Package ‘scam’

August 19, 2019

Version 1.2-5
Author Natalya Pya <nat.pya@gmail.com>
Maintainer Natalya Pya <nat.pya@gmail.com>
Title Shape Constrained Additive Models
Date 2019-08-13
Description Routines for generalized additive modelling under shape constraints on the component functions of the linear predictor (Pya and Wood, 2015) <doi:10.1007/s11222-013-9448-7>. Models can contain multiple shape constrained (univariate and/or bivariate) and unconstrained terms. The routines of gam() in package ‘mgcv’ are used for setting up the model matrix, printing and plotting the results. Penalized likelihood maximization based on Newton-Raphson method is used to fit a model with multiple smoothing parameter selection by GCV or UBRE/AIC.
Depends R (>= 2.15.0), mgcv (>= 1.8-2)
Imports methods, stats, graphics, Matrix, splines
Suggests nlme
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2019-08-19 10:30:02 UTC

R topics documented:

scam-package ... 3
anova.scam .. 4
bfgs_gcv.ubre .. 6
check.analytical ... 8
derivative.scam .. 9
R topics documented:

formula.scam .. 10
gcv.ubre_grad .. 11
linear.functional.terms ... 12
logLik.scam ... 14
marginal.matrices.tescv.ps ... 15
marginal.matrices.tesmi1.ps 16
marginal.matrices.tesmi2.ps 17
plot.scam ... 19
Predict.matrix.mpi.smooth ... 22
predict.scam ... 24
print.scam ... 28
residuals.scam .. 29
scam ... 30
scam.check .. 37
scam.control ... 38
scam.fit ... 40
shape.constrained.smooth.terms 41
smooth.construct.cv.smooth.spec 43
smooth.construct.cx.smooth.spec 45
smooth.construct.mdcv.smooth.spec 46
smooth.construct.mdcx.smooth.spec 48
smooth.construct.micv.smooth.spec 49
smooth.construct.micx.smooth.spec 51
smooth.construct.mpd.smooth.spec 52
smooth.construct.mpi.smooth.spec 54
smooth.construct.po.smooth.spec 56
smooth.construct.tecvcv.smooth.spec 58
smooth.construct.tecxcv.smooth.spec 60
smooth.construct.tecxcx.smooth.spec 61
smooth.construct.tebedcv.smooth.spec 63
smooth.construct.tedecv.smooth.spec 65
smooth.construct.tedmd.smooth.spec 67
smooth.construct.tedmi.smooth.spec 69
smooth.construct.temicv.smooth.spec 70
smooth.construct.temicx.smooth.spec 72
smooth.construct.tescv.smooth.spec 74
smooth.construct.tescx.smooth.spec 76
smooth.construct.tesmd1.smooth.spec 77
smooth.construct.tesmd2.smooth.spec 79
smooth.construct.tesmi1.smooth.spec 81
smooth.construct.tesmi2.smooth.spec 82
summary.scam ... 84
vis.scam .. 87

Index 90
Description

scam provides functions for generalized additive modelling under shape constraints on the component functions of the linear predictor of the GAM. Models can contain multiple shape constrained and unconstrained terms as well as bivariate smooths with double or single monotonicity. Univariate smooths under eight possible shape constraints such as monotonically increasing/decreasing, convex/concave, increasing/decreasing and convex, increasing/decreasing and concave, are available as model terms.

The model set up is the same as in gam() in package mgcv with the added shape constrained smooths, so the unconstrained smooths can be of more than one variable, and other user defined smooths can be included. Penalized log likelihood maximization is used to fit the model together with the automatic smoothness selection.

Details

Package: scam
Version: 1.2-5
Author: Natalya Pya <nat.pya@gmail.com>
Maintainer: Natalya Pya <nat.pya@gmail.com>
Title: Shape Constrained Additive Models
Date: 2019-08-13
Description: Routines for generalized additive modelling under shape constraints on the component functions of the linear predictor; scam and plot.scam functions are based on the functions of the unconstrained GAM gam() and plot.gam() in package mgcv and similar in use. summary.scam allows to extract the results of the model fitting in the same way as in summary.gam. A Bayesian approach is used to obtain a covariance matrix of the model coefficients and credible intervals for each smooth.

Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on mgcv by Simon Wood

Maintainer: Natalya Pya <nat.pya@gmail.com>
References

The package was part supported by EPSRC grants EP/I000917/1, EP/K005251/1 and the Science Committee of the Ministry of Science and Education of the Republic of Kazakhstan grant #2532/GF3.

Examples

see examples for scam

anova.scam

Approximate hypothesis tests related to SCAM fits

Description

Performs hypothesis tests relating to one or more fitted scam objects. The function is a clone of anova.gam of the mgcv package.

The documentation below is similar to that of object **anova.gam**.

Usage

```r
## S3 method for class 'scam'
anova(object, ..., dispersion = NULL, test = NULL,
       freq = FALSE, p.type=0)
## S3 method for class 'anova.scam'
print(x, digits = max(3,getOption("digits") - 3),...)
```

Arguments

- **object,...** fitted model objects of class scam as produced by scam().
- **x** an anova.scam object produced by a single model call to anova.scam().
- **dispersion** a value for the dispersion parameter: not normally used.
- **test** what sort of test to perform for a multi-model call. One of "Chisq", "F" or "Cp".

anova.scam
freq whether to use frequentist or Bayesian approximations for parametric term p-values. See \code{summary.gam} for details.

\strong{p.type} selects exact test statistic to use for single smooth term p-values. See \code{summary.scam} for details.

digits number of digits to use when printing output.

\section*{Details}
see \code{anova.gam} for details.

\section*{Value}
In the multi-model case \code{anova.scam} produces output identical to \code{anova.glm}, which it in fact uses. In the single model case an object of class \code{anova.scam} is produced, which is in fact an object returned from \code{summary.scam}.

\code{print.anova.scam} simply produces tabulated output.

\section*{WARNING}
If models 'a' and 'b' differ only in terms with no un-penalized components then p values from \code{anova(a,b)} are unreliable, and usually much too low.

Default P-values will usually be wrong for parametric terms penalized using 'paraPen': use freq=TRUE to obtain better p-values when the penalties are full rank and represent conventional random effects.

For a single model, interpretation is similar to \code{drop1}, not \code{anova.lm}.

\section*{Author(s)}
Simon N. Wood <simon.wood@r-project.org>

\section*{References}

\section*{See Also}
\code{scam, predict.scam, scam.check, summary.scam, anova.gam}
Examples

```r
library(scam)
set.seed(0)
fac <- rep(1:4, 20)
x1 <- runif(80) * 5
x2 <- runif(80, -1, 2)
x3 <- runif(80, 0, 1)
y <- fac + log(x1) / 5
y <- y + exp(-1.3 * x2) + rnorm(80) * 0.1
fac <- factor(fac)
b <- scam(y ~ fac + s(x1, bs="mpi") + s(x2, bs="mpd") + s(x3))

b1 <- scam(y ~ fac + s(x1, bs="mpi") + s(x2, bs="mpd"))
anova(b, b1, test="F")

## b2 <- scam(y ~ fac + s(x1) + s(x2) + te(x1, x2))
```

bfgs_gcv.ubre
Multiple Smoothing Parameter Estimation by GCV/UBRE

Description

Function to efficiently estimate smoothing parameters of SCAM by GCV/UBRE score optimization. The procedure is outer to the model fitting by the Newton-Raphson method. The function uses the BFGS method where the Hessian matrix is updated iteratively at each step. Backtracking is included to satisfy the sufficient decrease condition.

The function is not normally called directly, but rather service routines for `scam`.

Usage

```r
bfgs_gcv.ubre(fn=gcv.ubre_grad, rho, ini.fd=TRUE, G, gamma=1, env,  
n.pen=length(rho), typx=rep(1, n.pen), typf=1,  
control)
```

Arguments

- **fn**: GCV/UBRE Function which returns the GCV/UBRE value and its derivative wrt log smoothing parameter.
- **rho**: log of the initial values of the smoothing parameters.
- **ini.fd**: If TRUE, a finite difference to the Hessian is used to find the initial inverse Hessian, otherwise the initial inverse Hessian is a diagonal matrix ‘100*I’.
- **G**: A list of items needed to fit a SCAM.
- **gamma**: An ad hoc parameter of the GCV/UBRE score.
- **env**: Get the environment for the model coefficients, their derivatives and the smoothing parameter.
n.pen Smoothing parameter dimension.
typx A vector whose component is a positive scalar specifying the typical magnitude
 of sp.
typf A positive scalar estimating the magnitude of the gcv near the minimum.
control Control option list as returned by `scam.control`.

Value

A list is returned with the following items:

gcv.ubre The optimal value of GCV/UBRE.
rho The best value of the log smoothing parameter.
dgcv.ubre The gradient of the GCV/UBRE.
iterations The number of iterations taken until convergence.
conv.bfgs Convergence information indicating why the BFGS terminated (given below).
termcode An integer code indicating why the optimization process terminated.
 1: relative gradient is close to zero, current iterate probably is a solution.
 2: scaled distance between last two steps less than `steptol`, current iterate probably
 is a local minimizer, but it's possible that the algorithm is making very slow
 progress, or `steptol` is too large.
 3: last global step failed to locate a point lower than estimate. Either estimate is
 an approximate local minimum of the function or `steptol` is too small.
 4: iteration limit exceeded.
 5: five consecutive steps of length maxNstep have been taken, it's possible that
 `maxstep` is too small.
object A list of elements returned by the fitting procedure `scam.fit` for an optimal
 value of the smoothing parameter.
dgcv.ubre.check If `check.analytical=TRUE` this is the finite-difference approximation of
 the gradient calculated by `gcv.ubre_grad`, otherwise NULL.
check.grad If `check.analytical=TRUE` this is the relative difference (in and finite differ-
 enced derivatives calculated by `gcv.ubre_grad`, otherwise NULL.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

543-559

of Mathematical Sciences

1–34
See Also

scam

check.analytical Checking the analytical gradient of the GCV/UBRE score

Description

This function calculates the finite-difference approximation of the GCV/UBRE gradient for the fitted model and compares it with the analytical gradient.

Usage

check.analytical(object, data, del=1e-6,control)

Arguments

object A fitted scam object.

data An original data frame or list containing the model response variable and co-

variates.

del A positive scalar (default is 1e-6) giving an increment for finite difference ap-

proximation.

control Control option list as returned by scam.control.

Value

A list is returned with the following items:

dgcv.ubre.fd The finite-difference approximation of the gradient.

check.grad The relative difference in percentage between the analytical and finite difference

enched derivatives.

Author(s)

Natalya Pya <nat.pya@gmail.com>

See Also

scam
derivative.scam

Derivative of the univariate smooth model terms

Description

Function to get derivatives of the smooth model terms (currently only of the univariate smooths). Analytical derivatives for SCOP-splines, finite difference approximation is used for all others.

Usage

```r
derivative.scam(object, smooth.number=1, deriv=1)
```

Arguments

- `object`: fitted scam object
- `smooth.number`: ordered number of the smooth model term (1,2,...), ordered as in the formula, which derivative is needed to be calculated.
- `deriv`: either 1 if the 1st derivative is required, or 2 if the 2nd

Value

- `d`: values of the derivative of the smooth term.
- `se.d`: standard errors of the derivative.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

- `scam`

Examples

```r
set.seed(2)
n <- 200
x1 <- runif(n)*4-1;
f1 <- exp(4*x1)/(1+exp(4*x1)) # monotone increasing smooth
x2 <- sort(runif(n)*3-1) # decreasing smooth
f2 <- exp(-1.3*x2)
f <- f1+ f2
y <- f+ rnorm(n)*0.2
```
fit model, results, and plot...

```r
b <- scam(y~ s(x1,k=20,bs="mpi") + s(x2,k=15,bs="mpd"), family=gaussian)

d1 <- derivative.scam(b, smooth.number=1, deriv=1)

par(mfrow=c(1,2))

xx <- sort(x1, index=TRUE)
plot(xx$x, d1$d[xx$ix], type="l", xlab=expression(x[1]),
     ylab=expression(df[1]/dx[1]))

d2 <- derivative.scam(b, smooth.number=2, deriv=1)

xx <- sort(x2, index=TRUE)
plot(xx$x, d2$d[xx$ix], type="l", xlab=expression(x[2]),
     ylab=expression(df[2]/dx[2]))
```

formula.scam
SCAM formula

Description

Description of `scam` formula (see `gam` of the `mgcv` package for Details), and how to extract it from a fitted `scam` object.

The function is a clone of `formula.gam` of the `mgcv` package.

Usage

```r
## S3 method for class 'scam'
formula(x, ...)
```

Arguments

- **x**
 - fitted model objects of class `scam` as produced by `scam()`.
- **...**
 - un-used in this case

Details

see `formula.gam` for details.

Value

Returns the model formula, `x$formula`. Provided so that `anova` methods print an appropriate description of the model.

See Also

`scam`
The GCV/UBRE score value and its gradient

Description

For the estimation of the SCAM smoothing parameters the GCV/UBRE score is optimized outer to the Newton-Raphson procedure of the model fitting. This function returns the value of the GCV/UBRE score and calculates its first derivative with respect to the log smoothing parameter using the method of Wood (2009).

The function is not normally called directly, but rather service routines for `bfgs_gcv.ubre`.

Usage

`gcv.ubre_grad(rho, G, gamma, env, check.analytical=FALSE, del, maxit, maxHalf.fit, devtol.fit, steptol.fit)`

Arguments

- `rho` log of the initial values of the smoothing parameters.
- `G` a list of items needed to fit a SCAM.
- `gamma` A constant multiplier to inflate the model degrees of freedom in the GCV or UBRE/AIC score.
- `env` Get the environment for the model coefficients, their derivatives and the smoothing parameter.
- `check.analytical` If this is `TRUE` then finite difference derivatives of GCV/UBRE score will be calculated, otherwise `NULL`.
- `del` A positive scalar (default is 1e-4) giving an increment for finite difference approximation when `check.analytical=TRUE`, otherwise `NULL`.
- `maxit` Maximum number of IRLS iterations to perform used in `scam.fit`.
- `maxHalf.fit` If a step of the Newton-Raphson optimization method leads to a worse penalized deviance, then the step length of the model coefficients is halved. This is the number of halvings to try before giving up used in `scam.fit`.
- `devtol.fit` A positive scalar giving the convergence control for the model fitting algorithm in `scam.fit`.
- `steptol.fit` A positive scalar giving the tolerance at which the scaled distance between two successive iterates is considered close enough to zero to terminate the model fitting algorithm in `scam.fit`.

Value

A list is returned with the following items:

- `dgcv.ubre` The value of GCV/UBRE gradient.
gcv.ubre

The GCV/UBRE score value.

scale.est

The value of the scale estimate.

object

The elements of the fitting procedure monogam.fit for a given value of the smoothing parameter.

dgcv.ubre.check

If check.analytical=TRUE this returns the finite-difference approximation of the gradient.

check.grad

If check.analytical=TRUE this returns the relative difference (in and finite differenced derivatives.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

scam, scam.fit, bfgs_gcv.ubre

Description

Since scam uses the model setup of gam of the mgcv package, in the same way as in gam scam allows the response variable to depend on linear functionals of smooth terms in the s with additional shape constraints.

See linear.functional.terms(mgcv).
Examples

```r
## Not run:
###########################################
## similar to a "signal" regression
## example from mgcv() ...
###########################################
library(scam)
## decreasing smooth...
set.seed(4)
rf <- function(x=seq(-1,3,length=100)) {
  ## generates random functions...
  m <- ceiling(runif(1)*5) ## number of components
  f <- x*0;
  mu <- runif(m,min(x),max(x)); sig <- (runif(m)+.5)*(max(x)-min(x))/10
  for (i in 1:m) f <- f + dnorm(x,mu[i],sig[i])
  f
}

## simulate 200 functions and store in rows of L...
L <- matrix(NA,200,100)
for (i in 1:200) L[i,] <- rf() ## simulate the functional predictors

x <- seq(-1,3,length=100) ## evaluation points
f2 <- function(x) { ## the coefficient function
  -4*exp(4*x)/(1+exp(4*x))
}
f <- f2(x)
plot(x,f,type="l")
y <- L%*%f + rnorm(200)*20 ## simulated response data
X <- matrix(x,200,100,byrow=TRUE)

b <- scam(y~s(X,by=L,k=20,bs="mpd"))
par(mfrow=c(1,1))
plot(b,shade=TRUE);lines(x,f,col=2);
## compare with gam() of mgcv package...
g <- gam(y~s(X,by=L,k=20))
x11()
par(mfrow=c(1,1))
plot(g,shade=TRUE);lines(x,f,col=2)

## increasing smooth....

x <- seq(-1,3,length=100) ## evaluation points
f2 <- function(x) { ## the coefficient function
  4*exp(4*x)/(1+exp(4*x))
}
f <- f2(x)
plot(x,f,type="l")
y <- L%*%f + rnorm(200)*20 ## simulated response data
X <- matrix(x,200,100,byrow=TRUE)

b <- scam(y~s(X,by=L,k=20,bs="mpi"))
```

logLik.scam

Log likelihood for a fitted SCAM, for AIC

Description

Function to extract the log-likelihood for a fitted scam model (fitted by penalized likelihood maximization). Used by AIC.

The function is a clone of logLik.gam of the mgcv package.

The documentation below is similar to that of object logLik.gam.

Usage

S3 method for class 'scam'
logLik(object,...)

Arguments

object fitted model objects of class scam as produced by scam().

... unused in this case

Details

see logLik.gam for details.

Value

Standard logLik object: see logLik.

References

See Also

AIC
Constructs marginal model matrices for "tescv" and "tescx" bivariate smooths in case of B-splines basis functions for both unconstrained marginal smooths.
Author(s)
Natalya Pya <nat.pya@gmail.com>

References

See Also

marginal.matrices.tesmi1.ps

Constructs marginal model matrices for "tesmi" and "tesmd1" bivariate smooths in case of B-splines basis functions for both unconstrained marginal smooths

Description
This function returns the marginal model matrices and the list of penalty matrices for the tensor product bivariate smooth with the single monotone increasing or decreasing restriction along the first covariate. The marginal smooth functions of both covariates are constructed using the B-spline basis functions.

Usage
marginal.matrices.tesmi1.ps(x, z, xk, zk, m, q1, q2)

Arguments

- **x**: A numeric vector of the values of the first covariate at which to evaluate the B-spline marginal functions. The values in x must be between \(xk[m[1]+2]\) and \(xk[length(xk) - m[1] - 1]\).
- **z**: A numeric vector of the values of the second covariate at which to evaluate the B-spline marginal functions. The values in z must be between \(zk[m[2]+2]\) and \(zk[length(zk) - m[2] - 1]\).
- **xk**: A numeric vector of knot positions for the first covariate, x, with non-decreasing values.
- **zk**: A numeric vector of knot positions for the second covariate, z, with non-decreasing values.
- **m**: A pair of two numbers where \(m[i]+1\) denotes the order of the basis of the \(i^{th}\) marginal smooth (e.g. \(m[i] = 2\) for a cubic spline.)
- **q1**: A number denoting the basis dimension of the first marginal smooth.
- **q2**: A number denoting the basis dimension of the second marginal smooth.
Details
The function is not called directly, but is rather used internally by the constructor
smooth.construct.tesmi1.smooth.spec and smooth.construct.tesmd1.smooth.spec.

Value
- X1: Marginal model matrix for the first monotonic marginal smooth.
- X2: Marginal model matrix for the second unconstrained marginal smooth.
- S: A list of penalty matrices for this tensor product smooth.

Author(s)
Natalya Pya <nat.pya@gmail.com>

References

See Also
- smooth.construct.tesmi1.smooth.spec
- smooth.construct.tesmi2.smooth.spec
- marginal.matrices.tesmi2.ps
- smooth.construct.tesmd1.smooth.spec
- smooth.construct.tesmd2.smooth.spec

Description
This function returns the marginal model matrices and the list of penalty matrices for the tensor product bivariate smooth with the single monotone increasing or decreasing restriction along the second covariate. The marginal smooth functions of both covariates are constructed using the B-spline basis functions.

Usage
marginal.matrices.tesmi2.ps(x, z, xk, zk, m, q1, q2)
Arguments

x A numeric vector of the values of the first covariate at which to evaluate the B-spline marginal functions. The values in x must be between xk[m[1]+2] and xk[length(xk) - m[1] - 1].
z A numeric vector of the values of the second covariate at which to evaluate the B-spline marginal functions. The values in z must be between zk[m[2]+2] and zk[length(zk) - m[2] - 1].
xk A numeric vector of knot positions for the first covariate, x, with non-decreasing values.
zk A numeric vector of knot positions for the second covariate, z, with non-decreasing values.
m A pair of two numbers where m[i]+1 denotes the order of the basis of the ith marginal smooth (e.g. m[i] = 2 for a cubic spline.)
q1 A number denoting the basis dimension of the first marginal smooth.
q2 A number denoting the basis dimension of the second marginal smooth.

Details

The function is not called directly, but is rather used internally by the constructor smooth.construct.tesmi2.smooth.spec and smooth.construct.tesmd2.smooth.spec.

Value

X1 Marginal model matrix for the first unconstrained marginal smooth.
X2 Marginal model matrix for the second monotonic marginal smooth.
S A list of penalty matrices for this tensor product smooth.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

Description

The function is a clone of the `plot.gam` of the `mgcv` package with the differences in the construction of the Bayesian confidence intervals of the shape constrained smooth terms. The function takes a fitted `scam` object produced by `scam()` and plots the component smooth functions that make it up, on the scale of the linear predictor. Optionally produces term plots for parametric model components as well.

Usage

```r
## S3 method for class 'scam'
plot(x, residuals=FALSE, rug=TRUE, se=TRUE, pages=0, select=NULL, scale=-1,
     n=100, n2=40, pers=FALSE, theta=30, phi=30, jit=FALSE, xlab=NULL,
     ylab=NULL, main=NULL, xlim=NULL, ylim=NULL, too.far=0.1,
     all.terms=FALSE, shade=FALSE, shade.col="gray80",
     shift=0, trans=I, seWithMean=FALSE, unconditional = FALSE,
     by.resids = FALSE, scheme=0, ...)  
```

Arguments

- `x`: a fitted `gam` object as produced by `gam()`.
- `residuals`: if `TRUE` then partial residuals are added to plots of 1-D smooths. If `FALSE` then no residuals are added. If this is an array of the correct length then it is used as the array of residuals to be used for producing partial residuals. If `TRUE` then the residuals are the working residuals from the IRLS iteration weighted by the IRLS weights. Partial residuals for a smooth term are the residuals that would be obtained by dropping the term concerned from the model, while leaving all other estimates fixed (i.e. the estimates for the term plus the residuals).
- `rug`: when `TRUE` (default) then the covariate to which the plot applies is displayed as a rug plot at the foot of each plot of a 1-d smooth, and the locations of the covariates are plotted as points on the contour plot representing a 2-d smooth.
- `se`: when `TRUE` (default) upper and lower lines are added to the 1-d plots at 2 standard errors above and below the estimate of the smooth being plotted while for 2-d plots, surfaces at +1 and -1 standard errors are contoured and overlayed on the contour plot for the estimate. If a positive number is supplied then this number is multiplied by the standard errors when calculating standard error curves or surfaces. See also `shade`, below.
- `pages`: (default 0) the number of pages over which to spread the output. For example, if `pages=1` then all terms will be plotted on one page with the layout performed automatically. Set to 0 to have the routine leave all graphics settings as they are.
select

Allows the plot for a single model term to be selected for printing. e.g. if you just want the plot for the second smooth term set select=2.

scale

set to -1 (default) to have the same y-axis scale for each plot, and to 0 for a different y axis for each plot. Ignored if ylim supplied.

n

number of points used for each 1-d plot - for a nice smooth plot this needs to be several times the estimated degrees of freedom for the smooth. Default value 100.

n2

Square root of number of points used to grid estimates of 2-d functions for contouring.

diff

Set to TRUE if you want perspective plots for 2-d terms.

theta

One of the perspective plot angles.

phi

The other perspective plot angle.

jit

Set to TRUE if you want rug plots for 1-d terms to be jittered.

xlab

If supplied then this will be used as the x label for all plots.

ylab

If supplied then this will be used as the y label for all plots.

main

Used as title (or z axis label) for plots if supplied.

ylim

If supplied then this pair of numbers are used as the y limits for each plot.

xlim

If supplied then this pair of numbers are used as the x limits for each plot.

too.far

If greater than 0 then this is used to determine when a location is too far from data to be plotted when plotting 2-D smooths. This is useful since smooths tend to go wild away from data. The data are scaled into the unit square before deciding what to exclude, and too.far is a distance within the unit square.

all.terms

if set to TRUE then the partial effects of parametric model components are also plotted, via a call to termplot. Only terms of order 1 can be plotted in this way.

shade

Set to TRUE to produce shaded regions as confidence bands for smooths (not available for parametric terms, which are plotted using termplot).

shade.col

define the color used for shading confidence bands.

shift

constant to add to each smooth (on the scale of the linear predictor) before plotting. Can be used for some diagnostics, or with trans.

trans

function to apply to each smooth (after any shift), before plotting. shift and trans are occasionally useful as a means for getting plots on the response scale, when the model consists only of a single smooth.

seWithMean

if TRUE the component smooths are shown with confidence intervals that include the uncertainty about the overall mean. If FALSE then the uncertainty relates purely to the centred smooth itself. An extension of the argument presented in Nychka (1988) suggests that TRUE results in better coverage performance, and this is also suggested by simulation.

unconditional

if TRUE then the smoothing parameter uncertainty corrected covariance matrix is used to compute uncertainty bands, if available. Otherwise the bands treat the smoothing parameters as fixed.

by.resids

Should partial residuals be plotted for terms with by variables? Usually the answer is no, they would be meaningless.
scheme Integer (0, 1 or 2) or integer vector selecting a plotting scheme for each plot. scheme == 0 produces a smooth curve with dashed curves indicating 2 standard error bounds. scheme == 1 illustrates the error bounds using a shaded region. For scheme==0, contour plots are produced for 2-d smooths with the x-axes labelled with the first covariate name and the y axis with the second covariate name. For 2-d smooths scheme==1 produces a perspective plot, while scheme==2 produces a heatmap, with overlaid contours.

... other graphics parameters to pass on to plotting commands.

Value
The function generates plots.

Author(s)
Natalya Pya <nat.pya@gmail.com> based on the plot.gam of the mgcv by Simon Wood

References

See Also
scam

Examples

simulating data...
```r
define the shape constraints
n <- 200
set.seed(1)
x0 <- rep(1:4,50)
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained smooth term
x2 <- runif(n)*4-1;
f2 <- exp((x2^2)/(1+exp(4*x2))) # monotone increasing smooth
x3 <- runif(n)*5;
f3 <- -log(x3)/5 # monotone decreasing smooth
f <- f1+f2+f3
y <- 2*x0 + f + rnorm(n)*0.3
x0 <- factor(x0)

## fit the model and plot ...
b <- scam(y~x0+s(x1,k=15,bs="cr")+s(x2,k=30,bs="mpi") + s(x3,k=30,bs="mpd"))
plot(b,pages=1,residuals=TRUE,all.terms=TRUE,shade=TRUE,shade.col=3)
```
Not run:
example with 2-d plots...
simulating data...
set.seed(2)
n <- 30
x0 <- rep(1:9,100)
x1 <- sort(runif(n)*4-1)
x2 <- sort(runif(n))
x3 <- runif(n*n, 0, 1)
f <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 { f[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))+2*sin(pi*x2[j])}
f1 <- as.vector(t(f))
f2 <- x3*x0
e <- rnorm(length(f1))*0.1
y <- 2*x0 + f1 + f2 + e
x0 <- factor(x0)
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x0=x0,x1=x11,x2=x22,x3=x3,y=y)
fit model and plot ...
b <- scam(y~x0+s(x1,x2,k=c(10,10),bs=c("tesmd1","ps"),m=2)+s(x3),data=dat)
op <- par(mfrow=c(2,2))
plot(b,all.terms=TRUE)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=19,cex=.3)
par(op)

and use of schemes...
op <- par(mfrow=c(2,2))
plot(b,all.terms=TRUE,scheme=1)
par(op)
op <- par(mfrow=c(2,2))
plot(b,all.terms=TRUE,scheme=c(2,1))
par(op)

End(Not run)
Usage

S3 method for class 'mpi.smooth'
Predict.matrix(object, data)
S3 method for class 'mpd.smooth'
Predict.matrix(object, data)
S3 method for class 'cv.smooth'
Predict.matrix(object, data)
S3 method for class 'cx.smooth'
Predict.matrix(object, data)
S3 method for class 'micx.smooth'
Predict.matrix(object, data)
S3 method for class 'micv.smooth'
Predict.matrix(object, data)
S3 method for class 'mdcx.smooth'
Predict.matrix(object, data)
S3 method for class 'mdcv.smooth'
Predict.matrix(object, data)
S3 method for class 'po.smooth'
Predict.matrix(object, data)
S3 method for class 'tedmd.smooth'
Predict.matrix(object, data)
S3 method for class 'tedmi.smooth'
Predict.matrix(object, data)
S3 method for class 'tesmd1.smooth'
Predict.matrix(object, data)
S3 method for class 'tesmd2.smooth'
Predict.matrix(object, data)
S3 method for class 'tesmi1.smooth'
Predict.matrix(object, data)
S3 method for class 'tesmi2.smooth'
Predict.matrix(object, data)
S3 method for class 'temicx.smooth'
Predict.matrix(object, data)
S3 method for class 'temicv.smooth'
Predict.matrix(object, data)
S3 method for class 'tedecx.smooth'
Predict.matrix(object, data)
S3 method for class 'tedecv.smooth'
Predict.matrix(object, data)
S3 method for class 'tescx.smooth'
Predict.matrix(object, data)
S3 method for class 'tescv.smooth'
Predict.matrix(object, data)
S3 method for class 'tecvcv.smooth'
Predict.matrix(object, data)
S3 method for class 'tecxcv.smooth'
Predict.matrix(object, data)
S3 method for class 'tecxcx.smooth'
predict.scam

Predict.matrix(object, data)

Arguments

object A smooth object, usually generated by a smooth.construct method having processed a smooth specification object generated by an s term in a scam formula.

data A data frame containing the values of the named covariates at which the smooth term is to be evaluated.

Value

A matrix mapping the coefficients for the smooth term to its values at the supplied data values.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

Description

This function is a clone of the mgcv library code predict.gam with some modifications to adopt shape preserving smooth terms. It takes a fitted scam object produced by scam() and produces predictions given a new set of values for the model covariates or the original values used for the model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of the model coefficients.

It now allows prediction outside the range of knots, and use linear extrapolation in this case.

Usage

```r
## S3 method for class 'scam'
predict(object,newdata,type="link",se.fit=FALSE/terms=NULL,
    block.size=1000,newdata.guaranteed=FALSE,na.action=na.pass,...)
```
Arguments

- **object**: a fitted scam object as produced by `scam()`.

- **newdata**: A data frame or list containing the values of the model covariates at which predictions are required. If this is not provided then predictions corresponding to the original data are returned. If `newdata` is provided then it should contain all the variables needed for prediction: a warning is generated if not.

- **type**: When this has the value "link" (default) the linear predictor (possibly with associated standard errors) is returned. When type="terms" each component of the linear predictor is returned separately (possibly with standard errors): this includes parametric model components, followed by each smooth component, but excludes any offset and any intercept. type="iterms" is the same, except that any standard errors returned for unconstrained smooth components will include the uncertainty about the intercept/overall mean. When type="response" predictions on the scale of the response are returned (possibly with approximate standard errors). When type="lpmatrix" then a matrix is returned which yields the values of the linear predictor (minus any offset) when postmultiplied by the parameter vector (in this case `se.fit` is ignored). The latter option is most useful for getting variance estimates for quantities derived from the model: for example integrated quantities, or derivatives of smooths. A linear predictor matrix can also be used to implement approximate prediction outside R (see example code, below).

- **se.fit**: when this is TRUE (not default) standard error estimates are returned for each prediction.

- **terms**: if type="terms" then only results for the terms given in this array will be returned.

- **block.size**: maximum number of predictions to process per call to underlying code: larger is quicker, but more memory intensive. Set to < 1 to use total number of predictions as this.

- **newdata.guaranteed**: Set to TRUE to turn off all checking of `newdata` except for sanity of factor levels: this can speed things up for large prediction tasks, but `newdata` must be complete, with no NA values for predictors required in the model.

- **na.action**: what to do about NA values in `newdata`. With the default `na.pass`, any row of `newdata` containing NA values for required predictors, gives rise to NA predictions (even if the term concerned has no NA predictors). `na.exclude` or `na.omit` result in the dropping of `newdata` rows, if they contain any NA values for required predictors. If `newdata` is missing then NA handling is determined from `object$na.action`.

- **...**: other arguments.

Details

See `predict.gam` for details.
Value

If `type=="lpmatrix"` then a matrix is returned which will give a vector of linear predictor values (minus any offset) at the supplied covariate values, when applied to the model coefficient vector. Otherwise, if `se.fit` is `TRUE` then a 2 item list is returned with items (both arrays) `fit` and `se.fit` containing predictions and associated standard error estimates, otherwise an array of predictions is returned. The dimensions of the returned arrays depends on whether `type` is "terms" or not: if it is then the array is 2 dimensional with each term in the linear predictor separate, otherwise the array is 1 dimensional and contains the linear predictor/predicted values (or corresponding s.e.s). The linear predictor returned termwise will not include the offset or the intercept.

`newdata` can be a data frame, list or model.frame: if it’s a model frame then all variables must be supplied.

Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on mgcv by Simon Wood

References

See Also

scam, plot.scam

Examples

```r
## Not run:
library(scam)
set.seed(2)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f <- f1+f2
y <- f+rnorm(n)*0.2
dat <- data.frame(x1=x1,x2=x2,y=y)
b <- scam(y~s(x1,k=15,bs="cr",m=2)+s(x2,k=30,bs="mpi",m=2),
       family=gaussian(link="identity"),data=dat)
newd <- data.frame(x1=seq(-3,3,length.out=20),x2=seq(-1,3,length.out=20))
pred <- predict(b,newd)
pred
```
predict(b,newd,type="terms",se=TRUE)

linear extrapolation with predict.scam()...
set.seed(3)
n <- 100
x <- sort(runif(n)*3-1)
f <- exp(-1.3*x)
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)
b <- scam(y~s(x,k=15,bs="mpd",m=2),family=poisson(link="log"),data=dat)
newd <- data.frame(x=c(2.3,2.7,3.2))
fe <- predict(b,newd,type="link",se=TRUE)
ylim<- c(min(y,exp(fe$fit)),max(y,exp(fe$fit)))
plot(c(x,newd[[1]]),c(y,NA,NA,NA),ylim=ylim)
lines(c(x,newd[[1]]),c(b$fitted,exp(fe$fit)),col=3)

Gaussian model
simulating data...
set.seed(2)
n <- 200
x <- sort(runif(n)*4-1)
f <- exp(4*x)/(1+exp(4*x)) # monotone increasing smooth
y <- f+rnorm(n)*0.1
dat <- data.frame(x=x,y=y)
b <- scam(y~ s(x,k=25,bs="mpi",m=2),family=gaussian,data=dat)
newd <- data.frame(x=c(3.2,3.3,3.6))
fe <- predict(b,newd)
plot(c(x,newd[[1]]),c(y,NA,NA,NA))
lines(c(x,newd[[1]]),c(b$fitted,fe),col=3)

passing observed data + new data...
newd <- data.frame(x=c(x,3.2,3.3,3.6))
fe <- predict(b,newd,se=TRUE)
plot(newd[[1]],c(y,NA,NA,NA))
lines(newd[[1]],fe$fit,col=2)
lines(newd[[1]],fe$fit+2*fe$se.fit,col=3)
lines(newd[[1]],fe$fit-2*fe$se.fit,col=4)

prediction with CI...
newd <- data.frame(x=seq(-1.2,3.5,length.out=100))
fe <- predict(b,newd,se=TRUE)
ylim<- c(min(y,fe$se.fit),max(y,fe$se.fit))
plot(newd[[1]],fe$fit,type="l",ylim=ylim)
lines(newd[[1]],fe$fit+2*fe$se.fit,lty=2)
lines(newd[[1]],fe$fit-2*fe$se.fit,lty=2)

bivariate example...
n <- 30
x1 <- sort(runif(n)); x2 <- sort(runif(n)*4-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
(f1[i,j] <- 2*sin(pi*x1[i]) + exp(4*x2[j])/(1+exp(4*x2[j])))
f1 <- as.vector(t(f1)); f <- (f1-min(f1))/(max(f1)-min(f1))
y <- f+runif(length(f))*0.1
x11 <- matrix(0,n,n); x11[1:n] <- x1; x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
b <- scam(y=s(x1,x2,k=c(10,10),bs="tesmi2"),family=gaussian, data=dat)
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE); plot(b,pers=TRUE,theta = 80, phi = 40)

n.out <- 20
xp <- seq(0,1.4,length.out=n.out)
zp <- seq(-1,3.4,length.out=n.out)
xp1 <- matrix(0,n.out,n.out); xp1[1:n.out] <- xp
xp1 <- as.vector(t(xp1)); xp2 <- rep(zp,n.out)
newd <- data.frame(x1=xp1,x2=xp2)
f <- predict(b,newd)
f <- t(matrix(fe,n.out,n.out))
persp(xp,zp,fc,expand= 0.85,ticktype = "simple",xlab="x1",ylab="x2",zlab="f^",main="d", theta = 80, phi = 40)

obtaining a 'prediction matrix'...

newd <- data.frame(x1=c(-2,-1),x2=c(0,1))
Xp <- predict(b,newdata=newd,type="lpmatrix")
fv <- Xp
fv

End(Not run)

print.scam

Print a SCAM object

Description

The default print method for a scam object. The code is a clone of print.gam of the mgcv package with a slight simplification since only two methods of smoothing parameter selection (by GCV or UBRE) was implemented for scam.

Usage

S3 method for class 'scam'
print(x,...)

Arguments

x fitted model objects of class scam as produced by scam().

... other arguments.
Details
As for mgcv (gam) prints out the family, model formula, effective degrees of freedom for each smooth term, and optimized value of the smoothness selection criterion used.

Author(s)
Natalya Pya <nat.pya@gmail.com>

References

See Also
scam, summary.scam

residuals.scam

SCAM residuals

Description
This function is a clone of the mgcv library code residuals.gam. It returns residuals for a fitted scam model object. Pearson, deviance, working and response residuals are available.

Usage
S3 method for class 'scam'
residuals(object, type = c("deviance", "pearson", "scaled.pearson", "working", "response"), ...)

Arguments
object a scam fitted model object.
type the type of residuals wanted.
... other arguments.

Details
See residuals.gam for details.

Value
An array of residuals.

Author(s)
Natalya Pya <nat.pya@gmail.com>
Shape constrained additive models (SCAM) and integrated smoothness selection

Description

This function fits a SCAM to data. Univariate smooths subject to monotonicity, convexity, or monotonicity plus convexity are available as model terms, as well as bivariate smooths with double or single monotonicity. Smoothness selection is estimated as part of the fitting. Confidence/credible intervals are available for each smooth term.

All the shaped constrained smooths have been added to the gam() in package mgcv setup using the smooth.construct function. The routine calls a gam() function for the model set up, but there are separate functions for the model fitting, scam.fit, and smoothing parameter selection, bfgs_gcv.ubre. Any unconstrained smooth available in gam can be taken as model terms.

Usage

scam(formula, family = gaussian(), data = list(), gamma = 1,
 sp = NULL, weights = NULL, offset = NULL,
 optimizer="bfgs", optim.method=c("Nelder-Mead","fd"),
 scale = 0, knots=NULL, not.exp=FALSE, start= NULL, etastart,
 mustart,control=list())

Arguments

formula A SCAM formula. This is exactly like the formula for a GAM (see formula.gam of the mgcv library) except that monotone smooth terms, can be added in the expression of the form
 s(x1,k=12,bs="mpi",by=z),
where bs indicates the basis to use for the constrained smooth: the built in options for the monotonic smooths are described in shape.constrained.smooth.terms,

family A family object specifying the distribution and link to use in fitting etc. See glm and family for more details.

data A data frame or list containing the model response variable and covariates required by the formula. By default the variables are taken from environment(formula): typically the environment from which gam is called.

gamma A constant multiplier to inflate the model degrees of freedom in the GCV or UBRE/AIC score.

sp A vector of smoothing parameters can be provided here. Smoothing parameters must be supplied in the order that the smooth terms appear in the model formula. The default sp=NULL indicates that smoothing parameters should be estimated. If length(sp) does not correspond to the number of underlying smoothing parameters or negative values supplied then the vector is ignored and all the smoothing parameters will be estimated.
weights
Prior weights on the data.

offset
Used to supply a model offset for use in fitting. Note that this offset will always be completely ignored when predicting, unlike an offset included in formula. This conforms to the behaviour of lm, glm and gam.

optimizer
The numerical optimization method to use to optimize the smoothing parameter estimation criterion. "bfgs" for the built in to scam package routine bfgs_gcv.ubre, "optim", "nlm", "nlm.fd" (based on finite-difference approximation of the derivatives), "efs" for the extended Fellner Schall method of Wood and Fasiolo (2017) (rather than minimizing REML as in gam(mgcv) this minimizes the GCV criterion).

optim.method
In case of optimizer="optim" this specifies the numerical method to be used in optim in the first element, the second element of optim.method indicates whether the finite difference approximation should be used ("fd") or analytical gradient ("grad"). The default is optim.method=c("Nelder-Mead","fd").

scale
If this is positive then it is taken as the known scale parameter of the exponential family distribution. Negative value indicates that the scale parameter is unknown. 0 indicates that the scale parameter is 1 for Poisson and binomial and unknown otherwise. This conforms to the behaviour of gam.

knots
An optional list containing user specified knot values to be used for basis construction. Different terms can use different numbers of knots.

not.exp
if TRUE then notExp() function will be used in place of exp (default value) in positivity ensuring beta parameters re-parameterization.

start
Initial values for the model coefficients.

etastart
Initial values for the linear predictor.

mustart
Initial values for the expected values.

control
A list of fit control parameters to replace defaults returned by scam.control. Values not set assume default values.

Details
A shape constrained additive model (SCAM) is a generalized linear model (GLM) in which the linear predictor is given by strictly parametric components plus a sum of smooth functions of the covariates where some of the functions are assumed to be shape constrained. For example,

$$\log(E(Y_i)) = X_i^*b + f_1(x_{1i}) + m_2(x_{2i}) + f_3(x_{3i})$$

where the independent response variables Y_i follow Poisson distribution with log link function, f_1, m_2, and f_3 are smooth functions of the corresponding covariates, and m_2 is subject to monotone increasing constraint.

All available shape constrained smooths are described in shape.constrained.smooth.terms.

Value
The function returns an object of class "scam" with the following elements (this agrees with gamObject):
aic
AIC of the fitted model: the degrees of freedom used to calculate this are the
effective degrees of freedom of the model, and the likelihood is evaluated at the
maximum of the penalized likelihood, not at the MLE.

assign
Array whose elements indicate which model term (listed in pterms) each pa-
rameter relates to: applies only to non-smooth terms.

bfgs.info
If optimizer="bfgs", a list of convergence diagnostics relating to the BFGS
method of smoothing parameter selection. The items are: conv, indicates why
the BFGS algorithm of the smoothness selection terminated; iter, number of it-
erations of BFGS taken to get convergence; grad, the gradient of the GCV/UBRE
score at convergence.

call
the matched call.

coefficients
the coefficients of the fitted model. Parametric coefficients are first, followed by
coefficients for each spline term in turn.

coefficients.t
the parametrized coefficients of the fitted model (exponentiated for the mono-
tonic smooths).

cov
indicates whether or not the iterative fitting method converged.

CPU.time
indicates the real and CPU time (in seconds) taken by the fitting process in case
of unknown smoothing parameters

data
the original supplied data argument. Only included if the scam argument keepData
is set to TRUE (default is FALSE).

deviance
model deviance (not penalized deviance).

df.null
null degrees of freedom.

df.residual
effective residual degrees of freedom of the model.

edf
estimated degrees of freedom for each model parameter. Penalization means
that many of these are less than 1.

edf1
alternative estimate of edf.

family
family object specifying distribution and link used.

fitted.values
fitted model predictions of expected value for each datum.

formula
the model formula.

gcv.ubre
the minimized GCV or UBRE score.

dgcv.ubre
the gradient of the GCV or UBRE score.

iter
number of iterations of the Newton-Raphson method taken to get convergence.

linear.predictors
fitted model prediction of link function of expected value for each datum.

method
"GCV" or "UBRE", depending on the fitting criterion used.

min.edf
Minimum possible degrees of freedom for whole model.

model
model frame containing all variables needed in original model fit.

nlm.info
If optimizer="nlm" or optimizer="nlm.fd", a list of convergence diagnost-
ics relating to the BFGS method of smoothing parameter selection. The items
are: conv, indicates why the BFGS algorithm of the smoothness selection ter-
minated; iter, number of iterations of BFGS taken to get convergence; grad, the
gradient of the GCV/UBRE score at convergence.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>not.exp</td>
<td>if TRUE then notExp() function will be used in place of exp (default value) in positivity ensuring beta parameters re-parameterization.</td>
</tr>
<tr>
<td>nsdf</td>
<td>number of parametric, non-smooth, model terms including the intercept.</td>
</tr>
<tr>
<td>null.deviance</td>
<td>deviance for single parameter model.</td>
</tr>
<tr>
<td>offset</td>
<td>model offset.</td>
</tr>
<tr>
<td>optim.info</td>
<td>If optimizer="optim", a list of convergence diagnostics relating to the BFGS method of smoothing parameter selection. The items are: conv, indicates why the BFGS algorithm of the smoothness selection terminated; iter, number of iterations of BFGS taken to get convergence; optim.method, the numerical optimization method used.</td>
</tr>
<tr>
<td>prior.weights</td>
<td>prior weights on observations.</td>
</tr>
<tr>
<td>pterms</td>
<td>terms object for strictly parametric part of model.</td>
</tr>
<tr>
<td>R</td>
<td>Factor R from QR decomposition of weighted model matrix, unpivoted to be in same column order as model matrix.</td>
</tr>
<tr>
<td>residuals</td>
<td>the working residuals for the fitted model.</td>
</tr>
<tr>
<td>scale.estimated</td>
<td>TRUE if the scale parameter was estimated, FALSE otherwise.</td>
</tr>
<tr>
<td>sig2</td>
<td>estimated or supplied variance/scale parameter.</td>
</tr>
<tr>
<td>smooth</td>
<td>list of smooth objects, containing the basis information for each term in the model formula in the order in which they appear. These smooth objects are returned by the smooth.construct objects.</td>
</tr>
<tr>
<td>sp</td>
<td>estimated smoothing parameters for the model. These are the underlying smoothing parameters, subject to optimization.</td>
</tr>
<tr>
<td>termcode</td>
<td>an integer indicating why the optimization process of the smoothness selection terminated (see bfgs.gcv.ubre).</td>
</tr>
<tr>
<td>terms</td>
<td>terms object of model model frame.</td>
</tr>
<tr>
<td>trA</td>
<td>trace of the influence matrix, total number of the estimated degrees of freedom (sum(edf)).</td>
</tr>
<tr>
<td>var.summary</td>
<td>A named list of summary information on the predictor variables. See gamObject.</td>
</tr>
<tr>
<td>Ve</td>
<td>frequentist estimated covariance matrix for the parameter estimators.</td>
</tr>
<tr>
<td>Vp</td>
<td>estimated covariance matrix for the parameters. This is a Bayesian posterior covariance matrix that results from adopting a particular Bayesian model of the smoothing process.</td>
</tr>
<tr>
<td>Ve.t</td>
<td>frequentist estimated covariance matrix for the reparametrized parameter estimators obtained using the delta method. Particularly useful for testing whether terms are zero. Not so useful for CI's as smooths are usually biased.</td>
</tr>
<tr>
<td>Vp.t</td>
<td>estimated covariance matrix for the reparametrized parameters obtained using the delta method. Particularly useful for creating credible/confidence intervals.</td>
</tr>
<tr>
<td>weights</td>
<td>final weights used in the Newton-Raphson iteration.</td>
</tr>
<tr>
<td>cmX</td>
<td>column means of the model matrix (with elements corresponding to smooths set to zero).</td>
</tr>
<tr>
<td>y</td>
<td>response data.</td>
</tr>
</tbody>
</table>
Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on mgcv by Simon Wood

References

See Also

scam-package, shape.constrained.smooth.terms, gam, s.plot.scam, summary.scam, scam.check, predict.scam

Examples

```r
### Gaussian model, 2 terms, 1 monotonic increasing....
## simulating data...
require(scam)
set.seed(0)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
f1 <- (f1-min(f1))/(max(f1)-min(f1)) # function scaled to have range [0,1]
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f2 <- (f2-min(f2))/(max(f2)-min(f2)) # function scaled to have range [0,1]
f <- f1+f2
y <- f+rnorm(n)*0.1
dat <- data.frame(x1=x1,x2=x2,y=y)
## fit model, results, and plot...
b <- scam(y~s(x1,k=15,bs="cr",m=2)+s(x2,k=25,bs="mpi",m=2),
    family=gaussian(link="identity"),data=dat,not.exp=FALSE)
print(b)
summary(b)
plot(b,pages=1)
```
Gaussian model, 2 terms, increasing + decreasing convex
simulating data...

```r
set.seed(2)
n <- 200
x1 <- runif(n)*4-1;
f1 <- exp(4*x1)/(1+exp(4*x1)) # monotone increasing smooth
x2 <- runif(n)*3-1;
f2 <- exp(-3*x2)/15 # monotone decreasing and convex smooth
f <- f1+f2
y <- f + rnorm(n)*0.2
data <- data.frame(x1=x1,x2=x2,y=y)

## fit model, results, and plot...

b <- scam(y~ s(x1,k=25,bs="mpi",m=2)+s(x2,k=25,bs="mdcx",m=2),
  family=gaussian(link="identity"),data=data)
print(b)
summary(b)
plot(b,pages=1,scale=0)

## Not run:
## using the extended Fellner-Schall method for smoothing parameter selection...

b0 <- scam(y~ s(x1,k=25,bs="mpi",m=2)+s(x2,k=25,bs="mdcx",m=2),
  family=gaussian(link="identity"),data=data, optimizer="efs")
summary(b0)

## using optim() for smoothing parameter selection...

b1 <- scam(y~ s(x1,k=25,bs="mpi",m=2)+s(x2,k=25,bs="mdcx",m=2),
  family=gaussian(link="identity"),data=data, optimizer="optim")
summary(b1)

b2 <- scam(y~ s(x1,k=25,bs="mpi",m=2)+s(x2,k=25,bs="mdcx",m=2),
  family=gaussian(link="identity"),data=data, optimizer="optim",
  optim.method=c("BFGS","fd"))
summary(b2)

## using nlm()...

b3 <- scam(y~ s(x1,k=25,bs="mpi",m=2)+s(x2,k=25,bs="mdcx",m=2),
  family=gaussian(link="identity"),data=data, optimizer="nlm")
summary(b3)

## End(Not run)
```

Poisson model
simulating data...

```r
set.seed(2)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
```
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f <- f1+f2
y <- rpois(n,exp(f))
dat <- data.frame(x1=x1,x2=x2,y=y)
fit model, results, and plot...

scam(y~s(x1,k=15,bs="cr",m=2)+s(x2,k=30,bs="mpi",m=2),
 family=poisson(link="log"),data=dat,optimizer="nlm.fd")

print(b)
summary(b)
plot(b,pages=1)
scam.check(b)

Gamma model...
simulating data...

set.seed(3)
n <- 200
x1 <- 1.5*sin(1.5*x1) # unconstrained term
x2 <- runif(n)*4-1;
f2 <- 1.5/(1+exp(-10*(x2+0.75)))+1.5/(1+exp(-5*(x2-0.75))) # monotone increasing smooth
f1 <- 3*exp(-x3^2) # unconstrained term
f <- f1+f2+f3
y <- rgamma(n,shape=1,scale=exp(f))
dat <- data.frame(x1=x1,x2=x2,x3=x3,y=y)
fit model, results, and plot...

scam(y~s(x1,k=15,bs="ps",m=2)+s(x2,k=30,bs="mpi",m=2)+
s(x3,k=15,bs="ps",m=2),family=Gamma(link="log"),
data=dat,optimizer="nlm")

print(b)
summary(b)
par(mfrow=c(2,2))
plot(b)

Not run:
bivariate example...
simulating data...

set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(runif(n))
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 { f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))+2*sin(pi*x2[j])}
f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,2)
dat <- llist(x1=x11,x2=x22,y=y)
fit model and plot ...
b <- scam(y~s(x1,x2,k=c(10,10),bs=c("tesmd1","ps"),m=2),
 family=gaussian(link="identity"), data=dat,sp=NULL)
summary(b)
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data",pch=".",cex=3)

example with random effect smoother...
set.seed(2)
n <- 200
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained term
f1 <- (f1-min(f1))/(max(f1)-min(f1))
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f2 <- (f2-min(f2))/(max(f2)-min(f2))
f <- f1+f2
a <- factor(sample(1:10,200,replace=TRUE))
Xa <- model.matrix(~a-1) ## random main effects
y <- f + Xa%*%rnorm(length(levels(a)))*.5 + rnorm(n)*0.1
dat <- data.frame(x1=x1,x2=x2,y=y,a=a)
fit model and plot...
b <- scam(y~s(x1,k=15,bs="cr",m=2)+s(x2,k=25,bs="mpi",m=2)+s(a,bs="re"), data=dat)
summary(b)
scam.check(b)
plot(b, pages=1)

End(Not run)

scam.check

Some diagnostics for a fitted scam object

Description
Takes a fitted scam object produced by scam() and produces some diagnostic information about the fitting procedure and results. This function is almost the same as gam.check of the mgcv library.

Usage
scam.check(b,rl.col=3,...)

Arguments
b a fitted scam object as produced by scam().
rl.col color for the reference line on the quantile-quantile plot.
... extra graphics parameters to pass to plotting functions.
Details

As for mgcv(gam) plots 4 standard diagnostic plots, and some other convergence diagnostics. The printed information relates to the optimization process used to select smoothing parameters.

Author(s)

Natalya Pya <nat.pya@gmail.com> based partly on mgcv by Simon Wood

References

See Also

scam

Examples

```r
## Not run:
library(scam)
set.seed(2)
n <- 200
x1 <- runif(n)*4-1;
f1 <- exp(4*x1)/(1+exp(4*x1)) # monotone increasing smooth
x2 <- runif(n)*3-1;
f2 <- exp(-3*x2)/15 # monotone decreasing and convex smooth
f <- f1+f2
y <- f+ rnorm(n)*0.2
dat <- data.frame(x1=x1,x2=x2,y=y)
b <- scam(y~ s(x1,k=25,bs="mpi",m=2)+s(x2,k=25,bs="mdcx",m=2),
       family=gaussian(link="identity"),data=dat)
plot(b,pages=1)
scam.check(b,pch=19,cex=.3)
## End(Not run)
```

scam.control

Setting GAM fitting defaults

Description

This is an internal function of package scam which allows control of the numerical options for fitting a SCAM.

Usage

```r
scam.control(maxit = 200, maxHalf.fit=40, devtol.fit=1e-7, steptol.fit=1e-7,
             keepData=FALSE,efs.lspmax=15,efs.tol=.1,nlm=list(),optim=list(),bfgs=list())
```
Arguments

maxit Maximum number of IRLS iterations to perform used in scam.fit.
maxHalf.fit If a step of the Newton-Raphson optimization method leads to a worse penalized
deviance, then the step length of the model coefficients is halved. This is the
number of halvings to try before giving up used in scam.fit.
devtol.fit A positive scalar giving the convergence control for the model fitting algorithm
in scam.fit.
steptol.fit A positive scalar giving the tolerance at which the scaled distance between two
successive iterates is considered close enough to zero to terminate the model
fitting algorithm in scam.fit.
nlm list of control parameters to pass to nlm if this is used for outer estimation of
smoothing parameters (not default).
oprim list of control parameters to pass to optim if this is used for outer estimation of
smoothing parameters (not default).
bfgs list of control parameters to pass to default BFGS optimizer used for outer esti-
mation of log smoothing parameters.
keepData Should a copy of the original data argument be kept in the scam object?

Details

Outer iteration is used to estimate smoothing parameters of SCAM by GCV/UBRE score opti-
mization. The default procedure is the built-in BFGS method which is controlled by the list bfgs
with the following elements: steptol.bfgs (default 1e-7) is the relative convergence tolerance;
gradopt.bfgs (default 6.0554*1e-6) is a tolerance at which the gradient is considered to be close
equal to 0 to terminate the BFGS algorithm; maxNstep is a positive scalar which gives the max-
imum allowable step length (default 5); maxHalf gives the maximum number of step halving in
"backtracking" to permit before giving up (default 30); check.analytical is logical whether the
analytical gradient of GCV/UBRE should be checked numerically (default FALSE); del is an incre-
ment for finite differences when checking analytical gradients (default 1e-4).

If outer iteration using nlm is used for fitting, then the control list nlm stores control arguments
for calls to routine nlm. As in gam.control the list has the following named elements: ndigit is
the number of significant digits in the GCV/UBRE score; gradtol is the tolerance used to judge
convergence of the gradient of the GCV/UBRE score to zero (default 1e-6); stepmax is the maxi-
um allowable log smoothing parameter step (default 2); steptol is the minimum allowable step
length (default 1e-4); iterlim is the maximum number of optimization steps allowed (default 200);
check.analyticals indicates whether the built in exact derivative calculations should be checked
numerically (default FALSE). Any of these which are not supplied and named in the list are set to
their default values.

Outer iteration using optim is controlled using list optim, which currently has one element: factr
which takes default value 1e7.
Author(s)
Natalya Pya Arnqvist <nat.pya@gmail.com> based partly on gam.control by Simon Wood

References

See Also
scam, scam.fit, gam.control

scam.fit
Newton-Raphson method to fit SCAM

Description
This routine estimates SCAM coefficients given log smoothing parameters using the Newton-Raphson method. The estimation of the smoothing parameters by the GCV/UBRE score optimization is outer to the model fitting. Routine gcv.ubre_grad evaluates the first derivatives of the smoothness selection scores with respect to the log smoothing parameters. Routine bfgs_gcv.ubre estimates the smoothing parameters using the BFGS method.

The function is not normally called directly, but rather service routines for scam.

Usage
scam.fit(G, sp, maxit=200, maxHalf.fit=40, devtol.fit=1e-8, steptol.fit=1e-8, gamma=1, start=NULL, etastart=NULL, mustart=NULL, env=env)

Arguments
G A list of items needed to fit a SCAM.
sp The vector of smoothing parameters.
maxit Maximum iterations in the Newton-Raphson procedure.
maxHalf.fit If a step of the Newton-Raphson optimization method leads to a worse penalized deviance, then the step length of the model coefficients is halved. This is the number of halvings to try before giving up.
devtol.fit A positive scalar giving the tolerance at which the scaled distance between two successive penalized deviances is considered close enough to zero to terminate the algorithm.
steptol.fit A positive scalar giving the tolerance at which the scaled distance between two successive iterates is considered close enough to zero to terminate the algorithm.
gamma This constant allows to inflate the model degrees of freedom in the GCV or UBRE/AIC score.
start Initial values for the model coefficients.
etastart Initial values for the linear predictor.
mustart Initial values for the expected values.
env Get the environment for the model coefficients, their derivatives and the smoothing parameter.

Details
The routine applies step halving to any step that increases the penalized deviance substantially.

Author(s)
Natalya Pya <nat.pya@gmail.com>

References

See Also
scam

shape.constrained.smooth.terms
Shape preserving smooth terms in SCAM

Description
As in mgcv (gam), shape preserving smooth terms are specified in a scam formula using s terms. All the shape constrained smooth terms are constructed using the B-splines basis proposed by Eilers and Marx (1996) with a discrete penalty on the basis coefficients.
The univariate single penalty built in shape constrained smooth classes are summarized as follows
Monotone increasing P-splines `bs="mpi"`. To achieve monotone increasing smooths these reparametrize the coefficients so that they form an increasing sequence. For details see `smooth.construct.mpi.smooth.spec`.

Monotone decreasing P-splines `bs="mpd"`. To achieve monotone decreasing smooths these reparametrize the coefficients so that they form a decreasing sequence. A first order difference penalty applied to the basis coefficients starting with the second is used for the monotone increasing and decreasing cases.

Convex P-splines `bs="cx"`. These reparametrize the coefficients so that the second order differences of the basis coefficients are greater than zero. For details see `smooth.construct.cx.smooth.spec`.

Concave P-splines `bs="cv"`. These reparametrize the coefficients so that the second order differences of the basis coefficients are less than zero. For details see `smooth.construct.cv.smooth.spec`.

Monotone increasing and convex P-splines `bs="micx"`. These reparametrize the coefficients so that the first and the second order differences of the basis coefficients are greater than zero. For details see `smooth.construct.micx.smooth.spec`.

Monotone increasing and concave P-splines `bs="micv"`. These reparametrize the coefficients so that the first order differences of the basis coefficients are greater than zero while the second order difference are less than zero.

Monotone decreasing and convex P-splines `bs="mdcx"`. These reparametrize the coefficients so that the first order differences of the basis coefficients are less than zero while the second order difference are greater. For details see `smooth.construct.mdcx.smooth.spec`.

Monotone decreasing and concave P-splines `bs="mdcv"`. These reparametrize the coefficients so that the first and the second order differences of the basis coefficients are less than zero.

For all four types of the mixed constrained smoothing a first order difference penalty applied to the basis coefficients starting with the third one is used.

Using the concept of the tensor product spline bases bivariate smooths under monotonicity constraint where monotonicity may be assumed on only one of the covariates (single monotonicity) or both of them (double monotonicity) are added as the smooth terms of the SCAM. Bivariate B-spline is constructed by expressing the coefficients of one of the marginal univariate B-spline bases as the B-spline of the other covariate. Double or single monotonicity is achieved by the corresponding re-parametrization of the bivariate basis coefficients to satisfy the sufficient conditions formulated in terms of the first order differences of the coefficients. The following explains the built in bivariate monotonic smooth classes.

Double monotone increasing P-splines `bs="tedmi"`. See `smooth.construct.tedmi.smooth.spec` for details.

Double monotone decreasing P-splines `bs="tedmd"`.

Single monotone increasing P-splines along the first covariate direction `bs="tesmi1"`.

Single monotone increasing P-splines along the second covariate direction `bs="tesmi2"`.

Single monotone decreasing P-splines along the first covariate direction `bs="tesmd1"`.

Single monotone decreasing P-splines along the second covariate direction `bs="tesmd2"`.

Double penalties for the monotonic tensor product smooths are obtained from the penalties of the marginal smooths.

Author(s)

Natalya Pya <nat.pya@gmail.com>
References

See Also

Examples

see examples for scam

smooth.construct.cv.smooth.spec

Constructor for concave P-splines in SCAMs

Description

This is a special method function for creating smooths subject to concavity constraint which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using concave P-splines. This smooth is specified via model terms such as s(x,k,bs="cv",m=2), where k denotes the basis dimension and m+1 is the order of the B-spline basis.

Usage

S3 method for class 'cv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the data required by this term, with names given by object$term. The by variable is the last element.
knots An optional list containing the knots supplied for basis setup. If it is NULL then the knot locations are generated automatically.
Value

An object of class "cv.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

Examples

```r
## Not run:
## Concave P-splines example
## simulating data...
set.seed(1)
n <- 100
x <- sort(2*runif(n)-1)
f <- -4*x^2
y <- f + rnorm(n)*0.45
dat <- data.frame(x=x,y=y)
b <- scam(y~s(x,k=15,bs="cv",m=2),family=gaussian,data=dat,not.exp=FALSE)
# UNCONSTRAINED FIT *****************
b1 <- scam(y~s(x,k=15,bs="cr",m=2),family=gaussian, data=dat,not.exp=FALSE)
## plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,f) ## the true function
lines(x,b$fitted,col=2) ## constrained fit
lines(x,b1$fitted,col=3) ## unconstrained fit
## Poisson version...
y <- rpois(n,15*exp(f))
dat <- data.frame(x=x,y=y)
## fit model ...
b <- scam(y~s(x,k=15,bs="cv",m=2),family=poisson(link="log"),data=dat,not.exp=FALSE)
# UNCONSTRAINED FIT *****************
b1 <- scam(y~s(x,k=15,bs="cr",m=2),family=poisson(link="log"), data=dat,not.exp=FALSE)
## plot results ...
plot(x,y,xlab="x",ylab="y")
```
library(gam)

loading data
x <- with(mtcars, seq(min(hp), max(hp), length.out=50))

the true function
lines(x,15*exp(f))
constrained fit
lines(x,b$fitted,col=2)
unconstrained fit
lines(x,b1$fitted,col=3)

plotting on log scale...
plot(x,log(15*exp(f)),type="l")
lines(x,log(b$fitted),col=2)
lines(x,log(b1$fitted),col=3)

End(Not run)

smooth.construct.cx.smooth.spec

Constructor for convex P-splines in SCAMs

Description

This is a special method function for creating smooths subject to convexity constraint which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using the mixed constrained P-splines. This smooth is specified via model terms such as s(x,k,bs="cx",m=2), where k denotes the basis dimension and m+1 is the order of the B-spline basis.

Usage

S3 method for class 'cx.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the data required by this term, with names given by object$term. The by variable is the last element.
knots An optional list containing the knots supplied for basis setup. If it is NULL then the knot locations are generated automatically.

Value

An object of class "cx.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

smooth.construct.mdcv.smooth.spec

Constructor for monotone decreasing and concave P-splines in SCAMs
Description

This is a special method function for creating smooths subject to both monotone decreasing and concavity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using mixed constrained P-splines. This smooth is specified via model terms such as \(s(x,k,bs="mdcv",m=2) \), where \(k \) denotes the basis dimension and \(m+1 \) is the order of the B-spline basis.

Usage

```r
## S3 method for class 'mdcv.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments

- `object`: A smooth specification object, generated by an `s` term in a GAM formula.
- `data`: A data frame or list containing the data required by this term, with names given by `object$term`. The by variable is the last element.
- `knots`: An optional list containing the knots supplied for basis setup. If it is `NULL` then the knot locations are generated automatically.

Value

An object of class "mdcv.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

- smooth.construct.mpi.smooth.spec
- smooth.construct.mpd.smooth.spec
- smooth.construct.cx.smooth.spec
- smooth.construct.cv.smooth.spec
- smooth.construct.mdcx.smooth.spec
- smooth.construct.micx.smooth.spec
- smooth.construct.micv.smooth.spec

Examples

```r
## Not run:
## Monotone decreasing and concave P-splines example
## simulating data...
set.seed(2)
n <- 100
x <- sort(runif(n))
f <- -x^4
y <- f+rnorm(n)*0.10
dat <- data.frame(x=x,y=y)
```
fit model ...

\[b \leftarrow \text{scam}(y \sim s(x, k=15, bs="mdcv", m=2), family=\text{gaussian}(link="identity"), data=\text{dat}) \]

UNCONSTRAINED FIT *****************

\[b1 \leftarrow \text{scam}(y \sim s(x, k=15, bs="ps", m=2), family=\text{gaussian}(link="identity"), data=\text{dat}) \]

plot results ...

plot(x, y, xlab="x", ylab="y")
lines(x, f) ## the true function
lines(x, b$fitted.values, col=2) ## mixed constrained fit
lines(x, b1$fitted.values, col=3) ## unconstrained fit

End(Not run)

smooth.construct.mdcx.smooth.spec

Constructor for monotone decreasing and convex P-splines in SCAMs

Description

This is a special method function for creating smooths subject to both monotone decreasing and convexity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using mixed constrained P-splines. This smooth is specified via model terms such as \(s(x, k, bs="mdcx", m=2) \), where \(k \) denotes the basis dimension and \(m+1 \) is the order of the B-spline basis.

Usage

S3 method for class 'mdcx.smooth.spec'
smooth.construct(object, data, knots)

Arguments

- **object**: A smooth specification object, generated by an \(s \) term in a GAM formula.
- **data**: A data frame or list containing the data required by this term, with names given by \text{object$term}. The by variable is the last element.
- **knots**: An optional list containing the knots supplied for basis setup. If it is \text{NULL} then the knot locations are generated automatically.

Value

An object of class "mdcx.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>
References

See Also

Examples

Not run:
Monotone decreasing and convex P-splines example
simulating data...
set.seed(2)
n <- 100
x <- sort(runif(n)*3-1)
f1 <- (x-3)^6 # monotone decreasing and convex smooth
f <- (f1-min(f1))/(max(f1)-min(f1))
y <- f+rnorm(n)*0.20
dat <- data.frame(x=x,y=y)
fit model ...
b <- scam(y~s(x,k=15,bs="mdcx",m=2),family=gaussian(link="identity"),data=dat)
UNCONSTRAINED FIT ***************
b1 <- scam(y~s(x,k=15,bs="ps",m=2),family=gaussian(link="identity"),data=dat)

plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,f) ## the true function
lines(x,b$fitted.values,col=2) ## mixed constrained fit
lines(x,b1$fitted.values,col=3) ## unconstrained fit
End(Not run)

smooth.construct.micv.smooth.spec

Constructor for monotone increasing and concave P-splines in SCAMs

Description

This is a special method function for creating smooths subject to both monotone increasing and concavity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using mixed constrained P-splines. This smooth is specified via model terms such as $s(x,k,bs="micv",m=2)$, where k denotes the basis dimension and $m+1$ is the order of the B-spline basis.
Usage

S3 method for class 'micv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

- **object**: A smooth specification object, generated by an s term in a GAM formula.
- **data**: A data frame or list containing the data required by this term, with names given by object$term. The by variable is the last element.
- **knots**: An optional list containing the knots supplied for basis setup. If it is NULL then the knot locations are generated automatically.

Value

An object of class "micv.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

Examples

Not run:
Monotone increasing and concave P-splines example
simulating data...
set.seed(3)
n <- 100
x <- sort(runif(n)*99+1)
f1 <- log(x)
f <- (f1-min(f1))/(max(f1)-min(f1))
y <- f+rnorm(n)*0.10
dat <- data.frame(x=x, y=y)

fit model ...
b <- scam(y~s(x,k=15,bs="micv",m=2), data=dat)
UNCONSTRAINED FIT ****************
b1 <- scam(y~s(x,k=15,bs="ps",m=2),data=dat)
plot results ...
plot(x,y,xlab="x",ylab="y")
lines(x,f) ## the true function
lines(x,b$fitted.values,col=2) ## mixed constrained fit
lines(x,b1$fitted.values,col=3) ## unconstrained fit

End(Not run)

smooth.construct.micx.smooth.spec

Constructor for monotone increasing and convex P-splines in SCAMs

Description
This is a special method function for creating smooths subject to both monotone increasing and convexity constraints which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using the mixed constrained P-splines. This smooth is specified via model terms such as \(s(x,k,bs=\text{"micx"},m=2) \), where \(k \) denotes the basis dimension and \(m+1 \) is the order of the B-spline basis.

Usage
S3 method for class 'micx.smooth.spec'
smooth.construct(object, data, knots)

Arguments
- **object**
 A smooth specification object, generated by an s term in a GAM formula.
- **data**
 A data frame or list containing the data required by this term, with names given by object$term. The by variable is the last element.
- **knots**
 An optional list containing the knots supplied for basis setup. If it is NULL then the knot locations are generated automatically.

Value
An object of class "micx.smooth".

Author(s)
Natalya Pya <nat.pya@gmail.com>

References

smooth.construct.mpd.smooth.spec

See Also

Examples

Not run:
Monotone increasing and convex P-splines example
simulating data...
set.seed(22)
n <- 100
x <- runif(n)*2
f <- x^2
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)
fit model ...
b <- scam(y~s(x,k=15,bs="micx",m=2),family=poisson(link="log"),
data=dat,sp=NULL,not.exp=FALSE)

UNCONSTRAINED FIT ***************
b1 <- scam(y~s(x,k=15,bs="cr",m=2),family=poisson(link="log"),
data=dat,sp=NULL)

plot results ...
plot(x,y,xlab="x",ylab="y")
x1 <- sort(x,index=TRUE)
lines(x1$x,exp(f)[x1$ix]) ## the true function
lines(x1x,bfitted.values[x1$ix],col=2) ## mixed constrained fit
lines(x1$x,b1$fitted.values[x1$ix],col=3) ## unconstrained fit

End(Not run)

smooth.construct.mpd.smooth.spec

Constructor for monotone decreasing P-splines in SCAMs

Description

This is a special method function for creating smooths subject to monotone decreasing constraints which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using monotonic P-splines. This smooth is specified via model terms such as s(x,k,bs="mpd",m=2), where k denotes the basis dimension and m+1 is the order of the B-spline basis.

Usage

S3 method for class 'mpd.smooth.spec'
smooth.construct(object, data, knots)
Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the data required by this term, with names given by object$term. The by variable is the last element.
knots An optional list containing the knots supplied for basis setup. If it is NULL then the knot locations are generated automatically.

Value

An object of class "mpd.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

Examples

Not run:
Monotone decreasing P-splines example
simulating data...
set.seed(3)
n <- 100
x <- runif(n)*3-1
f <- exp(-1.3*x)
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)
fit model...
b <- scam(y~s(x,k=15,bs="mpd",m=2),family=poisson(link="log"),
data=dat,sp=NULL)

UNCONSTRAINED FIT ******************
b1 <- scam(y~s(x,k=15,bs="ps",m=2),family=poisson(link="log"),
data=dat,sp=NULL)

plot results ...
plot(x,y,xlab="x",ylab="y")
x1 <- sort(x,index=TRUE)
smooth.construct.mpi.smooth.spec

Constructor for monotone increasing P-splines in SCAMs

Description

This is a special method function for creating smooths subject to a monotone increasing constraint which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using monotonic P-splines. This smooth is specified via model terms such as s(x,k,bs="mpi",m=2), where k denotes the basis dimension and m+1 is the order of the B-spline basis.

Usage

S3 method for class ' mpi.smooth.spec'
smooth.construct(object, data, knots)

Arguments

- **object**: A smooth specification object, generated by an s term in a GAM formula.
- **data**: A data frame or list containing the data required by this term, with names given by object$term. The by variable is the last element.
- **knots**: An optional list containing the knots supplied for basis setup. If it is NULL then the knot locations are generated automatically.

Details

The constructor is not called directly, but as with gam(mgcv) is used internally.

If the knots of the spline are not supplied, then they are placed evenly throughout the covariate values. If the knots are supplied, then the number of supplied knots should be k+m+2, and the range of the middle k-m knots must include all the covariate values.

Value

An object of class "mpi.smooth".

Author(s)

Natalya Pya <nat.pya@gmail.com>
References

See Also

Examples

```r
## Monotone increasing P-splines example
## simulating data...
set.seed(12)
n <- 100
x <- runif(n)*4-1
f <- 4*exp(4*x)/(1+exp(4*x))
y <- rpois(n,exp(f))
dat <- data.frame(x=x,y=y)
## fit model ... 
b <- scam(y~s(x,k=15,bs="mpi",m=2),family=poisson(link="log"),
data=dat,sp=NULL)
# UNCONSTRAINED FIT *****************
b1 <- scam(y~s(x,k=15,bs="ps",m=2),family=poisson(link="log"),
data=dat,sp=NULL)
## plot results ...
plot(x,y,xlab="x",ylab="y")
x1 <- sort(x,index=TRUE)
lines(x1$x,exp(f)[x1$ix])      ## the true function
lines(x1$x,b$fitted.values[x1$ix],col=2)  ## monotone fit
lines(x1$x,b1$fitted.values[x1$ix],col=3)  ## unconstrained fit

## example with supplied knots...
knots <- list(x=c(-1.5, -1.2, -.99, -.97, -.7, -.5, -.3, 0, 0.7,
               .9,.1, .22,.5,2.2,2.77,2.93,2.99, 3.2,3.6))
b2 <- scam(y~s(x,k=15,bs="mpi",m=2),knots=knots,
family=poisson(link="log"), data=dat)
summary(b2)
plot(b2)

## Not run:
## example with two terms...
set.seed(0)
n <- 200
x1 <- runif(n)*6-3
```
smooth.construct.po.smooth.spec

Constructor for monotone increasing P-splines in SCAMs

Description

This is a special method function for creating univariate smooths subject to a positivity constraint which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed using monotonic P-splines. This smooth is specified via model terms such as \(s(x, k, bs="po", m=2) \), where \(k \) denotes the basis dimension and \(m+1 \) is the order of the B-spline basis.

Note: currently this smooth can work only with models with no intercept. See examples below.

Usage

S3 method for class 'po.smooth.spec'
smooth.construct(object, data, knots)

Arguments

- **object**: A smooth specification object, generated by an \(s \) term in a GAM formula.
- **data**: A data frame or list containing the data required by this term, with names given by \(\text{object}\$\text{term} \). The by variable is the last element.
- **knots**: An optional list containing the knots supplied for basis setup. If it is \text{NULL} then the knot locations are generated automatically.

Value

An object of class "po.smooth".
smooth.construct.po.smooth.spec

Author(s)
Natalya Pya <nat.pya@gmail.com>

References

See Also

Examples

SCOP-splines example with positivity constraint...
simulating data...
Not run:
set.seed(3)
n <- 100
x <- seq(-3,3,length.out=100)
f <- dnorm(x)
y <- f + rnorm(n)*0.1
b <- scam(y~s(x,bs="po")-1)

b1 <- scam(y~s(x)) ## unconstrained model
plot(x,y)
lines(x,f)
lines(x,fitted(b),col=2)
lines(x,fitted(b1),col=3)

two-term example...
set.seed(8)
n <- 200
x1 <- seq(-3,3,length.out=n)
f1 <- 3*exp(-x1^2) ## positively constrained smooth
x2 <- runif(n)*3-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
f <- f1+f2
y <- f+rnorm(n)*0.3
dat <- data.frame(x1=x1,x2=x2,y=y)

fit model, results, and plot...
b2 <- scam(y-s(x1,bs="po")+s(x2,k=15,bs="mpi")-1,data=dat)
summary(b2)
plot(b2,pages=1)

b3 <- scam(y-s(x1,bs="ps")+s(x2,bs="ps"),data=dat) ## unconstrained model
smooth.construct.tecvcv.smooth.spec

Tensor product smoothing constructor for bivariate function subject to double concavity constraint

Description

This is a special method function for creating tensor product bivariate smooths subject to double concavity constraint, i.e. concavity constraint wrt both the first and the second covariates. This is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as \(s(x_1, x_2, k=c(q_1, q_2), bs="tecvcv", m=c(2, 2)) \), where \(q_1 \) and \(q_2 \) denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tecvcv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

- **object**: A smooth specification object, generated by an s term in a GAM formula.
- **data**: A data frame or list containing the values of the elements of object$term, with names given by object$term.
- **knots**: An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "tecvcv.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

- **p.ident**: A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
- **Zc**: A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>
References

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.temicx.smooth.spec smooth.construct.tecx.smooth.spec
smooth.construct.tecx.x.smooth.spec smooth.construct.tecxv.smooth.spec smooth.construct.tecvv.smooth.spec

Examples

Not run:
tensor product `tecvcv' example
simulating data...
set.seed(3)
n <- 30
x1 <- sort(2*runif(n)-1)
x2 <- sort(2*runif(n)-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 f1[i,j] <- -4*(x1[i]^2+x2[j]^2)
f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.05
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tecvcv"), data=dat)
plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b, theta=30,phi=40)
plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n) f1[i,j] <- -4*(x1[i]^2+x2[j]^2)
persp(x1,x2,f1,theta = 30, phi = 40)
End(Not run)
Tensor product smoothing constructor for bivariate function subject to mixed constraints: convexity constraint wrt the first covariate and concavity wrt the second one

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed constraints, convexity constraint wrt the first covariate and concavity wrt the second one. This is built by the `mgcv` constructor function for smooth terms, `smooth.construct`. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as `s(x1,x2,k=c(q1,q2),bs="tecxcv",m=c(2,2))`, where `q1` and `q2` denote the basis dimensions for the marginal smooths.

Usage

```r
## S3 method for class 'tecxcv.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments

- `object`: A smooth specification object, generated by an `s` term in a GAM formula.
- `data`: A data frame or list containing the values of the elements of `object$term`, with names given by `object$term`.
- `knots`: An optional list containing the knots corresponding to `object$term`. If it is `NULL` then the knot locations are generated automatically.

Value

An object of class "tecxcv.smooth". In addition to the usual elements of a smooth class documented under `smooth.construct` of the `mgcv` library, this object contains:

- `p.ident`: A vector of 0's and 1's for model parameter identification: 1's indicate parameters which will be exponentiated, 0's - otherwise.
- `Zc`: A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

Examples

Not run:
tensor product `tecxcv' example

simulating data...
 set.seed(5)
 n <- 30
 x1 <- sort(2*runif(n)-1)
 x2 <- sort(2*runif(n)-1)
 f1 <- matrix(0,n,n)
 for (i in 1:n) for (j in 1:n)
 f1[i,j] <- 2*x1[i]^2 - 4*x2[j]^2
 f <- as.vector(t(f1))
 y <- f+rnorm(length(f))*0.05
 x11 <- matrix(0,n,n)
 x11[,1:n] <- x1
 x11 <- as.vector(t(x11))
 x22 <- rep(x2,n)
 dat <- list(x1=x11,x2=x22,y=y)

fit model ...
 b <- scam(y~s(x1,x2,k=c(10,10),bs="tecxcv"), data=dat)
plot results ...
 par(mfrow=c(2,2),mar=c(4,4,2,2))
 plot(b,se=TRUE)
 plot(b,pers=TRUE,theta = 30, phi = 40)
 plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
 x11()
 vis.scam(b,theta=30,phi=40)
plotting the truth...
 x11()
 x1 <- seq(min(x1),max(x1),length.out=30)
 x2 <- seq(min(x2),max(x2),length.out=30)
 f1 <- matrix(0,n,n)
 for (i in 1:n) for (j in 1:n) f1[i,j] <- 2*x1[i]^2 - 4*x2[j]^2
 persp(x1,x2,f1,theta = 30, phi = 40)

End(Not run)
Description

This is a special method function for creating tensor product bivariate smooths subject to double convexity constraint, convexity constraint wrt both the first and the second covariates. This is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as \(s(x_1, x_2, k=c(q_1, q_2), bs="tecxcx", m=c(2, 2)) \), where \(q_1 \) and \(q_2 \) denote the basis dimensions for the marginal smooths.

Usage

```r
## S3 method for class 'tecxcx.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments

- **object**: A smooth specification object, generated by an `s` term in a GAM formula.
- **data**: A data frame or list containing the values of the elements of `object$term`, with names given by `object$term`.
- **knots**: An optional list containing the knots corresponding to `object$term`. If it is `NULL` then the knot locations are generated automatically.

Value

An object of class "tecxcx.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

- **p.ident**: A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
- **Zc**: A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

Examples

```r
## Not run:
## tensor product 'tedecx' example
## simulating data...
set.seed(1)
N <- 30
x1 <- sort(2*runif(N)-1)
x2 <- sort(2*runif(N)-1)
f1 <- matrix(0,N,N)
for (i in 1:N) for (j in 1:N)
  { f1[i,j] <- 2*(x1[i]^2 + x2[j]^2) }
f <- as.vector(t(f1))
y <- f + rnorm(length(f))*0.05
x11 <- matrix(0,N,N)
x11[,1:N] <- x1
x11i <- as.vector(t(x11))
x22 <- rep(x2,N)
dat <- list(x1=x11,x2=x22,y=y)
## fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tedecx"), data=dat)
## plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b,theta=20,phi=20)
## plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,N,N)
for (i in 1:N) for (j in 1:N) f1[i,j] <- 2*(x1[i]^2 + x2[j]^2)
persp(x1,x2,f1,theta = 30, phi = 40)
## End(Not run)
```

smooth.construct.tedecv.smooth.spec

Tensor product smoothing constructor for bivariate function subject to mixed constraints: monotone decreasing constraint wrt the first covariate and concavity wrt the second one

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed constraints, monotone decreasing constraint wrt the first covariate and concavity wrt the second one,
which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as \(s(x_1,x_2,k=c(q_1,q_2),bs="tedecv",m=c(2,2)) \), where \(q_1 \) and \(q_2 \) denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tedecv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

- **object**: A smooth specification object, generated by an \(s \) term in a GAM formula.
- **data**: A data frame or list containing the values of the elements of object$term, with names given by object$term.
- **knots**: An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "tedecv.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

- **p.ident**: A vector of 0's and 1's for model parameter identification: 1's indicate parameters which will be exponentiated, 0's - otherwise.
- **Zc**: A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.temicx.smooth.spec smooth.construct.tedecx.smooth.spec

Examples

Not run:
tensor product 'tedecv' example
simulating data...

set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(2*runif(n)-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 { f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))- 4*x2[j]^2}

f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
fit model ...
b <- scam(y=s(x1,x2,k=c(10,10),bs="tedecv",m=2), data=dat)
plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b, theta=30)
plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n) f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))- 4*x2[j]^2
persp(x1,x2,f1,theta = 30, phi = 40)

End(Not run)

smooth.construct.tedecx.smooth.spec

Tensor product smoothing constructor for bivariate function subject
to mixed constraints: monotone decreasing constraint wrt the first covariate and convexity wrt the second one

Description
This is a special method function for creating tensor product bivariate smooths subject to mixed constraints, monotone decreasing constraint wrt the first covariate and convexity wrt the second one, which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tedecx",m=c(2,2)), where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage
S3 method for class 'tedecx.smooth.spec'
smooth.construct(object, data, knots)
Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the values of the elements of object$term, with names given by object$term.
knots An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "tedecx.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:
p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.tedecv.smooth.spec

Examples

Not run:
tensor product 'tedecx' example
simulating data...

set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(2*runif(n)-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i])) + 2*x2[j]^2
f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.05
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tedecx",m=2), not.exp=TRUE, data=dat)
b1 <- scam(y~s(x1,bs="mpd",m=2)+s(x2,bs="cx",m=2), data=dat)
plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b,theta=20,phi=20)
plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n) f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i])) + 2*x2[j]^2
persp(x1,x2,f1,theta = 30, phi = 40)
End(Not run)

smooth.construct.tedmd.smooth.spec

Tensor product smoothing constructor for bivariate function subject to double monotone decreasing constraint

Description

This is a special method function for creating tensor product bivariate smooths subject to double monotone decreasing constraints which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tedmd",m=c(2,2)), where q1 and q2 denote the basis dimensions for the marginal smooths.

Usage

S3 method for class 'tedmd.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object
A smooth specification object, generated by an s term in a GAM formula.

data
A data frame or list containing the values of the elements of object$term, with names given by object$term.

knots
An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.
Value

An object of class "tedmd.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

smooth.construct.tedmi.smooth.spec

Examples

Not run:
tensor product 'tedmd' example
simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(runif(n))
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 { f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))-2*exp(x2[j]-0.5)}
f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tedmd",m=2),
 family=gaussian(link="identity"), data=dat)
plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 80, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
smooth.construct.tedmi.smooth.spec

Tensor product smoothing constructor for bivariate function subject to double monotone increasing constraint

Description

This is a special method function for creating tensor product bivariate smooths subject to double monotone increasing constraints which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as \(s(x_1, x_2, k=c(q_1, q_2), bs=\text{"tedmi"}, m=c(2, 2)) \), where \(q_1 \) and \(q_2 \) denote the basis dimensions for the marginal smooths.

Usage

```r
## S3 method for class 'tedmi.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments

- **object** A smooth specification object, generated by an `s` term in a GAM formula.
- **data** A data frame or list containing the values of the elements of `object$term`, with names given by `object$term`.
- **knots** An optional list containing the knots corresponding to `object$term`. If it is `NULL` then the knot locations are generated automatically.

Value

An object of class "tedmi.smooth". In addition to the usual elements of a smooth class documented under `smooth.construct` of the mgcv library, this object contains:

- **p.ident** A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
- **Zc** A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

smooth.construct.temicv.smooth.spec

Tensor product smoothing constructor for bivariate function subject to mixed constraints: monotone increasing constraint wrt the first covariate and concavity wrt the second one

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed constraints, monotone increasing constraint wrt the first covariate and concavity wrt the second one, which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as `s(x1, x2, k=c(q1, q2), bs="temicv", m=c(2, 2))`, where q1 and q2 denote the basis dimensions for the marginal smooths.
Usage

S3 method for class 'temicv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the values of the elements of object$term, with names given by object$term.
knots An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "temicv.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0's and 1's for model parameter identification: 1's indicate parameters which will be exponentiated, 0's - otherwise.
Zc A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

smooth.construct.tedmd.smooth.spec smooth.construct.temicx.smooth.spec

Examples

Not run:
tensor product 'temicv' example
simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(2*runif(n)-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 f1[i,j] <- exp(4*x1[i])/(1+exp(4*x1[i])) - 4*x2[j]^2
f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="temicv",m=2), data=dat)
plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b, theta=30, phi = 40)
plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n) f1[i,j] <- exp(4*x1[i])/(1+exp(4*x1[i])) - 4*x2[j]^2
persp(x1,x2,f1,theta = 30, phi = 40)
End(Not run)

smooth.construct.temicx.smooth.spec

Tensor product smoothing constructor for bivariate function subject to mixed constraints: monotone increasing constraint wrt the first covariate and convexity wrt the second one

Description

This is a special method function for creating tensor product bivariate smooths subject to mixed constraints, monotone increasing constraint wrt the first covariate and convexity wrt the second one, which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths which are represented using the B-spline basis functions. This tensor product is specified by model terms such as \(s(x_1,x_2,k=c(q_1,q_2),bs="temicx",m=c(2,2)) \), where \(q_1 \) and \(q_2 \) denote the basis dimensions for the marginal smooths.

Usage

```r
## S3 method for class 'temicx.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments

- **object**
 - A smooth specification object, generated by an `s` term in a GAM formula.
- **data**
 - A data frame or list containing the values of the elements of `object$term`, with names given by `object$term`.
- **knots**
 - An optional list containing the knots corresponding to `object$term`. If it is NULL then the knot locations are generated automatically.
Value

An object of class "temicx.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

- **p.ident**: A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
- **Zc**: A matrix of identifiability constraints.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

smooth.construct.tedmd.smooth.spec

Examples

```r
## Not run:
## tensor product 'temicx' example
## simulating data...

set.seed(1)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(2*runif(n)-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
  f1[i,j] <- exp(4*x1[i])/(1+exp(4*x1[i])) + 2*x2[j]^2
f <- as.vector(t(f1))
y <- f + rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
## fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="temicx",m=2), data=dat)
## plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b,theta = 30, phi = 40)
## plotting the truth...
```
smooth.construct.tescv.smooth.spec

Tensor product smoothing constructor for a bivariate function concave in the second covariate

Description

This is a special method function for creating tensor product bivariate smooths concave in the second covariate which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tescv",m=c(2,2)), where the basis for the first marginal smooth is specified in the second element of bs.

Usage

S3 method for class 'tescv.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object

A smooth specification object, generated by an s term in a GAM formula.

data

A data frame or list containing the values of the elements of object$term, with names given by object$term.

knots

An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "tescv.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

p.ident

A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.

Zc

A matrix of identifiability constraints.

margin.class

The class of the first unconstrained marginal smooth.

Author(s)

Natalya Pya <nat.pya@gmail.com>
References

See Also

Examples

```r
## Not run:
## tensor product 'tescv' example
## simulating data...
set.seed(5)
N <- 30
x1 <- sort(runif(N))
x2 <- sort(2*runif(N)-1)
f1 <- matrix(0,N,N)
for (i in 1:N) for (j in 1:N)
  f1[i,j] <- sin(2*pi*x1[i]) - 4*x2[j]^2
f1 <- as.vector(t(f1))
f <- (f1-min(f1))/(max(f1)-min(f1))
y <- f + rnorm(length(f))*0.1
x11 <- matrix(0,N,N)
x11[,1:N] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,N)
dat <- list(x1=x11,x2=x22,y=y)
## fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tescv",m=2),
        family=gaussian(), data=dat)
## plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE, theta = 50, phi = 20)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b, theta = 50, phi = 20)
## plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,N,N)
for (i in 1:N) for (j in 1:N)
  f1[i,j] <- sin(2*pi*x1[i]) - 4*x2[j]^2
persp(x1,x2,f1,theta = 50, phi = 20)
## End(Not run)
```
Tensor product smoothing constructor for a bivariate function convex in the second covariate

Description

This is a special method function for creating tensor product bivariate smooths convex in the second covariate which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tescx",m=c(2,2)), where the basis for the first marginal smooth is specified in the second element of bs.

Usage

```r
## S3 method for class 'tescx.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments

- **object**: A smooth specification object, generated by an s term in a GAM formula.
- **data**: A data frame or list containing the values of the elements of object$term, with names given by object$term.
- **knots**: An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "tescx.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

- **p.ident**: A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
- **Zc**: A matrix of identifiability constraints.
- **margin.class**: The class of the first unconstrained marginal smooth.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

Examples

Not run:
tensor product 'tescx' example
simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n))
x2 <- sort(2*runif(n)-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 f1[i,j] <- sin(x1[i]) + 2*x2[j]^2
f1 <- as.vector(t(f1))
f <- (f1-min(f1))/(max(f1)-min(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tescx",m=2),
 family=gaussian(), data=dat)
plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE, theta = 50, phi = 20)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b, theta = 50, phi = 20)
plotting the truth...
x11()
x1 <- seq(min(x1),max(x1),length.out=30)
x2 <- seq(min(x2),max(x2),length.out=30)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
 f1[i,j] <- sin(x1[i]) + 2*x2[j]^2
persp(x1,x2,f1,theta = 50, phi = 20)
End(Not run)
smooth.construct.tesmd1.smooth.spec

Description
This is a special method function for creating tensor product bivariate smooths monotone decreasing in the first covariate which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by model terms such as \(s(x_1,x_2,k=c(q_1,q_2),bs="tesmd1",m=2) \).

Usage
```r
## S3 method for class 'tesmd1.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments
- **object**: A smooth specification object, generated by an s term in a GAM formula.
- **data**: A data frame or list containing the values of the elements of `object$term`, with names given by `object$term`.
- **knots**: An optional list containing the knots corresponding to `object$term`. If it is **NULL** then the knot locations are generated automatically.

Value
An object of class "tesmd1.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

- **p.ident**: A vector of 0's and 1's for model parameter identification: 1's indicate parameters which will be exponentiated, 0's - otherwise.
- **Zc**: A matrix of identifiability constraints.
- **margin.class**: The class of the second unconstrained marginal smooth.

Author(s)
Natalya Pya <nat.pya@gmail.com>

References

See Also
smooth.construct.tesmd2.smooth.spec
Examples

```r
## Not run:
## tensor product 'tesmd1' example
## simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(runif(n))
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n) {
  f1[i,j] <- -exp(4*x1[i])/(1+exp(4*x1[i]))+2*sin(pi*x2[j])
} f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
## fit model ... 
b <- scam(y~s(x1,x2,k=c(10,10),bs="tesmd1",m=2),data=dat,sp=NULL)
## plot results ... 
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE,theta = 30, phi = 40)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
## End(Not run)
```

smooth.construct.tesmd2.smooth.spec

Tensor product smoothing constructor for a bivariate function monotone decreasing in the second covariate

Description

This is a special method function for creating tensor product bivariate smooths monotone decreasing in the second covariate which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by model terms such as `s(x1,x2,k=c(q1,q2),bs="tesmd2",m=c(2,2))`, where the basis for the first marginal smooth is specified in the second element of bs.

Usage

```r
## S3 method for class 'tesmd2.smooth.spec'
smooth.construct(object, data, knots)
```
Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the values of the elements of object$term, with names given by object$term.
knots An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "tesmd2.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0's and 1's for model parameter identification: 1's indicate parameters which will be exponentiated, 0's - otherwise.
Zc A matrix of identifiability constraints.
margin.class The class of the first unconstrained marginal smooth.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

smooth.construct.tesmd1.smooth.spec

Examples

Not run:
tensor product 'tesmd2' example
simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n)*4-1)
x2 <- sort(runif(n))
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
{ f1[i,j] <- exp(4*x1[i])/(1+exp(4*x1[i])) - 2*exp(x2[j]-0.5))
} f <- as.vector(t(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
smooth.construct.tesmi1.smooth.spec

Tensor product smoothing constructor for a bivariate function monotone increasing in the first covariate

Description

This is a special method function for creating tensor product bivariate smooths monotone increasing in the first covariate which is built by the mgcv constructor function for smooth terms, smooth.construct. It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by model terms such as s(x1,x2,k=c(q1,q2),bs="tesmi1",m=2), where the basis for the second marginal smooth is specified in the second element of bs.

Usage

S3 method for class 'tesmi1.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object A smooth specification object, generated by an s term in a GAM formula.
data A data frame or list containing the values of the elements of object$term, with names given by object$term.
knots An optional list containing the knots corresponding to object$term. If it is NULL then the knot locations are generated automatically.

Value

An object of class "tesmi1.smooth". In addition to the usual elements of a smooth class documented under smooth.construct of the mgcv library, this object contains:

p.ident A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
Zc A matrix of identifiability constraints.
margin.class The class of the second unconstrained marginal smooth.
Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

smooth.construct.tesmi2.smooth.spec

Examples

```r
## Not run:
## tensor product 'tesmi1' example
## simulating data...
set.seed(2)
  n <- 30
  x1 <- sort(runif(n)*4-1)
  x2 <- sort(runif(n))
  f1 <- matrix(0,n,n)
  for (i in 1:n) for (j in 1:n)
    { f1[i,j] <- exp(4*x1[i]/(1+exp(4*x1[i])))+2*sin(pi*x2[j]) }
  f <- as.vector(t(f1))
  y <- f+rnorm(length(f))*0.1
  x11 <- matrix(0,n,n)
  for(i in 1:n)
    x11[,i] <- x1
  x11 <- as.vector(t(x11))
  x22 <- rep(x2,n)
  dat <- list(x1=x11,x2=x22,y=y)
## fit model ...  
  b <- scam(y~s(x1,x2,k=c(10,10),bs="tesmi1",m=2), data=dat,sp=NULL)
## plot results ...  
  par(mfrow=c(2,2))
  plot(b,se=TRUE)
  plot(b,pers=TRUE,theta = 30, phi = 40)
  plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
## End(Not run)
```

smooth.construct.tesmi2.smooth.spec

Tensor product smoothing constructor for a bivariate function monotone increasing in the second covariate
Description

This is a special method function for creating tensor product bivariate smooths monotone increasing in the second covariate which is built by the `mgcv` constructor function for smooth terms, `smooth.construct`. It is constructed from a pair of single penalty marginal smooths. This tensor product is specified by model terms such as \(s(x_1, x_2, k=c(q_1, q_2), bs="tesmi2", m=c(2, 2)) \), where the basis for the first marginal smooth is specified in the second element of `bs`.

Usage

```r
## S3 method for class 'tesmi2.smooth.spec'
smooth.construct(object, data, knots)
```

Arguments

- `object`: A smooth specification object, generated by an `s` term in a GAM formula.
- `data`: A data frame or list containing the values of the elements of `object$term`, with names given by `object$term`.
- `knots`: An optional list containing the knots corresponding to `object$term`. If it is `NULL` then the knot locations are generated automatically.

Value

An object of class “tesmi2.smooth”. In addition to the usual elements of a smooth class documented under `smooth.construct` of the `mgcv` library, this object contains:

- `p.ident`: A vector of 0’s and 1’s for model parameter identification: 1’s indicate parameters which will be exponentiated, 0’s - otherwise.
- `Zc`: A matrix of identifiability constraints.
- `margin.class`: The class of the first unconstrained marginal smooth.

Author(s)

Natalya Pya <nat.pya@gmail.com>

References

See Also

`smooth.construct.tesmi1.smooth.spec`
Examples

Not run:

```r
## tensor product 'tesmi2' example
## simulating data...
set.seed(2)
n <- 30
x1 <- sort(runif(n))
x2 <- sort(runif(n)*4-1)
f1 <- matrix(0,n,n)
for (i in 1:n) for (j in 1:n)
  { f1[i,j] <- 2*sin(pi*x1[i]) +exp(4*x2[j])/(1+exp(4*x2[j]))}
f1 <- as.vector(t(f1))
f <- (f1-min(f1))/(max(f1)-min(f1))
y <- f+rnorm(length(f))*0.1
x11 <- matrix(0,n,n)
x11[,1:n] <- x1
x11 <- as.vector(t(x11))
x22 <- rep(x2,n)
dat <- list(x1=x11,x2=x22,y=y)
## fit model ...
b <- scam(y~s(x1,x2,k=c(10,10),bs="tesmi2",m=2),
         family=gaussian(link="identity"), data=dat)
## plot results ...
par(mfrow=c(2,2),mar=c(4,4,2,2))
plot(b,se=TRUE)
plot(b,pers=TRUE, theta = 50, phi = 20)
plot(y,b$fitted.values,xlab="Simulated data",ylab="Fitted data")
x11()
vis.scam(b,theta=50,phi=20)
## End(Not run)
```

summary.scam

Summary for a SCAM fit

Description

Takes a fitted scam object produced by scam() and produces various useful summaries from it. The same code as in summary.gam of the mgcv package is used here with slight modifications to accept the exponentiated parameters of the shape constrained smooth terms and the corresponding covariance matrix.

Usage

```r
## S3 method for class 'scam'
summary(object, dispersion=NULL, freq=FALSE, ...)
```

```r
## S3 method for class 'summary.scam'
print(x,digits = max(3, getOption("digits") - 3),
      signif.stars = getOption("show.signif.stars"),...)
```
Arguments

object
a fitted scam object as produced by scam().

x
a summary.scam object produced by summary.scam().

dispersion
A known dispersion parameter. NULL to use estimate or default (e.g. 1 for Poisson).

dispersion
By default p-values for individual terms are calculated using the Bayesian estimated covariance matrix of the parameter estimators. If this is set to TRUE then the frequentist covariance matrix of the parameters is used instead.

digits
controls number of digits printed in output.

freq
Should significance stars be printed alongside output.

Value

summary.scam produces the same list of summary information for a fitted scam object as in the unconstrained case summary.gam except for the last element BFGS termination condition.

p.coeff
is an array of estimates of the strictly parametric model coefficients.

p.t
is an array of the p.coeff’s divided by their standard errors.

p.pv
is an array of p-values for the null hypothesis that the corresponding parameter is zero. Calculated with reference to the t distribution with the estimated residual degrees of freedom for the model fit if the dispersion parameter has been estimated, and the standard normal if not.

m
The number of smooth terms in the model.

chi.sq
An array of test statistics for assessing the significance of model smooth terms. See details.

s.pv
An array of approximate p-values for the null hypotheses that each smooth term is zero. Be warned, these are only approximate.

se
array of standard error estimates for all parameter estimates.

r.sq
The adjusted r-squared for the model. Defined as the proportion of variance explained, where original variance and residual variance are both estimated using unbiased estimators. This quantity can be negative if your model is worse than a one parameter constant model, and can be higher for the smaller of two nested models! Note that proportion null deviance explained is probably more appropriate for non-normal errors.

dev.expl
The proportion of the null deviance explained by the model.

edf
array of estimated degrees of freedom for the model terms.

residual.df
estimated residual degrees of freedom.

n
number of data.

gcv
minimized GCV score for the model, if GCV used.

ubre
minimized UBRE score for the model, if UBRE used.

scale
estimated (or given) scale parameter.
family the family used.
formula the original scam formula.
dispersion the scale parameter.
pTerms.df the degrees of freedom associated with each parameteric term (excluding the constant).
pTerms.chi.sq a Wald statistic for testing the null hypothesis that the each parametric term is zero.
pTerms.pv p-values associated with the tests that each term is zero. For penalized fits these are approximate. The reference distribution is an appropriate chi-squared when the scale parameter is known, and is based on an F when it is not.
cov.unscaled The estimated covariance matrix of the parameters (or estimators if freq=TRUE), divided by scale parameter.
cov.scaled The estimated covariance matrix of the parameters (estimators if freq=TRUE).
p.table significance table for parameters
s.table significance table for smooths
p.Terms significance table for parametric model terms

BFGS termination condition
the value of the maximum component of the scaled GCV/UBRE gradient used as stopping condition. This value is printed if the termination code of the BFGS optimization process is not ‘1’ (not full convergence) (see bfgs_gcv.ubre for details)

WARNING
The p-values are approximate.

Author(s)
Natalya Pya <nat.pya@gmail.com> based on mgcv by Simon Wood

References

See Also
scam
Examples

```r
## Not run:
## simulating data...

n <- 200
set.seed(1)
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained smooth term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/((1+exp(4*x2))) # monotone increasing smooth
x3 <- runif(n)*5;
f3 <- -log(x3)/5 # monotone decreasing smooth
f <- f1+f2+f3
y <- f + rnorm(n)*0.3
dat <- data.frame(x1=x1,x2=x2,x3=x3,y=y)

## fit model ...
b <- scam(y~s(x1,k=15,bs="cr",m=2)+s(x2,k=30,bs="mpi",m=2)+s(x3,k=30,bs="mpd",m=2),
data=dat)

summary(b)
plot(b,pages=1)

## End(Not run)
```

vis.scam

Visualization of SCAM objects

Description

Produces perspective or contour plot views of scam model predictions. The code is a clone of vis.gam of the mgcv package.

Usage

```r
vis.scam(x, view=NULL, cond=list(), n.grid=30, too.far=0, col=NA, color="heat", contour.col=NULL, se=-1, type="link", plot.type="persp", zlim=NULL, nCol=50, ...)
```

Arguments

The documentation below is the same as in documentation object `vis.gam`, a scam object, produced by `scam()`

- `view` an array containing the names of the two main effect terms to be displayed on the x and y dimensions of the plot. If omitted the first two suitable terms will be used.
- `cond` a named list of the values to use for the other predictor terms (not in `view`). Variables omitted from this list will have the closest observed value to the median for continuous variables, or the most commonly occurring level for factors. Parametric matrix variables have all the entries in each column set to the observed column entry closest to the column median.
n.grid The number of grid nodes in each direction used for calculating the plotted surface.

too.far plot grid nodes that are too far from the points defined by the variables given in view can be excluded from the plot. too.far determines what is too far. The grid is scaled into the unit square along with the view variables and then grid nodes more than too.far from the predictor variables are excluded.

col The colours for the facets of the plot. If this is NA then if se>0 the facets are transparent, otherwise the colour scheme specified in color is used. If col is not NA then it is used as the facet colour.

color the colour scheme to use for plots when se<=0. One of "topo", "heat", "cm", "terrain", "gray" or "bw". Schemes "gray" and "bw" also modify the colors used when se>0.

contour.col sets the colour of contours when using plot.type="contour". Default scheme used if NULL.

se if less than or equal to zero then only the predicted surface is plotted, but if greater than zero, then 3 surfaces are plotted, one at the predicted values minus se standard errors, one at the predicted values and one at the predicted values plus se standard errors.

type "link" to plot on linear predictor scale and "response" to plot on the response scale.

plot.type one of "contour" or "persp".

zlim a two item array giving the lower and upper limits for the z-axis scale. NULL to choose automatically.

nCol The number of colors to use in color schemes.

... other options to pass on to persp, image or contour.

Value

Simply produces a plot.

Author(s)

Simon Wood <simon.wood@r-project.org>

See Also

persp, vis.gam, and scam.

Examples

library(scam)

Example with factor variable
set.seed(0)
fac<-rep(1:4,20)
x <- runif(80)*5;
y <- fac+log(x)/5+rnorm(80)*0.1
fac <- factor(fac)
b <- scam(y~fac+s(x,bs="mpi"))

vis.scam(b,theta=-35,color="heat") # factor example

Example with "by" variable
z<-rnorm(80)*0.4
y<-as.numeric(fac)+log(x)*z+rnorm(80)*0.1
b<-scam(y~fac+s(x,by=z))
g <- gam(y~fac+s(x,by=z))

vis.scam(b,theta=-35,color="terrain",cond=list(z=1)) # by variable example
vis.scam(b,view=c("z","x"),theta= 65) # plot against by variable
Index

*Topic **convexity**
 scam-package, 3
*Topic **hplot**
 plot.scam, 19
 vis.scam, 87
*Topic **models**
 anova.scam, 4
 bfgs_gcv.ubre, 6
 check.analytical, 8
 derivative.scam, 9
 formula.scam, 10
 gcv.ubre_grad, 11
 linear.functional.terms, 12
 logLik.scam, 14
 marginal.matrices.tescv.ps, 15
 marginal.matrices.tesmi1.ps, 16
 marginal.matrices.tesmi2.ps, 17
 plot.scam, 19
 Predict.matrix.mpi.smooth, 22
 predict.scam, 24
 print.scam, 28
 residuals.scam, 29
 scam, 30
 scam-package, 3
 scam.check, 37
 scam.control, 38
 scam.fit, 40
 smooth.construct.cv.smooth.spec, 43
 smooth.construct.cx.smooth.spec, 45
 smooth.construct.mdcv.smooth.spec, 46
 smooth.construct.mdcx.smooth.spec, 48
 smooth.construct.micv.smooth.spec, 49
 smooth.construct.micx.smooth.spec, 51
 smooth.construct.mpd.smooth.spec, 52
 smooth.construct.mpi.smooth.spec, 54
 smooth.construct.po.smooth.spec, 56
 smooth.construct.tecvcv.smooth.spec, 58
 smooth.construct.tecxcv.smooth.spec, 60
 smooth.construct.tecxcx.smooth.spec, 61
 smooth.construct.tedecv.smooth.spec, 63
 smooth.construct.tedecx.smooth.spec, 65
 smooth.construct.tedmd.smooth.spec, 67
 smooth.construct.tedmi.smooth.spec, 69
 smooth.construct.temicv.smooth.spec, 70
 smooth.construct.temicx.smooth.spec, 72
 smooth.construct.tescv.smooth.spec, 74
 smooth.construct.tescx.smooth.spec, 76
 smooth.construct.tesmd1.smooth.spec, 77
 smooth.construct.tesmd2.smooth.spec, 79
 smooth.construct.tesmi1.smooth.spec, 81
 smooth.construct.tesmi2.smooth.spec, 82
 summary.scam, 84
 vis.scam, 87
*Topic **monotonicity**
scam-package, 3

*Topic package
scam-package, 3

*Topic regression
anova.scam, 4
bfgs_gcv.ubre, 6
check.analytical, 8
derivative.scam, 9
formula.scam, 10
gcv.ubre_grad, 11
linear.functional.terms, 12
logLik.scam, 14
marginal.matrices.tescv.ps, 15
marginal.matrices.tesmi1.ps, 16
marginal.matrices.tesmi2.ps, 17
plot.scam, 19
Predict.matrix.mpi.smooth, 22
predict.scam, 24
print.scam, 28
residuals.scam, 29
scam, 30
scam-package, 3
scam.check, 37
scam.control, 38
scam.fit, 40
shape.constrained.smooth.terms, 41
smooth.construct.cv.smooth.spec, 43
smooth.construct.cx.smooth.spec, 45
smooth.construct.mdcv.smooth.spec, 46
smooth.construct.mdcx.smooth.spec, 48
smooth.construct.micv.smooth.spec, 49
smooth.construct.micx.smooth.spec, 51
smooth.construct.mpd.smooth.spec, 52
smooth.construct.mpi.smooth.spec, 54
smooth.construct.po.smooth.spec, 56
smooth.construct.teccv.smooth.spec, 58
smooth.construct.teccxv.smooth.spec, 61
smooth.construct.teedcv.smooth.spec, 63
smooth.construct.teedcx.smooth.spec, 65
smooth.construct.tedmd.smooth.spec, 67
smooth.construct.tedmi.smooth.spec, 69
smooth.construct.temicv.smooth.spec, 70
smooth.construct.temicx.smooth.spec, 72
smooth.construct.tescv.smooth.spec, 74
smooth.construct.tescx.smooth.spec, 76
smooth.construct.tesmd1.smooth.spec, 77
smooth.construct.tesmd2.smooth.spec, 79
smooth.construct.tesmi1.smooth.spec, 81
smooth.construct.tesmi2.smooth.spec, 82
summary.scam, 84
vis.scam, 87

*AIC

14
AIC.scam(logLik.scam), 14
anova.gam, 4, 5
anova.glm, 5
anova.scam, 4
bfgs_gcv.ubre, 6, 11, 12, 30, 31, 33, 40, 86
check.analytical, 8
contour, 88
derivative.scam, 9
family, 30
formula.gam, 10
formula.scam, 10
function.predictors
 (linear.functional.terms), 12
gam, 34
gam.check, 37
gam.control, 40
gamObject, 33
gcv.ubre_grad, 7, 11, 40
glm, 30
image, 88
linear.functional.terms, 12
logLik, 14
logLik.gam, 14
logLik.scam, 14
marginal.matrices.tescv.ps, 15
marginal.matrices.tesmi1.ps, 16, 16, 18
marginal.matrices.tesmi2.ps, 17, 17
nlm, 39
optim, 39
persp, 88
persp(vis.scam), 87
plot.gam, 3, 19, 26, 34
predict.gam, 24, 25
Predict.matrix, 22
Predict.matrix.cv.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.cx.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.mdcv.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.micv.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.micx.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.mpd.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.mpi.smooth, 22
Predict.matrix.po.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.tecvcv.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.tecxcv.smooth
 (Predict.matrix.mpi.smooth), 22
Predict.matrix.tecx.gam, 11, 33, 30, 31, 33, 40, 86
predict.scam, 5, 24, 34
print.anova.scam(anova.scam), 4
print.scam, 28
print.summary.scam(summary.scam), 84
residuals.gam, 29
residuals.scam, 29
INDEX

s, 34, 41, 43
scam, 3, 5, 6, 8–10, 12, 21, 22, 24, 26, 29, 30,
30, 38, 40, 41, 86, 88
scam-package, 3
scam.check, 5, 34, 37
scam.control, 7, 8, 31, 38
scam.fit, 11, 12, 30, 39, 40, 40
shape.constrained.smooth.terms, 30, 31,
34, 41
signal.regression
(linear.functional.terms), 12
smooth.construct, 33
smooth.construct.cv.smooth.spec, 42, 43,
43, 46, 47, 49, 50, 52, 53, 55, 57
smooth.construct.cx.smooth.spec, 42–44,
45, 47, 49, 50, 52, 53, 55, 57
smooth.construct.mdcv.smooth.spec, 43,
44, 46, 49, 50, 52, 53, 55, 57
smooth.construct.mdcx.smooth.spec,
42–44, 46, 47, 48, 50, 52, 53, 55, 57
smooth.construct.micv.smooth.spec, 43,
46, 47, 49, 52, 53, 55, 57
smooth.construct.micx.smooth.spec,
42–44, 47, 49, 50, 51, 53, 55, 57
smooth.construct.mpd.smooth.spec,
43, 44, 46, 47, 49, 50, 52, 53, 55, 57
smooth.construct.mpi.smooth.spec,
42–44, 46, 47, 49, 50, 52, 53, 54
smooth.construct.po.smooth.spec, 56
smooth.construct.tecvcv.smooth.spec,
58, 61, 62
smooth.construct.tecxcv.smooth.spec,
59, 60, 62
smooth.construct.tecxcv.smooth.spec,
59, 61, 61
smooth.construct.teedcvx.smooth.spec,
61, 62, 63, 66, 75, 77
smooth.construct.teedcxv.smooth.spec,
59, 61, 62, 64, 65, 75, 77
smooth.construct.teedmd.smooth.spec, 43,
59, 61, 62, 64, 66, 67, 70, 71, 73
smooth.construct.teedmi.smooth.spec, 42,
43, 68, 69
smooth.construct.teemicv.smooth.spec,
70, 75, 77
smooth.construct.teemicx.smooth.spec,
59, 64, 71, 72, 75, 77
smooth.construct.tescv.smooth.spec, 15,