Package ‘scmamp’

October 21, 2016

Type Package
Title Statistical Comparison of Multiple Algorithms in Multiple Problems
Version 0.2.55
Date 2016-10-20
LazyData yes
Suggests knitr, rmarkdown
Imports utils, graphics, ggplot2, graph, reshape2, Rgraphviz, methods
VignetteBuilder knitr
Description Given a matrix with results of different algorithms for different problems, the package uses statistical tests and corrections to assess the differences between algorithms.
License GPL-2

BugReports https://github.com/borja/scmamp/issues
 loading_functions.R data_manipulation.R
RoxygenNote 5.0.1
NeedsCompilation no
Author Borja Calvo [aut, cre],
 Guzman Santafe [aut]
Maintainer Borja Calvo <borja.calvo@ehu.eus>
Depends R (>= 2.10)
Repository CRAN
Date/Publication 2016-10-21 12:28:46

R topics documented:

adjustBergmannHommel .. 3
adjustFinner ... 4
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjustHolland</td>
<td>5</td>
</tr>
<tr>
<td>adjustLi</td>
<td>6</td>
</tr>
<tr>
<td>adjustRom</td>
<td>7</td>
</tr>
<tr>
<td>adjustShaffer</td>
<td>8</td>
</tr>
<tr>
<td>anovaTest</td>
<td>9</td>
</tr>
<tr>
<td>booleanMatrix</td>
<td>9</td>
</tr>
<tr>
<td>contrastEstimationMatrix</td>
<td>10</td>
</tr>
<tr>
<td>customPost</td>
<td>11</td>
</tr>
<tr>
<td>data.blum.2015</td>
<td>12</td>
</tr>
<tr>
<td>data.gh.2008</td>
<td>12</td>
</tr>
<tr>
<td>data.gh.2010</td>
<td>13</td>
</tr>
<tr>
<td>drawAlgorithmGraph</td>
<td>13</td>
</tr>
<tr>
<td>exhaustiveSets</td>
<td>14</td>
</tr>
<tr>
<td>filterData</td>
<td>15</td>
</tr>
<tr>
<td>friedmanAlignedRanksPost</td>
<td>16</td>
</tr>
<tr>
<td>friedmanAlignedRanksTest</td>
<td>17</td>
</tr>
<tr>
<td>friedmanPost</td>
<td>18</td>
</tr>
<tr>
<td>friedmanTest</td>
<td>19</td>
</tr>
<tr>
<td>imanDavenportTest</td>
<td>20</td>
</tr>
<tr>
<td>multipleComparisonTest</td>
<td>21</td>
</tr>
<tr>
<td>nemenyiTest</td>
<td>22</td>
</tr>
<tr>
<td>plotCD</td>
<td>23</td>
</tr>
<tr>
<td>plotDensities</td>
<td>24</td>
</tr>
<tr>
<td>plotPvalues</td>
<td>25</td>
</tr>
<tr>
<td>plotRanking</td>
<td>25</td>
</tr>
<tr>
<td>postHocTest</td>
<td>26</td>
</tr>
<tr>
<td>qqplotGaussian</td>
<td>29</td>
</tr>
<tr>
<td>quadePost</td>
<td>30</td>
</tr>
<tr>
<td>quadeTest</td>
<td>31</td>
</tr>
<tr>
<td>rankMatrix</td>
<td>32</td>
</tr>
<tr>
<td>readComparisonDir</td>
<td>32</td>
</tr>
<tr>
<td>readComparisonFile</td>
<td>33</td>
</tr>
<tr>
<td>readExperimentDir</td>
<td>34</td>
</tr>
<tr>
<td>readExperimentFile</td>
<td>36</td>
</tr>
<tr>
<td>scmamp</td>
<td>37</td>
</tr>
<tr>
<td>summarizeData</td>
<td>37</td>
</tr>
<tr>
<td>tukeyPost</td>
<td>38</td>
</tr>
<tr>
<td>tukeyTest</td>
<td>39</td>
</tr>
<tr>
<td>wilcoxonSignedTest</td>
<td>40</td>
</tr>
<tr>
<td>writeTabular</td>
<td>41</td>
</tr>
</tbody>
</table>
adjustBergmannHommel

Bergmann and Hommel dynamic correction of p-values.

Description

This function takes the particular list of possible hypothesis to correct for multiple testing, as defined in Bergmann and Hommel (1994).

Usage

```r
adjustBergmannHommel(raw.matrix)
```

Arguments

- `raw.matrix` Raw p-values in a matrix.

Details

The test has been implemented according to the version in Garcia and Herrera (2008), page 2680-2682.

Value

A matrix with the corrected p-values

References

Examples

```r
data(data_gh_2008)
raw.pvalues <- friedmanAlignedRanksPost(data_gh_2008)
raw.pvalues
adjustBergmannHommel (raw.pvalues)
```
adjustFinner

Finner correction of p-values

Description

This function takes the particular list of possible hypothesis to correct for multiple testing, as defined in Finner (1993)

Usage

adjustFinner(pvalues)

Arguments

pvalues Raw p-values in either a vector or a matrix. Note that in case the p-values are in a matrix, all the values are used for the correction. Therefore, if the matrix contains repeated values (as those output by some methods in this package), the repetitions have to be removed.

Details

The test has been implemented according to the version in Garcia et al. (2010), page 2680-2682.

Value

A vector or matrix with the corrected p-values

References

Examples

data(data_gh_2008)
raw.pvalues <- friedmanPost(data_gh_2008)
raw.pvalues
adjustFinner (raw.pvalues)
adjustHolland

Holland correction of p-values.

Description

This function takes the particular list of possible hypotheses to correct for multiple testing, as defined in Holland and Copenhaver (1987).

Usage

`adjustHolland(pvalues)`

Arguments

- `pvalues` Raw p-values in either a vector or a matrix. Note that in case the p-values are in a matrix, all the values are used for the correction. Therefore, if the matrix contains repeated values (as those output by some methods in this package), the repetitions have to be removed.

Details

The test has been implemented according to the version in Garcia _et al._ (2010), page 2680-2682.

Value

A vector or matrix with the corrected p-values

References

Examples

```r
data(data_gh_2008)
raw.pvalues <- friedmanPost(data_gh_2008)
raw.pvalues
adjustHolland (raw.pvalues)
```
adjustLi

Li correction of p-values.

Description

This function takes the particular list of possible hypothesis to correct for multiple testing, as defined in Li (2008).

Usage

```r
adjustLi(pvalues)
```

Arguments

- `pvalues` Raw p-values in either a vector or a matrix. Note that in case the p-values are in a matrix, all the values are used for the correction. Therefore, if the matrix contains repeated values (as those output by some methods in this package), the repetitions have to be removed.

Details

The test has been implemented according to the version in Garcia *et al.* (2010), page 2680-2682. This is a simple procedure that provides good results when the highest p-value corrected is below 0.5. However, when the highest p-value is close to 1 the correction is extremely conservative. Actually, when the highest p-value is 1, all the corrected p-values are set at 1. Therefore, it is not advisable to be used under these circumstances.

Value

A vector or matrix with the corrected p-values

References

Examples

```r
data(data_gh_2008)
raw.pvalues <- friedmanPost(data_gh_2008)
adjustLi(raw.pvalues)
```
adjustRom

Rom correction of p-values

Description
This function takes the particular list of possible hypotheses to correct for multiple testing, as defined in Rom (1990).

Usage
adjustRom(pvalues, alpha = 0.05)

Arguments
- pvalues: Raw p-values in either a vector or a matrix. Note that in case the p-values are in a matrix, all the values are used for the correction. Therefore, if the matrix contains repeated values (as those output by some methods in this package), the repetitions have to be removed.
- alpha: Value for the overall test

Details
The test has been implemented according to the version in Garcia et al. (2010), page 2680-2682.

Value
A vector or matrix with the corrected p-values

References

Examples
data(data_gh_2008)
raw.pvalues <- friedmanPost(data_gh_2008)
raw.pvalues
adjustRom(raw.pvalues, alpha=0.05)
Description

This function implements the Shaffer's (static) multiple testing correction when the p-values correspond with pairwise comparisons.

Usage

adjustShaffer(raw.matrix)

Arguments

raw.matrix A matrix with the pairwise p-values. The p-values have to be, at least, in the upper part of the matrix.

Details

The test has been implemented according to the version in Garcia and Herrera (2008), page 2680.

Value

A symmetric matrix with the corrected p-values.

References

Examples

data(data_gh_2008)
raw.pvalues <- friedmanPost(data_gh_2008)
raw.pvalues
adjustShaffer(raw.pvalues)
anovaTest

ANOVA test for multiple comparisons

Description

This function performs F-test for K populations means.

Usage

```r
anovaTest(data, ...)  
```

Arguments

- `data`: Matrix where the test is performed
- `...`: Ignored

Details

The test has been implemented according to Test 22 in Kanji (2006).

Value

A list with class "htest" containing the following components: `statistic`, the value of the statistic used in the test; `p.value`, the p-value for the test; `method`, a character string indicating what type of test was performed and `data.name`, a character string giving the name of the data.

References

Examples

```r
data(data_gh_2008)  
anovaTest(data_gh_2008)
```

booleanMatrix

Creation of boolean matrices for highlighting results

Description

A simple function to create boolean matrices to be used when constructing LaTeX tables.

Usage

```r
booleanMatrix(data, find = "max", th = 0, by = "row")
```
contrastEstimationMatrix

Contrast estimation based on medians

Description
This function performs estimates the contrast between algorithms through the medians

Usage
contrastEstimationMatrix(data)

Arguments
- **data**
 - Matrix or data frame with the data to compare

Details
The test has been implemented according to Garcia et al. (2010), Section 3.3.

Arguments
- **data**
 - It can be a data frame, a matrix or a vector.

- **find**
 - A string indicating what has to be detected. Possible values are:
 - 'eq' All values equal to the value passed in `th`
 - 'le' All values lower or equal to the value passed in `th`
 - 'ge' All values greater or equal to the value passed in `th`
 - 'lw' All values lower than the value passed in `th`
 - 'gt' All values greater than the value passed in `th`
 - 'min' Minimum value in each row / column / matrix
 - 'max' Maximum value in each row / column / matrix

- **th**
 - Threshold used when `find` is set to 'eq', 'ge', 'le', 'gt' or 'lw'.

- **by**
 - A string or string vector indicating where the min/max values have to be find. It can be 'row', 'col' or 'mat' for the row, column and matrix min/max respectively.

Value
A boolean matrix that matches in dimension the output data and where the identified elements are marked as TRUE.

Examples
```r
data('data.gh.2008')
booleanMatrix(data.gh.2008, find='min', by='row')
booleanMatrix(data.gh.2008, find='ge', th=0.5)
```
Value

A matrix where the estimation of all the pairs of differences are output. The differences correspond to row-column.

References

Examples

```r
data(data_gh_2008)
contrastEstimationMatrix(data_gh_2008)
```

customPost

Function to use custom tests to perform post hoc comparisons.

Description

This function computes the raw p-values for all vs. all or all vs. control comparisons using a custom function.

Usage

```r
customPost(data, control = NULL, test, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data</code></td>
<td>Data set (matrix or data.frame) to apply the test. The column names are taken as the groups and the values in the matrix are the samples.</td>
</tr>
<tr>
<td><code>control</code></td>
<td>Either the number or the name of the column for the control algorithm. If this parameter is not provided, the all vs all comparison is performed.</td>
</tr>
<tr>
<td><code>test</code></td>
<td>Function to perform the test. It requires two parameters, <code>x</code> and <code>y</code>, the two samples to be compared, and it has to return a list that contains, at least, one element called <code>p.value</code> (as the <code>htest</code> objects that are usually returned by R’s statistical test implementations).</td>
</tr>
</tbody>
</table>

Value

A matrix with all the pairwise raw p-values.

Examples

```r
data(data_gh_2008)
test <- function(x, y, ...) {
  t.test(x, y, paired=TRUE)
}
customPost(data_gh_2008, control=1, test=test)
customPost(data_gh_2008, test=test)
```
data.blum.2015

Comparison of optimization algorithms in Blum et al. (2015)

Description

This dataset contains part of the results obtained in the comparison of decentralized optimization algorithms presented in Blum et al. (2015). The dataset contains 900 rows and 10 columns. Each row represents an instance of the maximum independent set problem (a graph). The first two are descriptors of the problem in each row (size and radius used to create random geometric graphs) and the other 8 contain the results obtained by 8 algorithms for the MIS problem instance.

Format

A data frame with 10 columns and 900 rows

Source

data.gh.2008

Example in Garcia and Herrera (2008)

Description

Dataset corresponding to the accuracy of 5 classifiers in 30 datasets. Each algorithm is in a column. This is the dataset used as example in Garcia and Herrera (2008).

Format

A data frame with 5 columns and 30 rows

Source

Example in Garcia and Herrera (2010)

Description

Dataset corresponding to the accuracy of 4 classifiers in 24 datasets. Each algorithm is in a column. This is the dataset used as example in Garcia and Herrera (2010).

Format

A data frame with 4 columns and 24 rows

Source

drawAlgorithmGraph

Hypotheses represented as a graph

Description

This function can be used to plot a graph where algorithms are nodes and algorithms that cannot be regarded as different are joined by an edge.

Usage

drawAlgorithmGraph(pvalue.matrix, mean.value, ..., alpha = 0.05,
font.size = 15, highlight = "min", highlight.color = "chartreuse3",
node.color = "gray30", font.color = "white", digits = 2,
node.width = 5, node.height = 2)

Arguments

pvalue.matrix Matrix with the p-values
mean.value Vector of values to be written together with the name of the algorithm
... Additional parameters to the Rgraphviz function. This is mainly to change the layout of the graph
alpha Significance level to determine which hypotheses are rejected.
font.size Size of the font for the node labels.
highlight A character indicating which node has to be highlighted. It can be the one with the maximum value ('max'), the minimum value ('min') or none ('none').
highlight.color
 Any R valid color for the highlighted node.
node.color Any R valid color for the non-highlighted nodes.
font.color Any R valid color for the node labels.
digits Number of digits to display the value associated to each node
node.width Numeric value for the width of the node
node.height Numeric value for the height of the node

See Also
plotPvalues, plotRanking, plotCD

Examples

data(data_blum_2015)
data <- filterData(data.blum.2015, condition="Size == 1000", remove.cols=1:2)
res <- postHocTest(data, test = "friedman", use.rank=TRUE, correct="bergmann")
This function requires the package Rgraphviz
drawAlgorithmGraph(res$corrected.pval, res$summary)

exhaustiveSets	Complete set of exhaustive sets.

Description
This function implements the algorithm in Figure 1, Garcia and Herrera (2008) to create, given a
set, the complete set of exhaustive sets E.

Usage
exhaustiveSets(set)

Arguments
set
 Set to create the exhaustive sets. The complexity of this algorithm is huge, so
 use with caution for sets of more than 7-8 elements. Indeed, the implementation,
 as it is, can be hardly used from sizes beyond 9.

Details
The algorithm makes use of ‘exhaustive.sets’, a structure provided with the pacakge that contains
the precomputed sets for size up to 9. With this structure the exhaustive sets are generated immediately,
but if the data is, for some reason, not loaded, the computation may take several hours (or
even days, depending on the size of the set).
filterData

Value
A list with all the possible exhaustive sets, without repetitions.

Examples

exhaustiveSets(c("A","B","C","D"))

filterData

Expression based row filtering

Description
This is a simple function to filter data based on an expression defined using the column names

Usage

filterData(data, condition = "TRUE", remove.cols = NULL)

Arguments

data A NAMED matrix or data frame to be filtered (column names are required).
condition A string indicating the condition that the row have to fulfill to be retained. The column names are used as variables in the condition (see examples bellow).
remove.cols Either a vector of column names or a vector of column indices to be removed from the result

Value
The original data where the rows for which the condition is FALSE and the columns in the vector remove.cols have been removed

See Also

summarizeData, writeTabular and the vignette vignette(topic="Data_loading_and_manipulation", package="scma"

Examples

data(data.gh.2008)
names(data.gh.2008)
filterData(data.gh.2008, condition="CN2 > 0.7 & Kernel < 0.7", remove.cols=1:2)
Description

This function computes the raw p-values for the post hoc based on Friedman’s Aligned Ranks test.

Usage

friedmanalignedrankspost(data, control = NULL, ...)

Arguments

data: Data set (matrix or data.frame) to apply the test. The column names are taken as the groups and the values in the matrix are the samples.
control: Either the number or the name of the column for the control algorithm. If this parameter is not provided, the all vs all comparison is performed.
...: Not used.

Details

The test has been implemented according to the version in Garcia et al. (2010), pages 2051,2054

Value

A matrix with all the pairwise raw p-values (all vs. all or all vs. control).

References

Examples

data(data_gh_2008)
friedmanAlignedRanksPost(data_gh_2008)
friedmanAlignedRanksPost(data_gh_2008, control=1)
Friedman’s Aligned Ranks test

Description

This function performs Friedman’s Aligned Rank test for multiple comparisons.

Usage

friedmanAlignedRanksTest(data, ...)

Arguments

data: Matrix where the test is performed
...
Ignored

Details

The test has been implemented according to the version in Garcia et al. (2008).

Value

A list with class “htest” containing the following components: statistic, the value of the statistic used in the test; parameter, the two degrees of freedom of the F distribution; p.value, the p-value for the test; method, a character string indicating what type of test was performed and data.name, a character string giving the name of the data.

References

Examples

data(data_gh_2008)
friedmanTest(data_gh_2008)
friedmanPost

Friedman’s post hoc raw p-values

Description

This function computes the raw p-values for the post hoc based on Friedman’s test.

Usage

```r
friedmanPost(data, control = NULL, ...)
```

Arguments

- `data` : Data set (matrix or data.frame) to apply the test. The column names are taken as the groups and the values in the matrix are the samples.
- `control` : Either the number or the name of the column for the control algorithm. If this parameter is not provided, the all vs all comparison is performed.
- `...` : Not used.

Details

The test has been implemented according to the version in Demsar (2006), page 12.

Value

A matrix with all the pairwise raw p-values (all vs. all or all vs. control).

References

Examples

```r
data(data.gh.2008)
friedmanPost(data.gh.2008)
friedmanPost(data.gh.2008, control=1)
```
firedmanTest

Description

This function performs Friedman’s test for multiple comparisons

Usage

friedmanTest(data, ...)

Arguments

data: Matrix where the test is performed
...
Ignored

Details

The test has been implemented according to the version in Demsar (2006), page 11

Value

A list with class "htest" containing the following components: statistic, the value of the statistic used in the test; parameter, the two degrees of freedom of the F distribution; p.value, the p-value for the test; method, a character string indicating what type of test was performed and data.name, a character string giving the name of the data.

References

Examples

data(data_gh_2008)
friedmanTest(data_gh_2008)
imandavenportTest
Iman Davenport’s modification of Friedman’s test

Description

This function performs Iman-Davenport modification of Friedman’s test

Usage

imandavenportTest(data, ...)

Arguments

data Matrix where the test is performed

... Ignored

Details

The test has been implemented according to the version in Demsar (2006), page 11

Value

A list with class “htest” containing the following components: statistic, the value of the statistic used in the test; parameter, the two degrees of freedom of the F distribution; p.value, the p-value for the test; method, a character string indicating what type of test was performed and data.name, a character string giving the name of the data.

References

Examples

data(data_gh_2008)
imandavenportTest(data_gh_2008)
multipleComparisonTest

Tests for multiple comparisons

Description

This function is a wrapper to multiple comparison tests.

Usage

```r
multipleComparisonTest(data, algorithms = NULL, group.by = NULL, test = "aligned ranks", correct = "finner", alpha = 0.05, ...)
```

Arguments

- **data**: A matrix or data frame containing the results obtained by the algorithms (columns) in each problem (rows). It can contain additional columns, but if any of the column has to be discarded (not used neither to group the problems nor to be part of the comparison), then it is mandatory to indicate, in the `algorithms` parameter, which columns contain the algorithm information.

- **algorithms**: Vector with either the names or the indices of the columns that contain the values to be tested. If not provided, the function assumes that all the columns except those indicated in `group.by` represent the results obtained by an algorithm.

- **group.by**: Vector with either the names or the indices of the columns to be used to group the data. Each group is tested independently. If `null`, all the data is used for a single comparison.

- **test**: Parameter that indicates the statistical test to be used. It can be either a string indicating one of the available test or a function. As a string, it can take the following values:
 - 'friedman' - Friedman test, as in Garcia and Herrera (2010)
 - 'aligned ranks' - Friedman's Aligned Ranks test, as in Garcia and Herrera (2010)
 - 'quade' - Quade test, as in Garcia and Herrera (2010)
 - 'anova' - ANOVA test, as in Test 22 in Kanji (2006).

If a function is provided, then it has to have as first argument a matrix containing the columns to be compared. The function has to return a list with, at least, an element named `p.value` (as the `htest` objects that are usually returned by R’s test implementations).

- **correct**: Either string indicating the type of correction that has to be applied or a function to correct the p-values for multiple testing; This parameter is only need in case the data is grouped. As a string, the valid values are:
 - 'holland' - Holland’s procedure, as in Garcia and Herrera (2010)
 - 'finner' - Finner’s procedure, as in Garcia and Herrera (2010)
 - 'rom' - Rom’s procedure, as in Garcia and Herrera (2010)
nemenyiTest

- Li's procedure, as in Garcia and Herrera (2010)
- Any of the methods implemented in the `p.adjust` function. For a list of options, type `p.adjust.methods`

 If a function is provided, the it has to receive, as first argument, a vector of p-values to be corrected and has to return a vector with the corrected p-values in the same order as the input vector.

alpha

Alpha value used in Rom's correction. By default, set at 0.05.

... Special argument used in Rom's correction. By default, set at 0.05.

Value

In case the `group.by` argument is not provided (or it is NULL), the function return an object of class `htest`. If columns for grouping are provided, then the function returns a matrix that includes, for each group, the values of the `group.by` columns, the raw p-value and the corrected p-value.

```r
# seealso friedmanTest, friedmanAlignedRanksTest, quadetest, anovaTest, adjustShaffer, adjustBergmannHommel, adjustHolland, adjustFinner, adjustRom, adjustLi
```

References

Examples

```r
# Grouped data
data(data_blum_RP1UI)
multipleComparisonTest (data=data_blum.2015, algorithms=c("FrogCOL", "FrogMIS", "FruitFly"), group.by=c("Size", "Radius"), test="quade", correct="finner")

# Not grouped data
data(data_gh_RPPXI)
multipleComparisonTest (data=data.gh.2008, test="aligned ranks", correct="hochberg")
```

Description

This function performs the Nemenyi test
Usage
nemenyiTest(data, alpha = 0.05)

Arguments
data Matrix or data frame where each algorithm is in a column
alpha Significance level

Details
The test has been implemented according to the version in Demsar (2006), page 7

Value
A list with class “htest” containing the following components: statistic, the value of the statistic used in the test; method, a character string indicating what type of test was performed; data.name, a character string giving the name of the data and diff.matrix, a matrix with all the pairwise differences of average rankings

References

Examples
data(data_gh_2008)
res <- nemenyiTest(data_gh_2008, alpha = 0.1)
res
res$diff.matrix

plotCD Critical difference plot

Description
This function plots the critical difference plots shown in Demsar (2006)

Usage
plotCD(results.matrix, alpha = 0.05, cex = 0.75, ...)

Arguments
results.matrix Matrix or data frame with the results for each algorithm
alpha Significance level to get the critical difference. By default this value is 0.05
cex Numeric value to control the size of the font. By default it is set at 0.75.
... Additional arguments for rankMatrix
plotDensities

References

See Also

drawAlgorithmGraph, plotRanking, plotPvalues

Examples

data(data_gh_2008)
plotCD(data.gh.2008, alpha=0.01)

plotDensities A matrix where columns represent the algorithms

... The plot is created using ggplo2. This special parameter can be used to pass additional parameters to the geom_line function used to plot the sample points. It can also be used to pass additional arguments to the density function, which is used to estimate the densities.

Value

A ggplo object.

See Also

qqplotGaussian

Examples

data(data_gh_2010)
plotDensities(data.gh.2010)
Description

This function plots the p-value matrix as a tile plot.

Usage

```r
plotPvalues(pvalue.matrix, alg.order = NULL, show.pvalue = TRUE, font.size = 5)
```

Arguments

- `pvalue.matrix`: Matrix with the p-values to plot
- `alg.order`: A permutation indicating the reordering of the algorithms
- `show.pvalue`: Logical value indicating whether the numerical values have to be printed
- `font.size`: Size of the p-values, if printed

Value

A `ggplot` object.

See Also

- `drawAlgorithmGraph`, `plotCD`

Examples

```r
data(data_gh_2008)
pvalues <- friedmanPost(data_gh_2008)
ordering <- order(summarizeData(data_gh_2008))
plotPvalues(pvalues, alg.order=ordering)
```

plotRanking

Ranking Plots

Description

This function creates a plot similar to the critical difference plot, but applicable to any corrected pvalue.
Usage

postHocTest(data, algorithms = NULL, group.by = NULL, test = "friedman", control = NULL, use.rank = FALSE, sum.fun = mean, correct = "finner", alpha = 0.05, ...)

Description

This function is a wrapper to run the post hoc tests. It can run both all vs. control and all vs. all post hoc tests.

Arguments

pvalues: Matrix or data frame with the p-values used to determine the differences
summary: Summary values used to place the algorithms. Typically it will be the average ranking, but it can be any other value
alpha: Significance level to determine the significativity of the differences. By default this value is 0.05
cex: Numeric value to control the size of the font. By default it is set at 0.75.
decreasing: A logical value to determine whether the values have to be plotter from smaller to larger or the other way round.

See Also

drawAlgorithmGraph, plotCD, plotPvalues

Examples

data(data_gh.2008)
test <- postHocTest(data_gh.2008, test="friedman", correct="bergmann", use.rank=TRUE)
plotRanking(pvalues=test$corrected.pval, summary=test$summary, alpha=0.05)
Arguments

data A matrix or data frame containing the results obtained by the algorithms (columns) in each problem (rows). It can contain additional columns, but if any of the column has to be discarded (not used neither to group the problems nor to be part of the comparison), then it is mandatory to indicate, in the algorithms parameter, which columns contain the algorithm information.

algorithms Vector with either the names or the indices of the columns that contain the values to be tested. If not provided, the function assumes that all the columns except those indicated in group.by represent the results obtained by an algorithm.

group.by Vector with either the names or the indices of the columns to be used to group the data. Each group is tested independently. If NULL, all the data is used for a single comparison.

test Parameter that indicates the statistical test to be used. It can be either a string indicating one of the available test or a function. As a string, it can take the following values:

- 'wilcoxon' - Wilcoxon Signed Rank test, as in Demsar (2006)
- 't-test' - t-test (R's t.test function with paired option set at TRUE)
- 'friedman' - Friedman post hoc test, as in Demsar (2006)
- 'aligned ranks' - Friedman's Aligned Ranks post hoc test, as in Garcia and Herrera (2010)
- 'quade' - Quade post hoc test, as in Garcia and Herrera (2010)
- 'tukey' - Tukey's ANOVA post hoc test, as in Test 28 in Kanji (2006).

If a function is provided, then it has to have as first argument a matrix containing the columns to be compared. The function has to return a list with, at least, an element named p.value (as the htest objects that are usually returned by R's test implementations).

control Either the name or the index of a column in the dataset (one of those in the algorithms vector), to be used as control. Alternatively, this argument can be 'min', to select the algorithm with the minimum value, 'max', to select the algorithm with the maximum value as control. If the argument is not provided (or is NULL), all the pairwise comparisons are performed instead of all vs. control comparisons.

use.rank If TRUE, then the summarization of the data is based on the ranks, rather than on the actual values. The selection of the algorithm with the maximum or minimum value is also done in terms of the summarized ranking.

sum.fun Function to be used to summarize the data. By default, average is used.

correct Either string indicating the type of correction that has to be applied or a function to correct the p-values for multiple testing. This parameter is only need in case the data is grouped. As a string, the valid values are:

- shaffer - Shaffer's (static) procedure, as in Garcia and Herrera (2008)
- bergmann - Bergman and Hommel’s procedure (similar to Shaffer dynamic), as in Garcia and Herrera (2008)
- holland - Holland’s procedure, as in Garcia and Herrera (2010)
- finner - Finner’s procedure, as in Garcia and Herrera (2010)
postHocTest

- `rom` - Rom's procedure, as in Garcia and Herrera (2010)
- `li` - Li's procedure, as in Garcia and Herrera (2010)
- Any of the methods implemented in the `p.adjust` function. For a list of options, type `p.adjust.methods`

. If a function is provided, the it has to recieve, as first argument, a vector of p-values to be corrected and has to return a vector with the corrected p-values in the same order as the input vector.

alpha Alpha value used in Rom's correction. By default, it is set at 0.05.

... Special argument used to pass additional parameters to the statistical test and the correction method.

Value

In all cases the function returns a list with three elements, the summarization of the data (a row per group), the raw p-values and the corrected p-values. When the data is grouped and all the pairwise comparisons are performed (no control is provided), the p-values are in three dimensional arrays where the last dimension is corresponds to the group. In any other cases the result is a matrix with one or more rows.

Note that Shaffer and Bergmann and Hommel's correction can only be applied when all the pairwise tests are conducted, due to their assumptions. Moreover, its use when the data is grouped (multiple pairwise comparisons) is not trivial and, thus, it is not possible to use it when the data is grouped.

References

See Also

`friedmanPost, friedmanAlignedRanksPost, quadePost, tukeyPost, adjustShaffer, adjustBergmannHommel, adjustHolland, adjustFinner, adjustRom, adjustLi`

Examples

```r
# Grouped data, all pairwise
data(data_blum_2015)
res <- postHocTest (data=data.blum_2015, algorithms=c("FrogCOL", "FrogMIS", "FruitFly"),
use.rank=TRUE, group.by=c("Size"), test="quade", correct="finner")

# Data summarization
```
Description

This function creates a quantile-quantile plot to assess the goodness of fit of a Gaussian distribution to a given sample.

Usage

qqplotGaussian(data, ...)

Arguments

data List of data points to check
...

The plot is created using ggplot2. This special parameter can be used to pass additional parameters to the geom_point function used to plot the sample points.

Value

A ggplot object.

See Also

plotDensities
Examples

```r
## Skewed distribution
sample <- rbeta(100, 2, 50)
qqplotGaussian(sample)
## Symmetric distribution
sample <- rbeta(100, 5, 5)
qqplotGaussian(sample)
```

quadePost

Quade post hoc raw p-values

Description

This function computes the raw p-values for the post hoc based on Quade’s test.

Usage

```r
quadePost(data, control = NULL, ...)
```

Arguments

- `data`
 Data set (matrix or data.frame) to apply the test. The column names are taken as the groups and the values in the matrix are the samples.
- `control`
 Either the number or the name of the column for the control algorithm. If this parameter is not provided, the all vs all comparison is performed.
- `...`
 Not used.

Details

The test has been implemented according to the version in Garcia *et al.* (2010), pages 2052,2054

Value

A matrix with all the pairwise raw p-values (all vs. all or all vs. control).

References

quadeTest

quadeTest Quade's test

Description

This function performs Quade's test for multiple comparisons

Usage

quadeTest(data, ...)

Arguments

data Matrix where the test is performed

... Ignored

Details

The test has been implemented according to the version in Garcia et al. (2008).

Value

A list with class "htest" containing the following components: statistic, the value of the statistic used in the test; parameter, the two degrees of freedom of the F distribution; p.value, the p-value for the test; method, a character string indicating what type of test was performed and data.name, a character string giving the name of the data.

References

Examples

data(data_gh_2008)
quadeTest(data_gh_2008)
rankMatrix \hspace{1em} \textit{Get the ranking matrix.}

Description

This function returns, given a matrix, the ranking of the columns in each row.

Usage

```r
rankMatrix(data, decreasing = TRUE, ...)
```

Arguments

- `data`\hspace{1em}The matrix to rank.
- `decreasing`\hspace{1em}Logical value indicating whether the top ranked has to be the highest value or not.
- `...`\hspace{1em}Not used

Value

A matrix containing the per-row rankings. In case of ties, the mean rank is obtained (e.g., if there is a tie between the 4th and the 5th column, both are assigned a mean rank of 4.5)

Examples

```r
data(data_gh.RPPXI)
rankMatrix(data_gh.RPPXI)
```

readComparisonDir \hspace{1em} \textit{Read data from a directory of comparison-like files}

Description

This function reads the data from all files in a directory. Each file is expected to be formatted as a comparison file, i.e., the file can have some columns that characterize the problem and one column per algorithm. If each row contains only the result obtained by one algorithm, use the `readExperimentDir` function.

Usage

```r
readComparisonDir(directory, alg.cols, names, fname.pattern, col.names = NULL, ...)
```
Arguments

- **directory**
 - Directory where the files are located.

- **alg.cols**
 - A vector column names or indices indicating which columns contain the results. The rest are assumed as descriptors of the problems.

- **names**
 - List of names for the variables to be extracted from the file name.

- **fname.pattern**
 - Regular expression to extract information from the file names. It has to be a regular expression that matches the name of the files and where the information to be extracted has to be between brackets. As an example, if the whole file name wants to be used, the expression '([^]*' can be used. For more example see the examples below or the vignette covering the data loading.

- **col.names**
 - Vector of names of the columns. If not NULL, the files are assumed not to have a header and the columns are named using this vector.

- **...**
 - Additional parameters for the read.csv function used to load the data. It can be used, for example, to set the separator (e.g., sep="\t"). Note that the header argument is automatically set according to the col.names argument.

Value

A data.frame where each column represents either a feature of the experiment or the result of running an algorithm. Algorithm columns are placed always at the end of the table.

See Also

- `readExperimentFile`, `readExperimentDir`, `readComparisonDir` and the vignette vignette(topic="Data_loading_and_manipulation"

Examples

```r
  dir <- paste(system.file("loading_tests", package="scmamp"), "comparison_files", sep="/")
  # The format of the files is rgg_size_SIZE_r_RADIUS.out, where variables to extract are in
  # capital letters.
  list.files(dir)[1]
  # The regular expression can be as simple as substituting each variable name in the expression
  # above by ([XXX]*), where XXX is the list of symbols that appear in the name.
  pattern <- "rgg_size_([0-9]*)_r_([0-9]*).out"
  var.names <- c("Size", "Radius")
  data <- readComparisonDir (directory=dir, alg.cols=1:8, names=var.names, 
                              fname.pattern=pattern)

  dim(data)
  head(data)
```

readComparisonFile
Read data from a comparison file
readExperimentDir

Description

This function reads the data from all the files in a directory. Only one column of results is expected in each file. If the files contain the results of two or more algorithms, see function readComparisonFile. The function can extract information from the file name.

Usage

readExperimentDir()

Arguments

file
alg.cols
col.names

Value

A data.frame where each column represents either a feature of the experiment or the result of running an algorithm. Algorithm columns are placed always at the end of the table.

See Also

readExperimentFile, readExperimentDir, readComparisonDir and the vignette vignette(topic="Data_loading_and_manipulation")

Examples

dir <- system.file("loading_tests", package="scmamp")
file <- paste(dir, "rgg_complete_comparison.out", sep="/")
data <- readExperimentDir(file=file, alg.cols=3:10)
dim(data)
head(data)

readExperimentDir Read data from an experiment-like files in a directory

Description

This function reads the data from a files where two or more algorithms are compared in different problems. The file can have some columns that characterize the problem and one column per algorithm. If each row contain only the result obtained by one algorithm, use the readExperimentFile function.

Usage

readComparisonFile(file, alg.cols, col.names = NULL, ...)

Arguments

file
alg.cols
col.names

Value

A data.frame where each column represents either a feature of the experiment or the result of running an algorithm. Algorithm columns are placed always at the end of the table.

See Also

readExperimentFile, readExperimentDir, readComparisonDir and the vignette vignette(topic="Data_loading_and_manipulation")

Examples

dir <- system.file("loading_tests", package="scmamp")
file <- paste(dir, "rgg_complete_comparison.out", sep="/")
data <- readComparisonFile(file=file, alg.cols=3:10)
dim(data)
head(data)
Usage

readExperimentDir(directory, names, fname.pattern, alg.var.name, value.col,
 col.names = NULL, ...)

Arguments

directory Directory with the files to load. It should only contain files to load, no other kind
 of file.

names List of names for the variables to be extracted from the file name

fname.pattern Regular expression to extract information from the file names. It has to be a
 regular expression that matches the name of the files and where the information
 to be extracted has to be between brackets. As an example, to store the whole file
 name the expression '\{[.]\}+' can be used. For more example see the examples
 below or the vignette covering the data loading.

alg.var.name Name of the variable that defines the algorithm used in the experiment. It can
 be either one of the variables extracted from the file name or the name of one of
 the columns in the file.

value.col Name or index (referred to the column in the file) of the column containing the
 results.

col.names Vector of names for the columns. If not provided (or NULL) the names will be
 read from the first line of the file.

... Additional parameters for the read.csv function used to load the data. It can be
 used, for example, to set the separator (e.g., sep="\t"). Note that the header
 argument is automatically set according to the col.names argument.

Details

Note that all the files should have the same format (same number of columns and, in case they have,
the same header)

Value

A data.frame where each column represents either a feature of the experiment or the result of running
an algorithm. Algorithm columns are placed always at the end of the table.

See Also

readExperimentFile, readComparisonFile, readComparisonDir and the vignette vignette(topic="Data_loading_and_manipulation")

Examples

dir <- paste(system.file("loading_tests",package="scmamp"), "experiment_files", sep="/")
The format of the files is rgg_size_SIZE_r_RADIUS_ALGORITHM.out, where variables
to extract are in capital letters.
list.files(dir)[1:5]
The regular expression can be as simple as substituting each variable name in the expression
above by ([XXX]*), where XXX is the list of symbols that appear in the name.
pattern <- "rgg_size_([0-9]*)_r_([0-9]*)_([a-z,A-Z,1,2]*).out"
readExperimentFile

Description

This function reads the data from a file where each row is an experiment characterized by some variables (one of which should be the algorithm used) and with one and only one numeric result. For files where there is more than one result per line see readComparisonFile.

Usage

readExperimentFile(file, alg.col, value.col, col.names = NULL, ...)

Arguments

file Path to the file to read.
alg.col Name or index of the column corresponding to the algorithm used in the experiment.
value.col Name or index of the column corresponding to the numerical result of the experiment.
col.names Vector of names for the columns. If not provided (or NULL) the names will be read from the first line of the file.
... Additional parameters for the read.csv function used to load the data. It can be used, for example, to set the separator (e.g., sep="\t"). Note that the header argument is automatically set according to the col.names argument.

Value

A data.frame where each column represents either a feature of the experiment or the result of running an algorithm. Algorithm columns are placed always at the end of the table.

See Also

readExperimentDir, readComparisonFile, readComparisonDir and the vignette vignette(topic="Data_loading_and_manipulation", package="scmamp")

Examples

dir <- system.file("loading_tests", package="scmamp")
file <- paste(dir, "rgg_complete_experiment.out", sep="/")
data <- readExperimentFile(file=file, alg.col="Algorithm", value.col="Evaluation")
dim(data)
head(data)
Statistical comparison of multiple algorithms

Description

This package has been develop to simplify the statistical assessment of algorithms when tested in different problems. It includes statistical tests, as well as some plotting functions.

Author(s)

Borja Calvo <borja.calvo@ehu.eus>, Guzman Santafe <guzman.santafe@unavarra.es>
Maintainer: Borja Calvo <borja.calvo@ehu.es>

See Also

For an overview of the use see
'vignette(topic= "Statistical_comparison_of_multiple_algorithms_in_multiple_problems",package="scmamp")
and
vignette(topic= "Data_loading_and_manipulation",package="scmamp")

summarizeData

Summarization of data

Description

This is a simple function to apply a summarization function to a matrix or data frame.

Usage

summarizeData(data, fun = mean, group.by = NULL, ignore = NULL, ...)

Arguments

data A matrix or data frame to be summarized.
fun Function to be used in the summarization. It can be any function that, taking as first argument a numeric vector, outputs a numeric value. Typical examples are mean, median, min, max or sd.
group.by A vector of either column names or column indices according to which the data will be grouped to be summarized.
ignore A vector of either column names or column indices of the columns that have to be removed from the output.
... Additional parameters to the summarization function (fun). For example, na.rm=TRUE to indicate that the missing values should be ignored.
Value

A data frame where, for each combination of the values in the columns indicated by `group.by`, each column (except those in `ignore`) contains the summarization of the values in the original matrix that have that combination of values. #’ @seealso filterData, writeTabular and the vignette vignette(topic="Data_loading_and_manipulation",package="scmamp")

Examples

data(data.blum.2015)
Group by size and radius. Get the mean and variance of only the last two # columns.
summarizeData(data.blum.2015, group.by=c("Radius","Size"), ignore=3:8,
 fun=mean, na.rm=TRUE)
summarizeData(data.blum.2015, group.by=c("Radius","Size"), ignore=3:8,
 fun=sd, na.rm=TRUE)

tukeyPost

Tukey post hoc test for ANOVA.

Description

This function computes all the pairwise p-values corrected using Tukey post hoc test.

Usage

tukeyPost(data, control = NULL, ...)

Arguments

data Data set (matrix or data.frame) to apply the test. The column names are taken as the groups and the values in the matrix are the samples.

control Either the number or the name of the column for the control algorithm. If this parameter is not provided, the all vs all comparison is performed.

... Not used.

Details

The test has been implemented according to Test 22 in Kanji (2006).

Value

A matrix with all the pairwise corrected p-values.

References

tukeyTest

Examples

```r
data(data_gh_2008)
tukeyPost(data_gh_2008)
tukeyPost(data_gh_2008, control=1)
```

tukeyTest Tukey test

Description

This function performs the Tukey test

Usage

```r
tukeyTest(data, alpha = 0.05)
```

Arguments

- **data**: Matrix or data frame where each algorithm is in a column
- **alpha**: Significance level

Details

The test has been implemented according to Test 28 in Kanji (2006).

Value

A list with class “htest” containing the following components: statistic, the value of the statistic used in the test; method, a character string indicating what type of test was performed; data.name, a character string giving the name of the data and diff.matrix, a matrix with all the pairwise absolute difference of average values.

References

Examples

```r
data(data_gh_2008)
res <- tukeyTest(data_gh_2008, alpha=0.1)
res res$diff.matrix
```
Description

This function implements the paired Wilcoxon signed-rank test

Usage

wilcoxonSignedTest(x, y, ...)

Arguments

x First sample
y Second sample
... Ignored

Details

The test has been implemented according to the version in Demsar (2006), page 7

Value

A list with class "htest" containing the following components: statistic, the value of the statistic used in the test; p.value, the p-value for the test; method, a character string indicating what type of test was performed and data.name, a character string giving the name of the data.

References

Examples

```r
x <- rbeta(50, 2, 20)
y <- x + runif(50) * 0.2
wilcoxonSignedTest(x, y)
```
Write a table in LaTeX format

Description

This is a simple function to create tabular environment in LaTeX

Usage

writeTabular(table, file = NULL, format = "g", bold = NULL,
italic = NULL, mark = NULL, mark.char = "*", na.as = "n/a",
align = "l", hrule = NULL, vrule = NULL, bty = c("t", "b", "l", "r"),
print.col.names = TRUE, print.row.names = TRUE, digits = 3,
wrap.as.table = FALSE, table.position = "h", caption = NULL,
caption.position = "b", centering = FALSE, label = NULL)

Arguments

table A data frame with the information to write
file Path of a file. If provided, the tabular is written in the given file. Otherwise, it is
to be printed in bold font
format Format for the numeric values. The accepted formats are those in the function
formatC. The typical values are 'g' to automatically set the format, 'f' for a
fixed sized floating point format and 'e' or 'E' for scientific notation
bold A matrix that matches 'table' in size indicating with TRUE those cells that have
to be printed in italic
italic A matrix that matches 'table' in size indicating with TRUE those cells that have
to be marked with a superscript symbol
mark A matrix that matches 'table' in size indicating with TRUE those cells that have
na.as Character to be used to write NA values in the table
align Character indicating the alignment of the columns ("l", "r" or "c")
hrule A vector of positions for the horizontal lines in the tabular. All the lines are
drawn after the indicated line. When the column names are included, 0 means
drawing a line after the column names. The maximum value is the number of
rows - 1 (for a line after the last line see parametr bty)
vrule Similar to 'hrule' but for vertical lines. The maximum value is the number of
columns - 1 (for a line after the last columns see parametr bty)
bty Vector indicating which borders should be printed. The vector can contain any
of subset of c("l", "r", "t", "b"), which represent, respectively, left, right, top
and bottom border. If the parameter is set to NULL no border is printed.
Value

LaTeX code to print the table

See Also

summarizeData, filterData and the vignette vignette(topic="Data_loading_and_manipulation", package="scmamp")

Examples

data(data_blum_2015)
args <- list()
 # Write the summarization of the data
 args$table <- summarizeData(data.blum.2015, group.by=1:2)

 # Set in bold the maximum values per row
 bold <- apply(args$table[, -(1:2)], MARGIN=1,
 FUN=function(x) {
 return(x==max(x))
 })
 args$bold <- cbind(FALSE, FALSE, t(bold))
 # Fixed width, 2 decimals for the values, 0 for the size and 3 for the radius
 args$format <- "f"
 args$digits <- c(0,3,rep(2,8))

 # Print the column names but not the row names
 args$print.row.names <- FALSE
Only top and bottom borders
args$bty <- c("t","b")

Add additional horizontal rules to separate the sizes
args$hrule <- c(0,10,20,30)

An additional vertical rule to separate size and radius from the results
args$vrule <- 2

Print the table
do.call(writeTabular, args)
Index

<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjustBergmannHommel</td>
<td>3, 22, 28</td>
</tr>
<tr>
<td>adjustFinner</td>
<td>4, 22, 28</td>
</tr>
<tr>
<td>adjustHolland</td>
<td>5, 22, 28</td>
</tr>
<tr>
<td>adjustLi</td>
<td>6, 22, 28</td>
</tr>
<tr>
<td>adjustRom</td>
<td>7, 22, 28</td>
</tr>
<tr>
<td>adjustShaffer</td>
<td>8, 22, 28</td>
</tr>
<tr>
<td>anovaTest</td>
<td>9, 22</td>
</tr>
<tr>
<td>booleanMatrix</td>
<td>9</td>
</tr>
<tr>
<td>contrastEstimationMatrix</td>
<td>10</td>
</tr>
<tr>
<td>customPost</td>
<td>11</td>
</tr>
<tr>
<td>data.blum.2015</td>
<td>12</td>
</tr>
<tr>
<td>data.gh.2008</td>
<td>12</td>
</tr>
<tr>
<td>data.gh.2010</td>
<td>13</td>
</tr>
<tr>
<td>drawAlgorithmGraph</td>
<td>13, 24–26</td>
</tr>
<tr>
<td>exhaustiveSets</td>
<td>14</td>
</tr>
<tr>
<td>filterData</td>
<td>15, 38, 42</td>
</tr>
<tr>
<td>formatC</td>
<td>41</td>
</tr>
<tr>
<td>friedmanAlignedRanksPost</td>
<td>16, 28</td>
</tr>
<tr>
<td>friedmanAlignedRanksTest</td>
<td>17, 22</td>
</tr>
<tr>
<td>friedmanPost</td>
<td>18, 28</td>
</tr>
<tr>
<td>friedmanTest</td>
<td>19, 22</td>
</tr>
<tr>
<td>geom_line</td>
<td>24</td>
</tr>
<tr>
<td>geom_point</td>
<td>29</td>
</tr>
<tr>
<td>ggplot</td>
<td>24, 25, 29</td>
</tr>
<tr>
<td>imanDavenportTest</td>
<td>20</td>
</tr>
<tr>
<td>max</td>
<td>37</td>
</tr>
<tr>
<td>mean</td>
<td>37</td>
</tr>
<tr>
<td>median</td>
<td>37</td>
</tr>
<tr>
<td>min</td>
<td>37</td>
</tr>
<tr>
<td>multipleComparisonTest</td>
<td>21</td>
</tr>
<tr>
<td>nemenyiTest</td>
<td>22</td>
</tr>
<tr>
<td>plotCD</td>
<td>14, 23, 25, 26</td>
</tr>
<tr>
<td>plotDensities</td>
<td>24, 29</td>
</tr>
<tr>
<td>plotPvalues</td>
<td>14, 24, 25, 26</td>
</tr>
<tr>
<td>plotRanking</td>
<td>14, 24, 25</td>
</tr>
<tr>
<td>postHocTest</td>
<td>26</td>
</tr>
<tr>
<td>qqplotGaussian</td>
<td>24, 29</td>
</tr>
<tr>
<td>quadePost</td>
<td>28, 30</td>
</tr>
<tr>
<td>quadeTest</td>
<td>22, 31</td>
</tr>
<tr>
<td>rankMatrix</td>
<td>23, 32</td>
</tr>
<tr>
<td>readComparisonDir</td>
<td>32, 33–36</td>
</tr>
<tr>
<td>readComparisonFile</td>
<td>33, 34–36</td>
</tr>
<tr>
<td>readExperimentDir</td>
<td>32–34, 34, 36</td>
</tr>
<tr>
<td>readExperimentFile</td>
<td>33–35, 36</td>
</tr>
<tr>
<td>scmamp</td>
<td>37</td>
</tr>
<tr>
<td>scmamp-package</td>
<td>37</td>
</tr>
<tr>
<td>sd</td>
<td>37</td>
</tr>
<tr>
<td>summarizeData</td>
<td>15, 37, 42</td>
</tr>
<tr>
<td>tukeyPost</td>
<td>28, 38</td>
</tr>
<tr>
<td>tukeyTest</td>
<td>39</td>
</tr>
<tr>
<td>wilcoxonSignedTest</td>
<td>40</td>
</tr>
<tr>
<td>writeTabular</td>
<td>15, 38, 41</td>
</tr>
</tbody>
</table>