Package ‘scpm’

February 17, 2020

Type Package

Title An R Package for Spatial Smoothing

Version 2.0.0

Date 2020-02-14

Author Mario A. Martinez Araya [aut,cre,cph]

Maintainer Mario A. Martinez Araya <r@marioma.me>

Description Group of functions for spatial smoothing using cubic splines and variogram maximum likelihood estimation. Also allow the inclusion of linear parametric terms and change-points for segmented smoothing splines models.

License GPL (>= 2)

Depends R (>= 2.10), stats, Matrix, RandomFields, interp

Imports methods, rgl, lattice, mvtnorm, MASS, graphics, grDevices

Enhances fields

URL https://marioma.me?i=soft

Encoding UTF-8

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-02-17 13:30:02 UTC

R topics documented:

- scpm-package .. 2
- A1. Create sss data .. 3
- A2. Define linear terms .. 4
- A3. Define unknown changes 5
- A4. Define bivariate Spline 5
- A5. Estimate the model .. 6
- A6. Obtain approximation 10
- B1. Testing surface ... 10
- B2. Plotting ... 11
scpm-package

'An R Package for Spatial Smoothing'

Description

Group of functions for spatial smoothing using cubic splines and variogram maximum likelihood estimation. Also allow the inclusion of linear parametric terms and change-points for segmented smoothing splines models.

Author(s)

Mario A. Martinez Araya [aut,cre,cph]

Examples

data(landim1, package = "scpm")
if(FALSE){
library(scpm)
creating the dataset
 d <- as.sss(landim1, coords = NULL, coords.col = 1:2, data.col = 3:4)
 # fitting spatial linear model with response A and covariate B
 # Gneiting covariance function in the errors
 m0 <- scp(A ~ linear(~ B), data = d, model = "RMgneiting")
 # adding a bivariate cubic spline based on the coordinates
 m1 <- scp(A ~ linear(~ B) + s2D(penalty = "cs"), data = d, model = "RMgneiting")
 # plotting observed and estimated field from each model
 par(mfrow=c(2,2))
 plot(m0, what = "obs", type = "persp", main = "Model null - y")
 plot(m0, what = "fit", type = "persp", main = "Model null - fit")
 plot(m1, what = "obs", type = "persp", main = "Model alternative - y")
 plot(m1, what = "fit", type = "persp", main = "Model alternative - fit")
 # plotting the estimated semivariogram from each model
 par(mfrow=c(1,2))
 Variogram(m0, main="Semivariogram - model null", ylim = c(0,0.7))
 Variogram(m1, main="Semivariogram - model alternative", ylim = c(0,0.7))
 # summary of the estimated coefficients
 summary(m0)
 summary(m1)
 # some information criteria
 AIC(m0)
 AIC(m1)
A1. Create sss data

Convert an object to the class ‘sss’ for spatial smoothing splines

Description

Create a matrix or data.frame to a valid dataset of class ‘sss’ for spatial smoothing splines. Those dataset can be used later by functions s2D for tensor product (natural) cubic splines or p-splines, and scp for estimating spatial smoothing splines models.

Usage

as.sss(X, coords, coords.col, data.col, ...)
create.sss(coords, data, ...)
is.sss(x)
sss2df(x)

Arguments

X a matrix or data-frame. Every row must correspond to a point location in a two-dimensional space (coordinates). Coordinates columns can be included in X or defined separately using the argument coords. Some columns can also correspond to variables measured at the different point locations.

coords two-columns numeric matrix of coordinates (optional).
data a data-frame containing the variables measured at the locations given by coords.
coords.col numeric vector. The number of columns in X that contains the coordinates.
data.col numeric vector. The number of columns in X that contains variables measured at the points locations.
... slots elements to create a new sss dataset. Required slots are data, coords, grid, knots, W, contract (to be discarded in the future), and regular. See Value for an explanation about each slot requirements.
x an object to check validity as member of class sss.

Value

data a data-frame containing the variables measured at the locations given by coords.
coords a matrix containing the two columns of observed coordinates for the data.
grid a grid matrix containing the two columns of coordinates.
A2. Define linear terms

Linear components of the mean of the model

Description
Define parametric components of the mean as linear terms.

Usage
linear(formula, data = NULL, contrasts = NULL, intercept = FALSE)

Arguments
formula formula expression. A formula expression as described in formula.
data data frame. Where to search for the covariates?
contrasts character. A contrast method for factor covariates. Default to ‘contr.treatment’.
intercept logical. TRUE to include an intercept term, FALSE otherwise (default).

Author(s)
Mario A. Martinez Araya, <r@marioma.me>
A3. Define unknown changes

Changes in the pattern of response

Description

Define unknown changes in the pattern of response to be estimated.

Usage

```r
cp(x, psi, data = NULL, groups = NULL, contrasts = NULL, only.UV = FALSE)
```

Arguments

- `x` numeric vector. Covariate over which range define unknown change-points.
- `psi` numeric vector. Starting values for the change-points.
- `data` data frame. Where to search for the covariate?
- `groups` not used at the moment. To be implemented.
- `only.UV` logical. Not required.

Author(s)

Mario A. Martínez Araya, <r@marioma.me>

A4. Define bivariate Spline

Bivariate spline

Description

Define a bivariate spline using tensor products or thin plate splines.

Usage

```r
s2D(data = NULL, penalty = c("none", "cs", "ps", "tps"),
    is.X = c("none", "tensor", "tps"), intercept = TRUE,
    ps.order = 2, aniso.angle = 0, aniso.ratio = 1,
    env = .GlobalEnv, ...)
```
A5. Estimate the model

Arguments

- **data**
 - sss object. Data of class sss generated by `as.sss` or `create.sss`.
- **penalty**
 - character. Type of spline to use and penalty to define. One of ‘cs’ or ‘ps’ for cubic splines based on tensor products, ‘tps’ for thin plate splines or ‘none’. ‘cs’ define the penalty based on roughness matrices of natural cubic splines while ‘ps’ define the penalty based on differences of order `ps.order`. See `scp`. If `penalty="none"` then no spline nor penalty are defined and the model for the spatial surface is defined by `is.X`.
- **is.X**
 - character. Model for the spatial surface. One of ‘tensor’, ‘tps’ or ‘none’. Only required if `penalty="none"`. See details.
- **intercept**
 - logical. Define whether to include an intercept or not. Default to TRUE.
- **ps.order**
 - integer. Order for differences if `penalty = "ps"`.
- **aniso.angle**
 - numeric. Angle for geometric anisotropy.
- **aniso.ratio**
 - numeric. Ratio between \([0,1]\) for geometric anisotropy.
- **env**
 - environment. Where to search for data if `data=NULL`.
- **...**
 - additional arguments. Not required.

Details

Note that `is.X` is only needed if `penalty="none"`. By defining `is.X="none"` it only define an intercept (if `intercept=TRUE`), `is.X="tps"` defines an intercept, coordinate 1, and coordinate 2 as covariates, while `is.X="tensor"` defines also the interaction coordinate 1*coordinate 2. See `scp`.

Author(s)

Mario A. Martinez Araya, <r@marioma.me>

Description

Fit a spatial semiparametric model based on splines including unknown changes in the pattern of response.

Usage

```r
scp(formula, data, initial = NULL, contrasts = NULL,
    model = "exponential", fix.nugget = FALSE, fix.kappa = FALSE,
    nugget.tol = 1e-15, angle = 0, ratio = 1, use.reml = FALSE,
    use.profile = TRUE, chMaxiter = 20, control = list())
```
A5. Estimate the model

Arguments

- **formula**: formula. An expression to specify the model to fit. See 2. Mean model.
- **data**: sss class object. A dataset object generated by any of the commands as.sss or create.sss.
- **initial**: named list. The starting values for the covariance parameters of the model. If initial=NULL then it is used an internal grid search to define the starting values.
- **contrasts**: character. A contrast method for factor covariates. Default to ‘contr.treatment’.
- **model**: character. Name of the semivariogram model to estimate for the spatial dependence. See Semivariogram Model.
- **fix.nugget**: logical or numeric. If FALSE the nugget τ^2 is estimated. If fix.nugget is a numeric value then the nugget τ^2 is set to the value defined for fix.nugget.
- **fix.kappa**: logical or numeric vector. If FALSE the parameters κ are estimated. If fix.kappa is a numeric vector then κ is set to the values of the vector defined for fix.kappa.
- **nugget.tol**: numeric. Threshold for microscale spatial variations to define the nugget effect. Default to 1.0×10^{-15}. Do not modify unless know what is being doing.
- **angle**: numeric. Angle for geometric anisotropy. Note that this overwrites any specification for aniso.angle in s2D.
- **ratio**: numeric. Ratio between $[0,1]$ for geometric anisotropy. Note that this overwrites any specification for aniso.ratio in s2D.
- **use.reml**: logical. For using REML estimation set to TRUE, for ML estimation set to FALSE (default).
- **use.profile**: logical. For profiling set to TRUE (default).
- **chMaxiter**: integer. Maximum number of iterations for the loop estimating changes in the pattern of response.
- **control**: named list. Options to control the optimization. See argument control in command optim.

1. Semiparametric model

Assume that the response variable admit the trend surface model

$$Y(s) = a^T b + g(s) + \epsilon(s)$$

where a is a known vector of covariates and b their coefficients; $g(s)$ is a deterministic bivariate spline and $\epsilon(s)$ is a Gaussian spatial process (GSP) with mean zero and covariance depending only on the distance h and given by $\text{Cov}(\epsilon(s+h),\epsilon(s))$. This model is also called a trend surface model. Given n observed locations $s_1,\ldots,s_n \in S \subset \mathbb{R}^2$ in a two-dimensional space, then the model is

$$Y = Ab + g + \epsilon$$

where $Y = (Y(s_1),\ldots,Y(s_n))^T$, A is the known matrix of covariates, $g = (g(s_1),\ldots,g(s_n))^T$ and $\epsilon = (\epsilon(s_1),\ldots,\epsilon(s_n))^T$. The covariance matrix is given by $\text{Cov}(\epsilon,\epsilon) = \Sigma = \sigma^2 R$ with R a valid correlation matrix. Thus $Y \sim N_n(\mu,\Sigma)$ where $\mu = Ab + g$ and the likelihood function is $L(b,g,\sigma^2,\theta;Y) = (2\pi)^{-n/2}|\Sigma|^{-1/2}\exp\{-\frac{1}{2}(Y-\mu)^T\Sigma^{-1}(Y-\mu)\}$ with θ the parameters that define the correlation matrix R.
2. Mean model

It can be defined by the commands:

- **linear** that defines the covariates in the matrix \(A \). Note that more than one \(\text{linear} \) command can be defined. See **linear**.

- **cp** defines changes in the pattern of response by including the covariates \((z_d - \psi_d^{(0)}) \times 1\{z_d > \psi_d^{(0)}\}\)
 and \(-1\{z_d > \psi_d^{(0)}\}\) for \(d = 1, \ldots, G \) into the matrix \(A \). Note that more than one \(\text{cp} \) command can be defined. See **cp**.

- **s2D** define the bivariate spline \(g \). Note that only one **s2D** command can be defined. See **s2D**.

3. Covariance model and nugget effect

Given a distance \(h \) define \(u = ||T_{angle, ratio} h|| = (h^T T_{angle, ratio} h)^{1/2} \in \mathbb{R} \) where \(T_{angle, ratio} \) is a rotation matrix for geometric anisotropy. The errors are given by the process \(\epsilon(s) = \eta(s) + \xi(s) \) where \(\xi \) is a GSP with mean zero and covariance

\[
\text{Cov}(\xi(s), \xi(s + h)) = C_{\xi}(u; \phi, \kappa) = \sigma_0^2 \rho_{\xi}(u; \phi, \kappa)
\]

with \(\rho_{\xi}(u; \phi, \kappa) \) the correlation function; and \(\eta \) is a nugget effect with covariance

\[
\text{Cov}(\eta(s), \eta(s + h)) = C_{\eta}(u; \tau^2, \text{tol.nugget}) = \tau^2 \rho_{\eta}(u; \text{tol.nugget})
\]

with correlation function \(\rho_{\eta}(u; \text{tol.nugget}) = 1\{u < \text{tol.nugget}\} \). Therefore the covariance of the process \(\epsilon \) is given by

\[
\text{Cov}(\epsilon(s), \epsilon(s + h)) = C_{\epsilon}(u; \sigma^2, \theta, \text{tol.nugget}) = \sigma^2 \rho_{\epsilon}(u; \theta, \text{tol.nugget})
\]

with correlation function given by

\[
\rho_{\epsilon}(u; \theta, \text{tol.nugget}) = (1 - \rho_{\eta}(u; \text{tol.nugget}) + \rho_{\epsilon}(u; \phi, \kappa)
\]

where \(\theta = (\rho_{\epsilon}, \phi, \kappa)^T \) are the parameters with \(\rho_{\epsilon} = \sigma_0^2 / \sigma^2 \), \(\sigma^2 = \tau^2 + \sigma_0^2 \), and \(\text{tol.nugget} \) is the argument that controls the largest distance at which micro-scale variations can affect the observed outcome. By default \(\text{tol.nugget} \) is set to \(1.0 \times 10^{15} \). The parameters \(\phi, \kappa \) define the correlation function of the process \(\xi \) with \(\phi \) usually called the range parameter and \(\kappa \) depending on the model selected. The semivariogram can be expressed as

\[
\gamma_{\epsilon}(u; \sigma^2, \theta, \text{tol.nugget}) = \sigma^2 (1 - \rho_{\epsilon}(u; \theta, \text{tol.nugget}))
\]

where \(\tau^2 \) is the nugget effect, \(\sigma^2 \) is the sill, and \(\sigma_0^2 \) is the partial sill. Note that when \(\text{angle} = 0 \) and \(\text{ratio} = 1 \) the matrix \(T_{angle, ratio} \) is an identity matrix and \(u = h \) so the correlation \(\rho_{\epsilon}(u; \theta, \text{tol.nugget}) \) is isotropic. Use different values for \(\text{angle} \) and \(\text{ratio} \) to define a geometric anisotropic correlation function. Then the covariance matrix \(\Sigma = \sigma^2 R \) where \(R \) is the correlation matrix originated from \(\rho_{\epsilon}(u; \theta, \text{tol.nugget}) \). It is possible to define the argument model=\(\text{name} \) where \(\text{name} \) is one of the following: 'matern', 'powered.exponential', 'spherical', 'wave', 'exponential', 'gaussian', 'cubic', 'circular', 'gencauchy', 'cauchy', 'RMmatern', 'RMwhittle', 'RMgneiting', and 'RMnugget'. For \(\text{semiVar} \) one of 'matern', 'gaussian', 'exponential', 'power', 'cubic', 'penta.spherical', 'spherical', 'wave', 'sin.hole', 'pure.nugget' and 'identity'. By default the covariance model is set to 'exponential' with \(\text{angle}=0 \) and \(\text{ratio}=1 \).
4. Penalized maximum likelihood estimation

Estimation can be performed by maximisation with respect to b, g, σ^2, θ, and α of the penalized log likelihood

$$\ell_p(b, g, \sigma^2, \theta, \alpha) = \log(L(b, g, \sigma^2, \theta; Y)) - \frac{1}{2\sigma^2}J_\alpha(g)$$

where $J_\alpha(g) = g^TQ_\alpha g$ is the penalty and Q_α is the roughness matrix.

5. Penalties

Depending on the type of spline assumed for g the penalty is defined differently depending on the roughness matrix Q_α which is given by:

Tensor product spline. Given $\tau_{1,1}, \ldots, \tau_{1,K_1}$ and $\tau_{2,1}, \ldots, \tau_{2,K_2}$ the design points in each coordinate then

$$Q_\alpha = \alpha_1 I_{K_2} \otimes Q_1 + \alpha_2 Q_2 \otimes I_{K_1}$$

where Q_1, Q_2 are unidimensional roughness matrices from the design points in each coordinate and α_1, α_2 are smoothing parameters in each direction.

Thin plate spline. Given the n locations, $Q_\alpha = \alpha E$ where α is the smoothing parameter and the $n \times n$ matrix E has elements $E_{i,j} = \psi(||s_i - s_j||)$ for $i,j = 1, \ldots, n$ where

$$\psi(u) = \begin{cases} \frac{1}{16\pi} \times u^2 \log(u^2), & u > 0 \\ 0, & \text{otherwise}. \end{cases}$$

6. Mixed model representation

The spline can be written as $g = X\beta + Z\epsilon$ with β and ϵ the coefficients and X and Z design matrices conveniently defined. Then for the observed responses the model can be expressed as a mixed model

$$Y = Ab + X\beta + Z\epsilon$$

where $r \sim \text{Normal}(0, I_V)$ with V the number of columns in Z. Then, $Y \sim N_n(\mu_m, \Sigma)$ where $\mu_m = Ab + X\beta$ and $\Sigma = \sigma^2 R$; and $Y \mid r \sim N_n(\mu, V)$ where $\mu = Ab + X\beta + Z\epsilon$ and $V = ZZ^T + \Sigma$. Let us denote $\vartheta = (b, \beta, \sigma^2, \theta, \alpha)^T$, then the conditional log-likelihood of the model is given by

$$\ell(\vartheta \mid r) \propto -\frac{1}{2} \{ \log |\Sigma| + (Y - \mu)^T \Sigma^{-1} (Y - \mu) \}$$

and the marginal log-likelihood is given by

$$\ell(\vartheta) \propto -\frac{1}{2} \{ \log |V| + (Y - Ab - X\beta)^T V^{-1} (Y - Ab - X\beta) \}.$$
A6. Obtain approximation

Linear approximation to a spline.

Description

Approximation to a spatial semiparametric model based on a bivariate spline.

Usage

S4 method for signature 'sssFit'
scpApproximate(object, tol)

Arguments

- object: an object of class sssFit from command scp.

Details

scpApproximate compute an approximation to the spatial semiparametric model obtained from scp. This command update the fitted values and fitted spline in the input object of class sssFit. Then we can use the command plot for plotting the approximated semiparametric model.

Value

This command return an object of class sssFit.

Author(s)

Mario A. Martinez Araya, <r@marioma.me>

B1. Testing surface

Testing the surface model

Description

Test the model for the surface of response. The null hypothesis is assumed as a linear model defined by the coordinates while the alternative hypothesis is assumed a bivariate spline (tensor product or thin-plate spline).

Usage

S4 method for signature 'sssFit'
testSurface(object, tol)
Arguments

| object | an object of class sssFit from command scp. |

Details

If we have defined a bivariate spline using s2D in the formula of scp then the model is a spatial semiparametric model based on splines (tensor products or thin-plate splines). In this case testSurface performs a test for the null hypothesis $H_0: g = X\beta$ (linear model) against the alternative $H_1: g = X\beta + Zr$ (spline model). When g is assumed as a thin-plate spline then this test is equivalent to test the null hypothesis $H_0: \text{the pattern of response in the space is a plane}$ against the alternative $H_1: \text{the pattern of response in the space is a bivariate thin-plate spline}$. In one dimension this test is equivalent to a test for linearity in the pattern of response.

Value

Returns a table with the degrees of freedom, sum of squares and mean squares from different sources and the F test and its associated p-value.

Author(s)

Mario A. Martinez Araya, <r@marioma.me>

Description

Plot observed, fitted values or estimated spline from scp object.

Usage

```r
## S4 method for signature 'sssFit,missing'
plot(x, what, type, which, col.args, col.contour, level.at, border, theta, phi, shade, ...)
```

Arguments

x	sssFit object from scp.
what	character. What to plot? One of ‘obs’ (for observed responses), ‘fit’ (for fitted values, the default) or ‘g’ (for the estimated bivariate spline).
type	character. Which type of plot? One of ‘image’ (the default), ‘levelplot’, ‘persp’ or ‘persp3d’.

col.args named list. List with argument to pass to the color pattern function defined by which. See colorRampPalette, colorRamp, rainbow, heat.colors, ‘terrain.colors’, ‘topo.colors’, and ‘cm.colors’.

col.contour character. Only for type=“image”. Color for the contours.

level.at character or numeric vector. Only for type=“levelplot”. Where to draw the levels at. If character, it is the name of the function to compute where to put the levels.

border character. Color of the border.

theta, phi, shade numeric. See persp or persp3d.

... other arguments for levelplot, image, persp or persp3d.

Author(s)

Mario A. Martinez Araya, <r@marioma.me>
B4. Information criterion

Information criterion of the estimated model from scp object.

Description

Return the information criterion of the estimated model from a scp object.

Usage

S4 method for signature 'sssFit'
AIC(object, k, only.criterion)

S4 method for signature 'sssFit'
BIC(object, only.criterion)

S4 method for signature 'sssFit'
AICm(object, k, only.criterion)

S4 method for signature 'sssFit'
AICC(object, k, only.criterion)

S4 method for signature 'sssFit'
BICc(object, only.criterion)

S4 method for signature 'sssFit'
BICj(object, k, tol, only.criterion)

S4 method for signature 'sssFit'
GIC(object, k, only.criterion)

S4 method for signature 'sssFit'
GIChq(object, k, only.criterion)

S4 method for signature 'sssFit'
GICpn(object, only.criterion)

S4 method for signature 'sssFit'
GICb(object, only.criterion)

Arguments

object sssFit object from scp.
k numeric. Factor multiplying the number of parameters in each criterion. Default to k=2.
tol numeric. Value for the tolerance in some computation of inverse matrices. By default is set to .Machine$double.neg.eps.
only.criterion logical. If TRUE (the default) returns only the value of the criterion.

Details

The information criterion for a mixed model is defined as

$$ IC = -2\ell + \text{penalty} $$
B5. Variogram

where \(\ell \) is the log-likelihood \(\ell(\theta) \) or conditional log-likelihood \(\ell(\theta|\nu) \) (see scp). The penalty is expressed as \(k \times a_0 \times \omega_{\mu_*V} \) where \(\omega_{\mu_*V} = \omega_{\mu_*} + \omega_V \) is the (effective) number of parameters in the mean and variance and \(k \) and \(a_0 \) are factors that depend on the criterion used. Thus the information criterion can be written as

\[
IC = -2\ell + k \times a_0 \times \omega_{\mu_*V}.
\]

Note that \(\mu_* \) depends on the criterion being used so it can be \(\mu_* = \mu_m \) or \(\mu_* = \mu \). See scp.

Value

If `only.criterion=TRUE` returns the value of the criterion. If `only.criterion=FALSE` returns a list with the following elements:

- **logLik** numeric. The log-likelihood or conditional log-likelihood (given \(r \)) of the model depending of the criterion used.
- **criterion** numeric. The value of the information criterion.
- **ka0** numeric. Factors \(ka_0 \) multiplying the number of parameters. Depends on the criterion selected.
- **numpar** numeric. The (effective) number of parameters. Depends on the criterion selected.
- **penalty** numeric. The value of the penalty.

Author(s)

Mario A. Martinez Araya, <r@marioma.me>

References

B5. Variogram

Compute and plot the semi-variogram from scp object.

Description

Compute and plot the semi-variogram of the semiparametric model from a scp object.

Usage

```r
## S4 method for signature 'sssFit'
Variogram(object, distance, plot, ...)
```
landim1

Arguments

- **object**
 - sssFit object from scp.
- **distance**
 - numeric vector. The distances at which to compute the semi-variogram. By default is set to NULL.
- **plot**
 - logical. plot=TRUE (the default) produce the semivariogram plot. plot=FALSE returns the values of the semivariogram at distance. See value.
- **...**
 - other graphical parameters to pass.

Author(s)

Mario A. Martinez Araya, <r@marioma.me>

landim1

geoR's landim1 dataset

Description

Dataset originally from geoR package. Dataframe with 38 locations with information related to easting (EW), northing (NS), and two generic numeric variables (A and B).

Usage

```
data("landim1")
```

Format

The format is: chr "landim1"

Details

Run `str(landim1)`, `data(landim1)` or `summary(landim1)` to see more details about the dataset.

Source

geoR package https://CRAN.r-project.org/package=geoR.
Description

Create a dataset for spatial smoothing splines. Those dataset can be used later by functions `s2D` for tensor product (natural) cubic splines or p-splines, and `scp` for estimating spatial smoothing splines models.

Usage

```r
sss(...)
```

Arguments

`...` Slots elements to be included into the `sss` dataset. Allowed slots names are data, coords, grid, knots, W, contract (to be discarded in the future), and regular.

Objects from the Class

Objects can be created by calls of the form `sss(...)`.

Slots

- **data** a data-frame containing the variables measured at the locations given by coords.
- **coords** a matrix containing the two columns of observed coordinates for the data.
- **grid** a grid matrix containing the two columns of coordinates.
- **knots** a named list with the design points (knots) in every coordinate. Equivalent to a `grid.list` object.
- **W** a spatial incidence matrix. If `contract=TRUE` it is W_{ij}, otherwise W_{ji}.
- **contract** logical. The same value as the argument contract.
- **regular** logical. If the coordinates are observed at regular points it is TRUE, FALSE otherwise (missing coordinates in any direction).

Author(s)

Mario A. Martinez Araya, <r@marioma.me>
Description

Output object from scp that can be used with methods for post-processing.

Usage

```r
class(sssFit)
```

Arguments

`...`
Slots elements to be included into the `sssFit` object. Allowed slots names are `data`, `zV`, `XL`, `XC`, `XF`, `XS`, `fit`, and `call`.

Objects from the Class

Objects of this class are created by calls to the command `scp` (see `scp`). It is also possible to define an empty object of this class by calls of the form `sssFit(name)` however for further use this is subject to validity of the object.

Slots

- `data`
an object of `ssS` class containing the input data.
- `zV`
numeric vector. Response variables measured at the locations given by `data@coords`.
- `XL`
a named list with elements and covariates from `linear` command.
- `XC`
a named list with elements and covariates from `cp` command.
- `XF`
not implemented.
- `XS`
a named list with elements from `s2D` command.
- `fit`
a named list with different estimated parameters and summaries from the estimated model.
- `call`
call to the fitted model.

Author(s)

Mario A. Martinez Araya, `<r@marioma.me>`
Index

A1. Create sss data, 3
A2. Define linear terms, 4
A3. Define unknown changes, 5
A4. Define bivariate Spline, 5
A5. Estimate the model, 6
A6. Obtain approximation, 10
AIC (B4. Information criterion), 13
AIC, sssFit-method (B4. Information criterion), 13
AICc (B4. Information criterion), 13
AICc, sssFit-method (B4. Information criterion), 13
AICm (B4. Information criterion), 13
AICm, sssFit-method (B4. Information criterion), 13
as.sss, 6, 7
as.sss (A1. Create sss data), 3

B1. Testing surface, 10
B2. Plotting, 11
B3. Summary, 12
B4. Information criterion, 13
B5. Variogram, 14
BIC (B4. Information criterion), 13
BIC, sssFit-method (B4. Information criterion), 13
BICc (B4. Information criterion), 13
BICc, sssFit-method (B4. Information criterion), 13
BICj (B4. Information criterion), 13
BICj, sssFit-method (B4. Information criterion), 13

colorRamp, 12
colorRampPalette, 12
cp, 8
cp (A3. Define unknown changes), 5
create.sss, 6, 7
create.sss (A1. Create sss data), 3
formula, 4

GIC (B4. Information criterion), 13
GIC, sssFit-method (B4. Information criterion), 13
GICb (B4. Information criterion), 13
GICb, sssFit-method (B4. Information criterion), 13
GICq (B4. Information criterion), 13
GICq, sssFit-method (B4. Information criterion), 13
GICpn (B4. Information criterion), 13
GICpn, sssFit-method (B4. Information criterion), 13

heat.colors, 12
image, 12
is.sss (A1. Create sss data), 3
landim1, 15
levelplot, 12
linear, 8
linear (A2. Define linear terms), 4
optim, 7
persp, 12
persp3d, 12
plot (B2. Plotting), 11
plot, sssFit, missing-method (B2. Plotting), 11
rainbow, 12
s2D, 3, 7, 8, 11, 16
s2D (A4. Define bivariate Spline), 5
scp, 3, 6, 11–17
scp (A5. Estimate the model), 6
scpApproximate (A6. Obtain approximation), 10
scpApproximate, sssFit-method (A6. Obtain approximation), 10
scpm (scpm-package), 2
scpm-package, 2
sss (sss-class), 16
sss-class, 16
sss2df (A1. Create sss data), 3
sssFit (sssFit-class), 17
sssFit-class, 17
summary (B3. Summary), 12
summary, sssFit-method (B3. Summary), 12
testSurface (B1. Testing surface), 10
testSurface, sssFit-method (B1. Testing surface), 10
Variogram (B5. Variogram), 14
Variogram, sssFit-method (B5. Variogram), 14