Package ‘scISR’

October 14, 2022

Type Package
Title Single-Cell Imputation using Subspace Regression
Version 0.1.1
Maintainer Duc Tran <duct@nevada.unr.edu>
Description Provides an imputation pipeline for single-cell RNA sequencing data. The 'scISR' method uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and estimates the dropout values using a subspace regression model (Tran et.al. (2022) <DOI:10.1038/s41598-022-06500-4>).
License LGPL
Depends R (>= 3.4)
Imports cluster, entropy, stats, utils, parallel, irlba, PINSPlus, matrixStats, markdown
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Suggests testthat, knitr, mclust
VignetteBuilder knitr
URL https://github.com/duct317/scISR
BugReports https://github.com/duct317/scISR/issues
Author Duc Tran [aut, cre], Bang Tran [aut], Hung Nguyen [aut], Tin Nguyen [fnd]
Repository CRAN
Date/Publication 2022-06-30 06:20:08 UTC

R topics documented:

Goolam ... 2
scISR ... 2
Goolam

Description

Goolam dataset with data and cell types information. The number of genes is reduced to 10,000.

Usage

Goolam

Format

An object of class list of length 2.

scISR

scISR: Single-cell Imputation using Subspace Regression

Description

Perform single-cell Imputation using Subspace Regression

Usage

```r
scISR(
  data,
  ncores = 1,
  force_impute = FALSE,
  do_fast = TRUE,
  preprocessing = TRUE,
  batch_impute = FALSE,
  seed = 1
)
```

Arguments

- `data`: Input matrix or data frame. Rows represent genes while columns represent samples.
- `ncores`: Number of cores that the algorithm should use. Default value is 1.
- `force_impute`: Always perform imputation.
- `do_fast`: Use fast imputation implementation.
- `preprocessing`: Perform preprocessing on original data to filter out low quality features.
- `batch_impute`: Perform imputation in batches to reduce memory consumption.
- `seed`: Seed for reproducibility. Default value is 1.
Details

scISR performs imputation for single-cell sequencing data. scISR identifies the true dropout values in the scRNA-seq dataset using hyper-geometric testing approach. Based on the result obtained from hyper-geometric testing, the original dataset is segregated into two subsets including training data and imputable data. Next, training data is used for constructing a generalize linear regression model that is used for imputation on the imputable data.

Value

scISR returns an imputed single-cell expression matrix where rows represent genes while columns represent samples.

Examples

{"r}
library(scISR)
data('Goolam');
set.seed(1)
raw <- Goolam$data[sample(seq_len(nrow(Goolam$data)), 500),]
label <- Goolam$label
imputed <- scISR(data = raw)

if(requireNamespace('mclust')){
 library(mclust)
 raw_filer <- raw[rowSums(raw != 0) > 0,]
pca_raw <- irlba::prcomp_irlba(t(raw_filer), n = 50)$x
 cluster_raw <- kmeans(pca_raw, length(unique(label)),
 nstart = 2000, iter.max = 2000)$cluster
 print(paste("ARI of clusters using raw data:",
 round(adjustedRandIndex(cluster_raw, label),3)))

 pca_imputed <- irlba::prcomp_irlba(t(imputed), n = 50)$x
 cluster_imputed <- kmeans(pca_imputed, length(unique(label)),
 nstart = 2000, iter.max = 2000)$cluster
 print(paste("ARI of clusters using imputed data:",
 round(adjustedRandIndex(cluster_imputed, label),3)))
}
Index

* datasets
 Goolam, 2

Goolam, 2

scISR, 2