Package ‘scoringTools’

October 14, 2022

Type Package

Title Credit Scoring Tools

Version 0.1.2

Date 2020-12-16

Maintainer Adrien Ehrhardt <adrien.ehrhardt@centraliens-lille.org>

Description Grouping essential tools for credit scoring. These statistical tools may be useful for other use-cases as well but were primarily designed for it. First, there are Reject Inference methods (Ehrhardt et al. (2017) <arXiv:1903.10855>). Second, we build upon the already CRAN-available package ‘discretization’ to automate discretization of continuous features.

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports discretization, sqldf, magrittr, dplyr, methods

Suggests MASS, rpart, Rmixmod, mvtnorm, ggplot2, speedglm, knitr, markdown, plotly, pROC, shiny, testthat, covr

URL https://adimajo.github.io/scoringTools/

BugReports https://github.com/adimajo/scoringTools/issues

VignetteBuilder knitr

Collate ‘allClasses.R’ ‘allMethods.R’ ‘augmentation.R’

‘twins.R’

NeedsCompilation no

Author Adrien Ehrhardt [aut, cre]

Repository CRAN

Date/Publication 2021-01-10 17:20:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>scoringTools-package</td>
<td>2</td>
</tr>
<tr>
<td>augmentation</td>
<td>3</td>
</tr>
<tr>
<td>chi2_iter</td>
<td>4</td>
</tr>
<tr>
<td>chiM_iter</td>
<td>5</td>
</tr>
<tr>
<td>discretization</td>
<td>7</td>
</tr>
<tr>
<td>discretize</td>
<td>8</td>
</tr>
<tr>
<td>echi2_iter</td>
<td>8</td>
</tr>
<tr>
<td>fuzzy_augmentation</td>
<td>10</td>
</tr>
<tr>
<td>generate_data</td>
<td>11</td>
</tr>
<tr>
<td>lendingClub</td>
<td>12</td>
</tr>
<tr>
<td>mdlp_iter</td>
<td>13</td>
</tr>
<tr>
<td>modChi2_iter</td>
<td>14</td>
</tr>
<tr>
<td>normalizedGini</td>
<td>16</td>
</tr>
<tr>
<td>parcelling</td>
<td>17</td>
</tr>
<tr>
<td>plot</td>
<td>18</td>
</tr>
<tr>
<td>predict</td>
<td>19</td>
</tr>
<tr>
<td>reclassification</td>
<td>19</td>
</tr>
<tr>
<td>reject_infered-class</td>
<td>21</td>
</tr>
<tr>
<td>runDemo</td>
<td>21</td>
</tr>
<tr>
<td>summary</td>
<td>21</td>
</tr>
<tr>
<td>topdown_iter</td>
<td>22</td>
</tr>
<tr>
<td>twins</td>
<td>24</td>
</tr>
</tbody>
</table>

Index: 26

scoringTools-package Credit Scoring Tools.

Description

Refer to the package’s vignette.

Author(s)

Maintainer: Adrien Ehrhardt <adrien.ehrhardt@centraliens-lille.org>

See Also

Useful links:

- https://adimajo.github.io/scoringTools/
Description

This function performs Reject Inference using the Augmentation technique. Note that this technique is theoretically better than using the financed clients scorecard in the MAR and misspecified model case.

Usage

augmentation(xf, xnf, yf)

Arguments

- `xf` The matrix of financed clients’ characteristics to be used in the scorecard.
- `xnf` The matrix of not financed clients’ characteristics to be used in the scorecard (must be the same features in the same order as `xf`).
- `yf` The matrix of financed clients’ labels

Details

This function performs the Augmentation method on the data. When provided with labeled observations \((x^f, y)\), it first fits the logistic regression model \(p_\theta\) of \(x^f\) on \(y\), then reweighs labeled observations according to their probability of being sampled, i.e. calculates the predicted probabilities of \(p_\theta\) on all observations, defines score-bands and calculates, in each of these score-bands, the probability of having been accepted as the proportion of labeled samples in that score-band. It then refits a logistic regression model \(p_\eta\) on the labeled samples.

Value

List containing the model using financed clients only and the model produced using the Augmentation method.

Author(s)

Adrien Ehrhardt

References

See Also

glm, speedglm
Examples

```r
# We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y

# We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
augmentation(xf, xnf, yf)
```

chi2_iter

Wrapper function for the chi2 function from the discretization package.

Description

This function discretizes a training set using the chi2 method and the user-provided parameters and chooses the best discretization scheme among them based on a user-provided criterion and eventually a test set.

Usage

```r
chi2_iter(
  predictors,
  labels,
  test = FALSE,
  validation = FALSE,
  proportions = c(0.3, 0.3),
  criterion = "gini",
  param = list(list(alp = 0.001, del = 0.5))
)
```

Arguments

- **predictors**: The matrix array containing the numeric attributes to discretize.
- **labels**: The actual labels of the provided predictors (0/1).
- **test**: Boolean: True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
- **validation**: Boolean: True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
- **proportions**: The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
The criterion ('gini', 'aic', 'bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.

List providing the parameters to test (see ?discretization::chi2, default=list(list(alp=0.001, del=0.5))).

Adrien Ehrhardt

Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
 sapply(
 seq_along(xd[row_id,]),
 function(element) theta[xd[row_id, element], element]
)
}))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))

chi2_iter(x, y)

chiM_iter

Wrapper function for the chiMerge function from the discretization package.

Description

This function discretizes a training set using the chiMerge method and the user-provided parameters and chooses the best discretization scheme among them based on a user-provided criterion and eventually a test set.
Usage

chiM_iter(
 predictors,
 labels,
 test = FALSE,
 validation = FALSE,
 proportions = c(0.3, 0.3),
 criterion = "gini",
 param = list(alpha = 0.05)
)

Arguments

predictors The matrix array containing the numeric attributes to discretize.
labels The actual labels of the provided predictors (0/1).
test Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
criterion The criterion ('gini','aic','bic') to use to choose the best discretization scheme among the generated ones (default: 'gini'). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
param List providing the parameters to test (see ?discretization::chiM, default=list(alpha = 0.05)).

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the discretization of X. To do so, the ChiMerge algorithm starts by putting each unique values of X in a separate value of the “discretized” categorical feature E. It then tests if two adjacent values of E are significantly different using the χ^2-test. In the context of Credit Scoring, a logistic regression is fitted between the “discretized” features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt
References

See Also
glm, speedglm, discretization

Examples

Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
 sapply(
 seq_along(xd[row_id,]),
 function(element) theta[xd[row_id, element], element]
)
}))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))

chiM_iter(x, y)

discretization

Class discretization

Description

An S4 class to represent a discretization scheme.

Slots

method.name The name of the used discretization method.
parameters The parameters associated with the used method.
best.disc The best discretization scheme found by the method given its parameters.
performance The performance obtained with the method given its parameters.
disc.data The discretized data: test set if test is TRUE; if test is FALSE and validation is TRUE, then it provides the discretized validation set. Otherwise, it provides the discretized training set.
disc.data The continuous data: test set if test is TRUE; if test is FALSE and validation is TRUE, then it provides the discretized validation set. Otherwise, it provides the discretized training set.
discretize

Generic method "discretize" for discretization objects.

Description

This defines the generic method "discretize" which will discretize a new input dataset given a discretization scheme of S4 class discretization.

Usage

discretize(object, data)

S4 method for signature 'discretization'
discretize(object, data)

Arguments

- **object**: the S4 discretization object
- **data**: new data to discretize

Details

This function discretizes a new data set using a previously learnt discretization scheme.

echi2_iter

Wrapper function for the extended Chi2 function from the discretization package.

Description

This function discretizes a training set using the extended Chi2 method and the user-provided parameters and chooses the best discretization scheme among them bused on a user-provided criterion and eventually a test set.

Usage

echi2_iter(
 predictors,
 labels,
 test = FALSE,
 validation = FALSE,
 proportions = c(0.3, 0.3),
 criterion = "gini",
 param = list(alp = 0.5)
)
Arguments

- **predictors**: The matrix array containing the numeric attributes to discretize.
- **labels**: The actual labels of the provided predictors (0/1).
- **test**: Boolean: True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
- **validation**: Boolean: True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
- **proportions**: The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
- **criterion**: The criterion (’gini’,’aic’,’bic’) to use to choose the best discretization scheme among the generated ones (default: ’gini’). Nota Bene: it is best to use ’gini’ only when test is set to TRUE and ’aic’ or ’bic’ when it is not. When using ’aic’ or ’bic’ with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
- **param**: List providing the parameters to test (see ?discretization::extendChi2, default=list(alp = 0.5)).

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the discretization of X. To do so, the ExtendedChi2 algorithm starts by putting each unique values of X in a separate value of the “discretized” categorical feature E. It then tests if two adjacent values of E are significantly different using the χ^2-test. In the context of Credit Scoring, a logistic regression is fitted between the “discretized” features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

References

Enea, M. (2015), speedglm: Fitting Linear and Generalized Linear Models to Large Data Sets, [https://CRAN.R-project.org/package=.speedglm](https://CRAN.R-project.org/package=speedglm)

fuzzy_augmentation

See Also

glm, speedglm, discretization

Examples

Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
 sapply(
 seq_along(xd[row_id,]),
 function(element) theta[xd[row_id, element], element]
)
}))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))

echi2_iter(x, y)

fuzzy_augmentation Fuzzy Augmentation

Description

This function performs Reject Inference using the Fuzzy Augmentation technique. Note that this
technique has no theoretical foundation and should produce (under the identifiability assumption) the same parameters’ estimates than the financed clients scorecard.

Usage

fuzzy_augmentation(xf, xnf, yf)

Arguments

xf The matrix of financed clients’ characteristics to be used in the scorecard.
xnf The matrix of not financed clients’ characteristics to be used in the scorecard (must be the same in the same order as xf!).
yf The matrix of financed clients’ labels

Details

This function performs the Fuzzy Augmentation method on the data. When provided with labeled observations \((x^f, y)\), it first fits the logistic regression model \(p_0\) of \(x^f\) on \(y\), then labels the unlabelled samples \(x^u\) with the predicted probabilities of \(p_0\), i.e. \(\hat{y}^u = p_0(y|x^u)\) then refits a logistic regression model \(p_0\) on the whole sample.
Value
List containing the model using financed clients only and the model produced using the Fuzzy Augmentation method.

Author(s)
Adrien Ehrhardt

References

See Also
glm, speedglm

Examples

```r
# We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y
# We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
fuzzy_augmentation(xf, xnf, yf)
```

generate_data

Generate data following different missingness mechanisms

Description
This function performs generates

Usage
generate_data(n = 100, d = 3, type = "MAR well specified")

Arguments
- **n** The number of samples to return.
- **d** The dimension of samples to return.
- **type** The matrix of financed clients' labels
Details

This function generates data from a uniform(0,1) distribution, and generates labels y according to a logistic regression on this data with random -1/1 parameter for each coordinate (MAR well-specified), the square of this data (MAR misspecified), or this data and some additional feature (from U(0,1) as well - MNAR).

Value

Dataframe containing features as x.1..d, labels as y.

Author(s)

Adrien Ehrhardt

References

Examples

We simulate data from financed clients
generate_data(n = 100, d = 3, type = "MAR well specified")

lendingClub
Lending Club mortgages.

Description

A dataset containing the information about Lending Club loans available online.

Usage

lendingClub

Format

A data frame with 2167 rows and 16 variables.

Source

https://www.lendingclub.com/
mdlp_iter

Description

This function discretizes a training set using the Minimum Description Length Principle method and the user-provided parameters.

Usage

```r
mdlp_iter(
    predictors,
    labels,
    test = FALSE,
    validation = FALSE,
    proportions = c(0.3, 0.3),
    criterion = "gini"
)
```

Arguments

- **predictors** The matrix array containing the numeric attributes to discretize.
- **labels** The actual labels of the provided predictors (0/1).
- **test** Boolean: True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
- **validation** Boolean: True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
- **proportions** The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
- **criterion** The criterion ("gini", "aic", "bic") to use to choose the best discretization scheme among the generated ones (default: "gini"). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the
discretization of X. To do so, the MDLP algorithm dichotomizes X and puts the subsequent two values in the “discretized” categorical feature E. It chooses the cut-off point so as to minimize the resulting entropy and goes on in the subsequent two sub-spaces it just created. In the context of Credit Scoring, a logistic regression is fitted between the “discretized” features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)
Adrien Ehrhardt

References

See Also
glm, speedglm, discretization

Examples
Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
 sapply(
 seq_along(xd[row_id,]),
 function(element) theta[xd[row_id, element], element]
)
}))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd)))

mdlp_iter(x, y)

modChi2_iter
Wrapper function for the modified Chi2 function from the discretization package.
Description

This function discretizes a training set using the modified Chi2 method and the user-provided parameters and chooses the best discretization scheme among them based on a user-provided criterion and eventually a test set.

Usage

modChi2_iter(
predictors,
labels,
test = FALSE,
validation = FALSE,
proportions = c(0.3, 0.3),
criterion = "gini",
param = list(alp = 0.5)
)

Arguments

predictors The matrix array containing the numeric attributes to discretize.
labels The actual labels of the provided predictors (0/1).
test Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).
validation Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).
proportions The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).
criterion The criterion ("gini","aic","bic") to use to choose the best discretization scheme among the generated ones (default: "gini"). Nota Bene: it is best to use 'gini' only when test is set to TRUE and 'aic' or 'bic' when it is not. When using 'aic' or 'bic' with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.
param List providing the parameters to test (see ?discretization::modChi2, default=list(alp = 0.5)).

Details

This function discretizes a dataset containing continuous features X in a supervised way, i.e. knowing observations of a binomial random variable Y which we would like to predict based on the discretization of X. To do so, the ModifiedChi2 algorithm starts by putting each unique values of X in a separate value of the “discretized” categorical feature E. It then tests if two adjacent values
of E are significantly different using the χ^2-test. In the context of Credit Scoring, a logistic regression is fitted between the “discretized” features E and the response feature Y. As a consequence, the output of this function is the discretized features E, the logistic regression model of E on Y and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

References

\[
\begin{align*}
x & = \text{matrix}(\text{runif}(300), \text{nrow} = 100, \text{ncol} = 3) \\
cuts & = \text{seq}(0,1,\text{length.out}= 4) \\
x_d & = \text{apply}(x,2, \text{function}(\text{col}) \text{ as.numeric}(\text{cut}(\text{col},\text{cuts}))) \\
theta & = t(\text{matrix}(c(0,0,0,2,2,2,-2,-2,-2), \text{nrow}=3, \text{ncol}=3)) \\
\log_\text{odd} & = \text{rowSums}(t(\text{sapply}(\text{seq}_\text{along}(\text{x}_d[,1]), \text{function}(\\text{row_id}) \text{sapply}(\text{seq}_\text{along}(\text{x}_d[\text{row_id},]), \text{function}(\text{element}) \text{theta}[\text{x}_d[\text{row_id},\text{element}],\text{element}])))) \\
y & = \text{stats::rbinom}(100,1,1/\text{(1+exp(-log_odd)))} \\
\text{modchi2}_\text{iter}(x,y)
\end{align*}
\]

See Also

glm, speedglm, discretization

normalizedGini

Calculating the normalized Gini index

Description

This function calculates the Gini index of a classification rule outputting probabilities. It is a classical metric in the context of Credit Scoring. It is equal to 2 times the AUC (Area Under ROC Curve) minus 1.

Usage

normalizedGini(actual, predicted)

Arguments

actual The numeric binary vector of the actual labels observed.
predicted The vector of the probabilities predicted by the classification rule.

Examples

normalizedGini(c(1, 1, 1, 0, 0), c(0.7, 0.9, 0.5, 0.6, 0.3))
Description

This function performs Reject Inference using the Parcelling technique. Note that this technique is theoretically good in the MNAR framework although coefficients must be chosen a priori.

Usage

parcelling(
 xf,
 xnf,
 yf,
 probs = seq(0, 1, 0.25),
 alpha = rep(1, length(probs) - 1)
)

Arguments

xf The matrix of financed clients’ characteristics to be used in the scorecard.

xnf The matrix of not financed clients’ characteristics to be used in the scorecard (must be the same in the same order as xf!).

yf The matrix of financed clients’ labels

probs The sequence of quantiles to use to make scorebands (see the vignette).

alpha The user-defined coefficients to use with Parcelling (see the vignette).

Details

This function performs the Parcelling method on the data. When provided with labeled observations \((x^f, y)\), it first fits the logistic regression model \(p_0\) of \(x^f\) on \(y\), then labels the unlabelled samples \(x^u\) with the observed bad rate in user-defined classes of predicted probabilities of \(p_0\) reweighted using user-supplied weights, i.e. \(\hat{y}^u = \alpha_k T(k)\) where \(k\) denotes the group (which depends on \(p_0\)) and \(T(k)\) the observed bad rate of labeled observations in this group. It then refits a logistic regression model \(p_0\) on the whole sample.

Value

List containing the model using financed clients only and the model produced using the Parcelling method.

Author(s)

Adrien Ehrhardt
References

See Also

glm, speedglm

Examples

We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y
We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
parcelling(xf, xnf, yf)

plot

Different kinds of plots using either plotly (if available) or the standard plot (graphics package).

Description

This function aims at producing useful graphs in the context of credit scoring in order to simplify the validation process of the produced credit score.

Usage

plot(x, y, ...)

plot.discretization(x, type)

S4 method for signature 'discretization'
plot(x, type)

Arguments

x S4 discretization object.
y (For standard plots only)
... (For standard plots only)
type Type of plot. For now only "ROC" is supported.
predict

Prediction on a raw test set of the best logistic regression model on discretized data.

Description
This function discretizes a user-provided test dataset given a discretization scheme provided by an S4 "discretization" object. It then applies the learnt logistic regression model and outputs its prediction (see predict.glm).

Usage
predict(object, ...)
predict.discretization(object, newdata)
predict.reject_infered(object, newdata, ...)

S4 method for signature 'discretization'
predict(object, newdata)

S4 method for signature 'reject_infered'
predict(object, newdata, ...)

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>The S4 reject_infered object.</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>Additional parameters to pass on to base predict.</td>
</tr>
<tr>
<td>newdata</td>
<td>The test dataframe to discretize and for which we wish to have predictions.</td>
</tr>
</tbody>
</table>

reclassification

Reclassification

Description
This function performs Reject Inference using the Reclassification technique. Note that this technique has no theoretical foundation as it performs a one-step CEM algorithm.

Usage
reclassification(xf, xnf, yf, thresh = 0.5)
Arguments

- **xf**: The matrix of financed clients' characteristics to be used in the scorecard.
- **xnf**: The matrix of not financed clients' characteristics to be used in the scorecard (must be the same in the same order as xf!).
- **yf**: The matrix of financed clients' labels.
- **thresh**: The threshold to use in the Classification step, i.e. the probability above which a not financed client is considered to have a label equal to 1.

Details

This function performs the Reclassification method on the data. When provided with labeled observations \((x^f, y)\), it first fits the logistic regression model \(p_\theta\) of \(x^f\) on \(y\), then considers that unlabeled observations are of the expected class given by the model \(p_\theta\) (this is equivalent to a CEM algorithm). It then refits a logistic regression model \(p_\eta\) on the whole sample.

Value

List containing the model using financed clients only and the model produced using the Reclassification method.

Author(s)

Adrien Ehrhardt

References

See Also

glm, speedglm

Examples

```r
# We simulate data from financed clients
xf <- matrix(runif(100 * 2), nrow = 100, ncol = 2)
theta <- c(2, -2)
log_odd <- apply(xf, 1, function(row) theta %*% row)
yf <- rbinom(100, 1, 1 / (1 + exp(-log_odd)))
# We simulate data from not financed clients (MCAR mechanism)
xnf <- matrix(runif(100 * 2), nrow = 100, ncol = 2)
reclassification(xf, xnf, yf)
```
reject_infered-class

Class reject_infered

Description
An S4 class to represent a reject inference technique.

Slots
- method_name: The name of the used reject inference method.
- financed_model: The logistic regression model on financed clients.
- acceptance_model: The acceptance model (if estimated by the given method).
- infered_model: The logistic regression model resulting from the reject inference method.

runDemo
Launch the Shiny demo app.

Description
Launch the Shiny demo app.

Usage
runDemo()

summary
Summary

Description
Summary generic.

Usage
summary(object, ...)
summary.discretization(object)

S4 method for signature 'discretization'
summary(object)

Arguments
- object: S4 discretization object.
- ...: Other parameters to summary
topdown_iter

Wrapper function for the 3 topdown functions from the discretization package.

Description

This function discretizes a training set using the user provided method(s) among the three topdown methods from the discretization package. Depending on the user providing a test and/or a validation set, the function returns the best discretization for logistic regression.

Usage

topdown_iter(
 predictors,
 labels,
 test = F,
 validation = F,
 proportions = c(0.3, 0.3),
 criterion = "gini",
 param = list(1, 2, 3)
)

Arguments

predictors The matrix array containing the numeric attributes to discretize.

labels The actual labels of the provided predictors (0/1).

test Boolean : True if the algorithm should use predictors to construct a test set on which to search for the best discretization scheme using the provided criterion (default: TRUE).

validation Boolean : True if the algorithm should use predictors to construct a validation set on which to calculate the provided criterion using the best discretization scheme (chosen thanks to the provided criterion on either the test set (if true) or the training set (otherwise)) (default: TRUE).

proportions The list of the (2) proportions wanted for test and validation set. Only the first is used when there is only one of either test or validation that is set to TRUE. Produces an error when the sum is greater to one. Useless if both test and validation are set to FALSE. Default: list(0.2,0.2).

criterion The criterion (‘gini’, ‘aic’, ‘bic’) to use to choose the best discretization scheme among the generated ones (default: ‘gini’). Nota Bene: it is best to use ‘gini’ only when test is set to TRUE and ‘aic’ or ‘bic’ when it is not. When using ‘aic’ or ‘bic’ with a test set, the likelihood is returned as there is no need to penalize for generalization purposes.

param List providing the methods to test (from 1, 2 and 3, default: list(1,2,3)).
Details

This function discretizes a dataset containing continuous features \(X \) in a supervised way, i.e. knowing observations of a binomial random variable \(Y \) which we would like to predict based on the discretization of \(X \). To do so, the Topdown algorithms ... In the context of Credit Scoring, a logistic regression is fitted between the “discretized” features \(E \) and the response feature \(Y \). As a consequence, the output of this function is the discretized features \(E \), the logistic regression model of \(E \) on \(Y \) and the parameters used to get this fit.

Author(s)

Adrien Ehrhardt

References

See Also

glm, speedglm, discretization

Examples

Simulation of a discretized logit model
x <- matrix(runif(300), nrow = 100, ncol = 3)
cuts <- seq(0, 1, length.out = 4)
xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts)))
theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3))
log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) {
sapply(
 seq_along(xd[row_id,]),
 function(element) theta[xd[row_id, element], element]
)
})))
y <- stats::rbinom(100, 1, 1 / (1 + exp(-log_odd))

topdown_iter(x, y)
Description

This function performs Reject Inference using the Twins technique. Note that this technique has no theoretical foundation.

Usage

twins(xf, xnf, yf)

Arguments

- **xf**: The matrix of financed clients’ characteristics to be used in the scorecard.
- **xnf**: The matrix of not financed clients’ characteristics to be used in the scorecard (must be the same in the same order as xf!).
- **yf**: The matrix of financed clients’ labels

Details

This function performs the Twins method on the data. When provided with labeled observations \((x^\ell, y)\), it first fits the logistic regression model \(p_\theta\) of \(x^\ell\) on \(y\), then fits the logistic regression model \(p_\omega\) of \(X\) on the binomial random variable denoting the observation of the data \(Z\). We use predictions of both models on the labeled observations to construct a “meta”-score based on logistic regression which predicted probabilities are used to reweight samples and construct the final score \(p_\eta\).

Value

List containing the model using financed clients only, the model of acceptance and the model produced using the Twins method.

Author(s)

Adrien Ehrhardt

References

See Also

glm, speedglm
Examples

We simulate data from financed clients
df <- generate_data(n = 100, d = 2)
xf <- df[, -ncol(df)]
yf <- df$y

We simulate data from not financed clients (MCAR mechanism)
xnf <- generate_data(n = 100, d = 2)[, -ncol(df)]
twins(xf, xnf, yf)
Index

* Chi2
 ech2_iter, 8
 modChi2_iter, 14
* chi2
 chi2_iter, 4
* chiMerge
 chiM_iter, 5
* credit
 augmentation, 3
 fuzzy_augmentation, 10
 generate_data, 11
 parcelling, 17
 reclassification, 19
 twins, 24
* datasets
 lendingClub, 12
* discretization
 chi2_iter, 4
 chiM_iter, 5
 ech2_iter, 8
 mdp_iter, 13
 modChi2_iter, 14
 topdown_iter, 22
* extended
 ech2_iter, 8
* gini index
 normalizedGini, 16
* inference
 augmentation, 3
 fuzzy_augmentation, 10
 generate_data, 11
 parcelling, 17
 reclassification, 19
 twins, 24
* mdp
 mdp_iter, 13
* modified
 modChi2_iter, 14
* réintégration
 augmentation, 3
 fuzzy_augmentation, 10
 generate_data, 11
 parcelling, 17
 reclassification, 19
 twins, 24
* reject
 augmentation, 3
 fuzzy_augmentation, 10
 generate_data, 11
 parcelling, 17
 reclassification, 19
 twins, 24
* scorecard
 augmentation, 3
 fuzzy_augmentation, 10
 generate_data, 11
 parcelling, 17
 reclassification, 19
 twins, 24
* scoring
 augmentation, 3
 fuzzy_augmentation, 10
 generate_data, 11
 parcelling, 17
 reclassification, 19
 twins, 24
* topdown
 topdown_iter, 22
 augmentation, 3
 chi2_iter, 4
 chiM_iter, 5
 discretization, 7
 discretize, 8
 discretize, discretization-method (discretize), 8
 ech2_iter, 8
INDEX

fuzzy_augmentation, 10
generate_data, 11
lendingClub, 12
mdlp_iter, 13
modChi2_iter, 14
normalizedGini, 16
parcelling, 17
plot, 18
plot.discretization-method (plot), 18
plot.discretization (plot), 18
predict, 19
predict.discretization-method (predict), 19
predict.reject_inferred-method (predict), 19
predict.discretization (predict), 19
predict.reject_inferred (predict), 19
reclassification, 19
reject_inferred-class, 21
runDemo, 21
scoringTools (scoringTools-package), 2
scoringTools-package, 2
summary, 21
summary.discretization-method (summary), 21
summary.discretization (summary), 21
topdown_iter, 22
twins, 24