks~tension,id=wool,data=warpbreaks,corstr="exchangeable")
guo<-geeUOmega(geeout)
saws(guo)
```

lmfitSaws

Linear model function to output extra objects for saws

Description

This is a very basic linear model function. It outputs only the objects needed for input into `saws`.

Usage

```r
lmfitSaws(x,y)
```

Arguments

- `x`: design matrix
- `y`: response vector

Details

The `saws` function requires three inputs, the parameter estimates (coefficients), `u`, and `omega`. The value `u` is the $K \times p$ matrix of estimating equations evaluated at the coefficient, where each row is an independent estimating equation. For the linear model $u[i,] = x[i,] \times \text{residual}[i]$. The value `omega` is a $K \times p \times p$ array, where $\omega[i,,]$ is the derivative of the ith estimating equation with respect to the parameter vector. For the linear model $\omega[i,,] = t(X_i)$

Value

A list with the following elements

- `coefficients`: p by 1 coefficient vector
- `u`: $K \times p$ matrix of estimating equations
- `omega`: $K \times p \times p$ array, see details

Author(s)

M.P. Fay

References

See Also

`link{lm}`

Examples

```r
set.seed(1)
n <- 20
x1 <- rnorm(n)
x2 <- factor(c(rep("a", n/2), rep("b", n/2)))
y <- rnorm(n, x1)
out <- lmFitSaws(model.matrix(~x1*x2), y)
saws(out)
```

mgee

Modified gee function to output extra objects for saws

Description

This function calls the `gee` function from the gee package, then applies the `geeUOmega` function to it to create a score matrix (i.e., estimating equation) and information array (i.e., minus the derivative of the estimating equation). Since the `mgee` function just calls the `gee` function all help for `gee` applies to `mgee`.

Usage

```r
mgee(formula = formula(data), id = id, data = parent.frame(),
     subset, na.action, R = NULL, b = NULL, tol = 0.001,
     maxiter = 25, family = gaussian, corstr = "independence",
     Mv = 1, silent = TRUE, contrasts = NULL, scale.fix = FALSE,
     scale.value = 1, v4.4compat = FALSE)
```

Arguments

- `formula` : see `gee` help
- `id` : see `gee` help
- `data` : see `gee` help
- `subset` : see `gee` help
- `na.action` : see `gee` help
- `R` : see `gee` help
- `b` : see `gee` help
- `tol` : see `gee` help
- `maxiter` : see `gee` help
- `family` : see `gee` help
- `corstr` : see `gee` help
Value

A gee object with two extra elements to the list, u and omega (see `saws`).

Note

You can alternatively take the output from gee and apply the `geeUOmega` function. But see the warning for that function.

Author(s)

last few lines by M.P. Fay, for the rest see gee package DESCRIPTION

See Also

`gee`, `geeUOmega`

Examples

```r
## example from gee help
data(warpbreaks)
mout<-mgee(breaks~tension,id=wool,data=warpbreaks,corstr="exchangeable")
saws(mout)
```

`micefat` Dietary fat and Mammary tumors in Mice

Description

Data from meta analysis of mice bred for spontaneous tumors and their response to different diets. The sources for the data are from the literature and listed in Freedman et al (1990).

Usage

data(`micefat`)
Format

A data frame with 57 observations on the following 5 variables.

- NTUM: number of mice in group with any mammary tumor
- N: number of mice in group
- fatCal: fat calories per day (kcal)
- totalCal: total calories per day (kcal)
- cluster: different experiments

Source

Examples

data(micefat)
head(micefat)

Description

Prints confidence intervals and p-values from saws object.

Usage

```r
## S3 method for class 'saws'
print(x, digits = NULL, ...)
```

Arguments

- `x`: object of class 'saws'
- `digits`: number of digits
- `...`: other objects passed to print default
saws

Small sample Adjustments for Wald-type tests using Sandwich estimator of variance

Description

This function takes an object from a regression function and gives confidence intervals and p-values using the sandwich estimator of variance corrected for small samples.

Usage

saws(x, test = diag(p), beta0 = matrix(0, p, 1),
conf.level = 0.95, method = c("d3", "d5", "d1", "d2", "d4", "dm"), bound=.75)

Arguments

x a list containing three elements: coefficients, u, omega (see details)
test either a numeric vector giving elements of coefficient to test, or an r by p matrix of constants for testing (see details)
beta0 null parameters for testing (see details)
conf.level level for confidence intervals
method one of "d3", "d5", "d1", "d2", "d4", or "dm" (see details)
bound bound for bias correction, denoted b in Fay and Graubard, 2001

Details

Typically, the x object is created in a specialized function. Currently there are three such functions, link{lmfitSaws}, geeUomega and clogistCalc. The function lmfitSaws is a simple linear model function that creates all the output needed. The function geeUomega takes output from the gee function of the gee package and creates the 'u' matrix and the 'omega' array. The 'coefficients' is a vector with p parameter estimates, and is a standard output from the regression. The matrix 'u' is K by p with u[i,] the ith estimating equation, where there are K approximately independent estimating equations. The array 'omega' is K by p by p where omega[i,] is a p by p matrix estimating du/dbeta (here beta=coefficients). See Fay and Graubard (2001) for details.

Suppose that the coefficient vector from the regression is beta. Then we test r hypotheses, based on the the matrix product, TEST (beta-beta0)=0, where TEST is an r by p matrix. If the argument 'test' is an r by p matrix (where r is arbitrary), then TEST=test. If 'test' is a vector, then each element of test corresponds to testing that row of beta is 0, i.e., TEST<diag(p)[test,], where p is the length of the coefficient vector. For example, test<diag(2,5), tests that beta[2]-beta0[2]=0 and that beta[5]-beta0[5]=0. The alternatives are always two-sided.

There are several methods available. They are all discussed in Fay and Graubard (2001). The naming of the methods follows that paper (see for example Table 1, where deltam corresponds to dm, etc.):

dm the usual model based method which does not use the sandwich, uses a chi squared distribution
d1 the standard sandwich method which makes no corrections for small samples
d2 sandwich method, no bias correction, uses F distribution with df=dhat (see paper)
d3 (default method): sandwich method, no bias correction, uses F distribution with df=dtilde (see paper)
d4 sandwich method, with bias correction, uses F distribution with df=dhatH (see paper)
d5 sandwich method, with bias correction, uses F distribution with df=dtildeH (see paper)

Value

An object of class 'saws'. A list with elements:

- `originalCall` call from the original object
- `method` method used (see details)
- `test` test matrix (see details)
- `beta0` beta0 vector (see details)
- `coefficients` estimated coefficients
- `df` a vector of estimated degrees of freedom. This will have as many elements as there are coefficients
- `v` variance-covariance matrix
- `se` vector of standard errors of the coefficients
- `t.value` a vector of t-values: test (coef - beta0)/se
- `p.value` a vector of two-sided p-values
- `conf.int` p by 2 matrix of confidence intervals

Author(s)

M.P. Fay

References

See Also

For examples, see geeUOmega and clogistCalc. See also print.saws
SDcorn

Mammary tumors in Sprague-Dawley rats fed Corn Oil

Description
These data are part of a meta analysis to determine how fat calories and total calories effect the changes of getting a mammary tumor.

Usage
data(SDcorn)

Format
A data frame with 104 observations on the following 10 variables.

- ARTICLE a numeric vector
- NTUM a numeric vector
- N a numeric vector
- TFA2 a numeric vector
- KCA2 a numeric vector
- PFC a numeric vector
- LOGIT a numeric vector
- KCAL a numeric vector
- SET a numeric vector
- TEMPS a numeric vector

Details
Note the adjustment in Fay, Graubard, Freedman, and Midthune (1998) is slightly different from the one in Fay and Graubard (2001) so the saws does not match exactly with the 1998 paper. For relationship of article numbers to references see Article.numbers.txt in the /doc/ directory.

References
Fay, MP, Graubard, BI. Biometrics 57: 1198-1206.

Examples
data(SDcorn)
maybe str(SDcorn) ; plot(SDcorn) ...
Index

*Topic **datasets**
 - dietfat, 5
 - micefat, 9
 - SDcorn, 13
*Topic **htest**
 - lmfitSaws, 7
 - saws, 11
*Topic **misc**
 - print.saws, 10
*Topic **nonlinear**
 - clogistCalc, 3
 - geeUOmega, 6
 - mgee, 8
*Topic **package**
 - saws-package, 2
*Topic **regression**
 - saws, 11

 clogistCalc, 2, 3, 11, 12
 clogistInfo (clogistCalc), 3
 clogistLoglike (clogistCalc), 3

 dietfat, 5

 gee, 6, 8, 9
 geeUOmega, 2, 6, 8, 9, 11, 12

 lmfitSaws, 2, 7, 11

 mgee, 2, 6, 8
 micefat, 9

 print.saws, 10, 12

 saws, 2–4, 6, 7, 9, 11, 13
 saws-package, 2
 SDcorn, 13