Package ‘scINSIGHT’

October 14, 2022

Type Package
Title Interpretation of Heterogeneous Single-Cell Gene Expression Data
Version 0.1.4
Date 2022-05-29
Maintainer Kun Qian <Kun_Qian@foxmail.com>
Description We develop a novel matrix factorization tool named ‘scINSIGHT’ to jointly analyze multiple single-cell gene expression samples from biologically heterogeneous sources, such as different disease phases, treatment groups, or developmental stages. Given multiple gene expression samples from different biological conditions, ‘scINSIGHT’ simultaneously identifies common and condition-specific gene modules and quantify their expression levels in each sample in a lower-dimensional space. With the factorized results, the inferred expression levels and memberships of common gene modules can be used to cluster cells and detect cell identities, and the condition-specific gene modules can help compare functional differences in transcriptomes from distinct conditions. Please also see Qian K, Fu SW, Li HW, Li WV (2022) ⟨doi:10.1186/s13059-022-02649-3⟩.
License GPL-3
Imports Rcpp, RANN, igraph, parallel, stats, stringr
LinkingTo Rcpp, RcppArmadillo
Depends methods
URL https://github.com/Vivianstats/scINSIGHT,
NeedsCompilation yes
Author Kun Qian [aut, ctb, cre] ⟨https://orcid.org/0000-0002-2354-2238⟩,
 Wei Vivian Li [aut, ctb] ⟨https://orcid.org/0000-0002-2087-2709⟩
Repository CRAN
Date/Publication 2022-05-29 22:40:06 UTC

R topics documented:

create_scINSIGHT .. 2
run_scINSIGHT .. 2
scINSIGHT-class .. 4
create_scINSIGHT

Create an scINSIGHT object.

Description

This function initializes an scINSIGHT object with normalized data passed in.

Usage

```r
create_scINSIGHT(norm.data, condition)
```

Arguments

- `norm.data`: List of normalized expression matrices (genes by cells). Gene names should be the same in all matrices.
- `condition`: Vector specifying sample conditions.

Value

scINSIGHT object with norm.data slot set.

Examples

```r
# Demonstration using matrices with randomly generated numbers
S1 <- matrix(runif(50000,0,2), 500,100)
S2 <- matrix(runif(60000,0,2), 500,120)
S3 <- matrix(runif(80000,0,2), 500,160)
S4 <- matrix(runif(75000,0,2), 500,150)
data = list(S1, S2, S3, S4)
sample = c("sample1", "sample2", "sample3", "sample4")
condition = c("control", "activation", "control", "activation")
names(data) = sample
names(condition) = sample
scINSIGHTx <- create_scINSIGHT(data, condition)
```

run_scINSIGHT

Perform scINSIGHT on normalized datasets

Description

Perform INterpreting single cell gene expresSlon bioloGically Heterogeneous daTa (scINSIGHT) to return factorized W_{l1}, W_{l2}, H and V matrices.

This factorization produces a W_{l1} matrix (cells by K_j), a W_{l2} matrix (cells by K), a shared V matrix (K by genes) for each sample, and a H (K_j by genes) matrix for each condition. W_{l2} are the expression matrices of K common gene modules for all samples, V is the membership matrix of K common gene modules, and it's shared by all samples. W_{l1} are the expression matrices of K_j condition-specific gene modules for all samples, and H are the membership matrices of K_j condition-specific gene modules for all conditions.
run_scINSIGHT

Usage

run_scINSIGHT(
 object,
 K = seq(5, 15, 2),
 K_j = 2,
 LDA = c(0.001, 0.01, 0.1, 1, 10),
 thre.niter = 500,
 thre.delta = 0.01,
 num.cores = 1,
 B = 5,
 out.dir = NULL,
 method = "increase"
)

Arguments

object scINSIGHT object.

K Number of common gene modules. (default c(5, 7, 9, 11, 13, 15))

K_j Number of dataset-specific gene modules. (default 2)

LDA Regularization parameters. (default c(0.001, 0.01, 0.1, 1, 10))

thre.niter Maximum number of block coordinate descent iterations to perform. (default 500)

thre.delta Stop iteration when the reduction of objective function is less than the threshold. (default 0.01)

num.cores Number of cores used for optimizing factorizations in parallel (default 1).

B Number of repeats with random seed from 1 to B. (default 5)

out.dir Output directory of scINSIGHT results. (default NULL)

method Method of updating the factorization (default "increase"). If provide multiple K, user can choose method between "increase" and "decrease".

For "increase", the algorithm will first perform factorization with the least \(K = K_1 \). Then initialize \(K_2 - K_1 \) factors, where \(K_2 \) is the \(K \) slightly larger than \(K_1 \), and perform factorization with these new factors. Continue this process until the largest \(K \).

For "increase", the algorithm will first perform factorization with the largest \(K = K_1 \). Then choose \(K_2 \) factors, where \(K_2 \) is the \(K \) slightly less than \(K_1 \), and perform factorization with these new factors. Continue this process until the least \(K \).

Value

scINSIGHT object with \(W_1, W_2, H, V \) and parameters slots set.
The **scINSIGHT Class**

Description

The scINSIGHT object is created from two or more single cell datasets. To construct a scINSIGHT object, the user needs to provide at least two normalized expression (or another single-cell modality) matrices and the condition vector.

Details

The key slots used in the scINSIGHT object are described below.

Slots

- **norm.data** List of normalized expression matrices (genes by cells). Each matrix should have the same number and name of genes.
- **condition** Vector specifying each sample’s condition name.
- **W_1** List of W_{r1} estimated by scINSIGHT, names correspond to sample names.
- **W_2** List of W_{r2} estimated by scINSIGHT, names correspond to sample names.
- **H** List of H estimated by scINSIGHT, names correspond to condition names.
- **V** Matrix V estimated by scINSIGHT.
- **norm.W_2** List of W_{r2} after normalization. Recommended for downstream analysis.
- **clusters** List of cluster results.
- **parameters** List of selected parameters, including K and λ.
Index

create_scINSIGHT, 2
run_scINSIGHT, 2
scINSIGHT (scINSIGHT-class), 4
scINSIGHT-class, 4