Package ‘sdPrior’

October 6, 2018

Title Scale-Dependent Hyperpriors in Structured Additive Distributional Regression

Version 1.0-0

Maintainer Nadja Klein <nadja.klein@hu-berlin.de>

Description Utility functions for scale-dependent and alternative hyperpriors. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. Hyperpriors for all effects can be elicited within the package. Including complex tensor product interaction terms and variable selection priors. The basic model is explained in in Klein and Kneib (2016) <doi:10.1214/15-BA983>.

Depends R (>= 3.1.0)

Imports splines, GB2, MASS, stats, pscl, mvtnorm, mgcv, graphics, doParallel, parallel

LazyData true

License GPL-2

NeedsCompilation no

RoxygenNote 6.0.1

Author Nadja Klein [aut, cre]

Repository CRAN

Date/Publication 2018-10-06 21:00:03 UTC

R topics documented:

 dapprox_unif ... 2
 DesignM .. 3
 get_theta .. 4
 get_theta_aunif .. 5
 get_theta_ga ... 6
 get_theta_gbp ... 8
 get_theta_ig ... 9
 get_theta_linear 11
 hyperpar ... 12
Compute Density Function of Approximated (Differentiably) Uniform Distribution.

Usage

dapprox_unif(x, scale, tildec = 13.86294)

Arguments

x
denotes the argument of the density function.

scale
the scale parameter originally defining the upper bound of the uniform distribution.

tildec
denotes the ratio between scale parameter θ and s. The latter is responsible for the closeness of the approximation to the uniform distribution. See also below for further details and the default value.

Details

The density of the uniform distribution for τ is approximated by

$$p(\tau) = \frac{1/(1 + \exp(\tau \tilde{c}/\theta - \tilde{c}))}{\theta(1 + \log(1 + \exp(-\tilde{c}))}$$

This results in

$$p(\tau^2) = 0.5 * (\tau^2)^{(1/2)}(1/(1 + \exp((\tau^2)^{(1/2)}\tilde{c}/\theta - \tilde{c}))) / (\theta(1 + \log(1 + \exp(-\tilde{c}))}$$

for τ^2. \tilde{c} is chosen such that $P(\tau <= \theta) >= 0.95$.
DesignM

Value

the density.

Author(s)

Nadja Klein

References

See Also

rapprox_unif, papprox_unif

DesignM

Computing Designmatrix for Splines

Description

This function computes the design matrix for Bayesian P-splines as it would be done in BayesX. The implementation currently only works properly for default values (knots=20, degree=3).

Usage

DesignM(x, degree = 3, m = 20, min_x = min(x), max_x = max(x))

Arguments

x
the covariate vector.

degree
of the B-splines, default is 3.

m
number of knots, default is 20.

min_x
the left interval boundary, default is min(x).

max_x
the right interval boundary, default is max(x).

Value

a list with design matrix at distinct covariates, design matrix at all observations, index of sorted observations, the difference matrix, precision matrix and the knots used.

Author(s)

Nadja Klein
get_theta

Find Scale Parameter for (Scale Dependent) Hyperprior

Description

This function implements an optimisation routine that computes the scale parameter \(\theta \) of the scale dependent hyperprior for a given design matrix and prior precision matrix such that approximately
\[
P(| f(x_k) | \leq c, k = 1, \ldots, p) \geq 1 - \alpha
\]

Usage

get_theta(alpha = 0.01, method = "integrate", Z, c = 3,
eps = .Machine$double.eps, Kinv)

Arguments

alpha denotes the 1-\(\alpha \) level.
method either integrate or trapezoid with integrate as default. trapezoid is a self-implemented version of the trapezoid rule.
Z the design matrix.
c denotes the expected range of the function.
eps denotes the error tolerance of the result, default is .Machine$double.eps.
Kinv the generalised inverse of K.

Value

an object of class list with values from unroot.

Author(s)

Nadja Klein

References

get_theta_aunif

Find Scale Parameter for Hyperprior for Variances Where the Standard Deviations have an Approximated (Differentiably) Uniform Distribution.

Description

This function implements a optimisation routine that computes the scale parameter θ of the prior τ^2 (corresponding to a differentiably approximated version of the uniform prior for τ) for a given design matrix and prior precision matrix such that approximately $P(|f(x_k| \leq c, k = 1, \ldots, p) \geq 1 - \alpha$

Usage

```r
get_theta_aunif(alpha = 0.01, method = "integrate", Z, c = 3, eps = .Machine$double.eps, Kinv)
```

Arguments

- `alpha`: denotes the $1-\alpha$ level.
- `method`: with integrate as default. Currently no further method implemented.
- `Z`: the design matrix.
- `c`: denotes the expected range of the function.
- `eps`: denotes the error tolerance of the result, default is .Machine$double.eps.
- `Kinv`: the generalised inverse of K.

Examples

```r
## Not run:

set.seed(91179)
library(BayesX)
library(MASS)
# prior precision matrix to zambia data set
K <- read.gra(system.file("examples/zambia.gra", package="sdPrior"))
# generalised inverse of K
Kinv <- ginv(K)

# read data
dat <- read.table(system.file("examples/zambia_height92.raw", package="sdPrior"), header = TRUE)

# design matrix for spatial component
Z <- t(sapply(dat$district, FUN=function(x){1*(x==rownames(K))}))

# get scale parameter
theta <- get_theta(alpha = 0.01, method = "integrate", Z = Z,
                   c = 3, eps = .Machine$double.eps, Kinv = Kinv)$root

## End(Not run)
```
get_theta_ga

Find Scale Parameter for Gamma (Half-Normal) Hyperprior

Description

This function implements an optimisation routine that computes the scale parameter \(\theta \) of the gamma prior for \(\tau^2 \) (corresponding to a half-normal prior for \(\tau \)) for a given design matrix and prior precision matrix such that approximately \(P(|f(x_k| \leq c, k = 1, \ldots, p) \geq 1 - \alpha \)

Usage

get_theta_ga(alpha = 0.01, method = "integrate", Z, c = 3, eps = .Machine$double.eps, Kinv)

Value

an object of class list with values from \texttt{uniroot}.

Author(s)

Nadja Klein

References

Examples

```r
setNseed(123)
library(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+1-1=22
K <- t(diff(diag(22), differences=2)) %*% diag(diff(diag(22), differences=2))
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B, nrow=1)
theta <- get_theta_aunif(alpha = 0.01, method = "integrate", Z = Z,
                          c = 3, eps = .Machine$double.eps, Kinv = Kinv)$root
```
get_theta_ga

Arguments

alpha denotes the $1 - \alpha$ level.
method with integrate as default. Currently no further method implemented.
Z the design matrix.
c denotes the expected range of the function.
eps denotes the error tolerance of the result, default is \texttt{Machine\cdotdouble\cdoteps}.
Kinv the generalised inverse of K.

Value

an object of class \texttt{list} with values from \texttt{uniroot}.

Author(s)

Nadja Klein

References

Examples

set.seed(123)
require(MASS)
prior precision matrix (second order differences)
of a spline of degree l=3 and with m=20 inner knots
yielding dim(K)=m+1-1=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
generalised inverse of K
Kinv <- ginv(K)
covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B, nrow=1)
theta <- get_theta_ga(alpha = 0.01, method = "integrate", Z = Z,
 c = 3, eps = .Machine$double$eps, Kinv = Kinv)$root

Not run:

set.seed(91179)
library(BayesX)
library(MASS)
prior precision matrix to zambia data set
K <- read.gra(system.file("examples/zambia.gra", package="sdPrior"))
generalised inverse of K
Kinv <- ginv(K)
read data
dat <- read.table(system.file("examples/zambia_height92.raw", package="sdPrior"), header = TRUE)

design matrix for spatial component
Z <- t(sapply(dat$district, FUN=function(x) {1*(x==rownames(K))}))

get scale parameter
theta <- get_theta_gbp(alpha = 0.01, method = "integrate", Z = Z,
c = 3, eps = .Machine$double.eps, Kinv = Kinv$root

End(Not run)

get_theta_gbp

Find Scale Parameter for Generalised Beta Prime (Half-Cauchy) Hyperprior

Description

This function implements a optimisation routine that computes the scale parameter θ of the gamma prior for τ^2 (corresponding to a half cauchy for τ) for a given design matrix and prior precision matrix such that approximately $P(|f(x_k)| \leq c, k = 1, \ldots, p) \geq 1 - \alpha$

Usage

get_theta_gbp(alpha = 0.01, method = "integrate", Z, c = 3,
eps = .Machine$double.eps, Kinv)

Arguments

- `alpha`: denotes the 1-α level.
- `method`: with `integrate` as default. Currently no further method implemented.
- `Z`: the design matrix.
- `c`: denotes the expected range of the function.
- `eps`: denotes the error tolerance of the result, default is `.Machine$double.eps`.
- `Kinv`: the generalised inverse of K.

Value

an object of class `list` with values from `uniroot`.

Author(s)

Nadja Klein
get_theta_ig

References

Examples

```r
set.seed(123)
require(MASS)

# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+1-1=22
K <- t(diff(diag(22), differences=2)) %*% diff(diag(22), differences=2)
# generalised inverse of K
Kinv <- ginv(K)

# covariate x
x <- runif(1)

Z <- matrix(DesignM(x)$Z_B, nrow=1)
theta <- get_theta_gbp(alpha = 0.01, method = "integrate", Z = Z,
                         c = 3, eps = .Machine$double.eps, Kinv = Kinv)$root

## Not run:

set.seed(91179)
library(BayesX)
library(MASS)

# prior precision matrix to zambia data set
K <- read.gra(system.file("examples/zambia.gra", package="sdPrior"))
# generalised inverse of K
Kinv <- ginv(K)

# read data
dat <- read.table(system.file("examples/zambia_height92.raw", package="sdPrior"), header = TRUE)

# design matrix for spatial component
Z <- t(sapply(dat$district, FUN=function(x){1*(x==rownames(K))}))

# get scale parameter
theta <- get_theta_gbp(alpha = 0.01, method = "integrate", Z = Z,
                        c = 3, eps = .Machine$double.eps, Kinv = Kinv)$root

## End(Not run)
```

get_theta_ig
Find Scale Parameter for Inverse Gamma Hyperprior
Description

This function implements a optimisation routine that computes the scale parameter \(b \) of the inverse gamma prior for \(\tau^2 \) when \(a = b = \epsilon \) with \(\epsilon \) small for a given design matrix and prior precision matrix such that approximately \(P(|f(x_k)| \leq c, k = 1, \ldots, p) \geq 1 - \alpha \) When \(a \) unequal to \(a \) the shape parameter \(a \) has to be specified.

Usage

```r
get_theta_ig(alpha = 0.01, method = "integrate", Z, c = 3,
eps = .Machine$double.eps, Kinv, equals = FALSE, a = 1,
type = "marginalt")
```

Arguments

- `alpha` denotes the \(1-\alpha \) level.
- `method` with integrate as default. Currently no further method implemented.
- `Z` the design matrix.
- `c` denotes the expected range of the function.
- `eps` denotes the error tolerance of the result, default is \(\text{.Machine}$double\text{.eps} \).
- `Kinv` the generalised inverse of K.
- `equals` saying whether \(a=b \). The default is FALSE due to the fact that \(a \) is a shape parameter.
- `a` is the shape parameter of the inverse gamma distribution, default is 1.
- `type` is either numerical integration (integrate) or to obtain the marginal distribution of \(x_p^\prime\beta \) or the theoretical marginal t-distribution (marginalt). marginalt is the default value.

Details

Currently, the implementation only works properly for the cases \(a \) unequal \(b \).

Value

an object of class list with values from `uniroot`.

Author(s)

Nadja Klein

References

get_theta_linear

Examples

```r
set.seed(123)
library(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+1-l=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B,nrow=1)
theta <- get_theta_ig(alpha = 0.01, method = "integrate", Z = Z,
c = 3, eps = .Machine$double.eps, Kinv = Kinv,
equals = FALSE, a = 1, type=\"marginal\")$root
```

get_theta_linear Find Scale Parameter for Inverse Gamma Hyperprior of Linear Effects with Spike and Slab Prior

Description

This function implements a optimisation routine that computes the scale parameter \(\nu_2 \) and selection parameter \(r \) of the inverse gamma prior \(IG(\nu_1, \nu_2) \) for \(\tau^2 \) when \(\tau^2 \sim N(0, r(\delta)\tau^2) \) and given shape parameter such that approximately \(P(\beta \leq c_2|\text{spike}) \geq 1 - \alpha_2 \) and \(P(\beta \geq c_1|\text{slab}) \geq 1 - \alpha_1 \). \(\alpha_1 \) and \(\alpha_2 \) should not be smaller than 0.1 due to numerical sensitivity and possible instability. Better change \(c_1, c_2 \).

Usage

```r
get_theta_linear(alpha1 = 0.1, alpha2 = 0.1, c1 = 0.1, c2 = 0.1,
eps = .Machine$double.eps, v1 = 5)
```

Arguments

- `alpha1` denotes the 1-\(\alpha_1 \) level for \(\nu_2 \).
- `alpha2` denotes the 1-\(\alpha_2 \) level for \(r \).
- `c1` denotes the expected range of the linear effect in the slab part.
- `c2` denotes the expected range of the linear effect in the spike part.
- `eps` denotes the error tolerance of the result, default is `.Machine$double.eps`.
- `v1` is the shape parameter of the inverse gamma distribution, default is 5.

Value

an object of class `list` with values from `uniroot`.
Warning

α_1 and α_2 should not be smaller than 0.1 due to numerical sensitivity and possible instability. Better change c_1, c_2.

Author(s)

Nadja Klein

References

Examples

```r
set.seed(123)
result <- get_theta_linear()
r <- result$r
v2 <- result$v2
get_theta_linear(alpha1=0.1, alpha2=0.1, c1=0.5, c2=0.1, v1=5)
```

hyperpar
Find Scale Parameters for Inverse Gamma Hyperprior of Nonlinear Effects with Spike and Slab Prior (Simulation-based)

Description

This function implements a optimisation routine that computes the scale parameter b and selection parameter r. Here, we assume an inverse gamma prior $\text{IG}(a,b)$ for ψ^2 and $\tau^2 \sim N(0, \delta \psi^2)$ and given shape parameter a, such that approximately $P(f(x) \leq c | \text{spike}, \forall x \in D) \geq 1 - \alpha_1$ and $P(\exists x \in D \text{.t.} f(x) \geq c | \text{slab}) \geq 1 - \alpha_2$.

Usage

```r
hyperpar(Z, Kinv, a = 5, c = 0.1, alpha1 = 0.1, alpha2 = 0.1,
          R = 10000, myseed = 123)
```

Arguments

- **Z**
 the row of the design matrix (or the complete matrix of several observations) evaluated at.

- **Kinv**
 the generalised inverse of K.

- **a**
 is the shape parameter of the inverse gamma distribution, default is 5.

- **c**
 denotes the expected range of eqnf.

- **alpha1**
 denotes the $1-\alpha$ level for b.
alpha2 denotes the 1-α2 level for r.
R denotes the number of replicates drawn during simulation.
myseed denotes the required seed for the simulation based method.

Value

an object of class list with root values r, b from unirow.

Author(s)

Nadja Klein

References

Examples

set.seed(123)
library(MASS)
prior precision matrix (second order differences)
of a spline of degree l=3 and with m=22 inner knots
yielding dim(K)=m+1-l=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
generalised inverse of K (same as if we used mixed model representation!)
Kinv <- ginv(K)
covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B,nrow=1)
fgrid <- seq(-3,3,length=1000)
mdf <- hyperpar(Z,Kinv,a=5,c=0.1,alpaha1=0.05,alpaha2=0.05,R=10000,myseed=123)

Description

This function implements an optimisation routine that computes the scale parameter b and selection parameter r. Here, we assume an inverse gamma prior IG(α, β) for the prior variance for all linear effects. Therefore, we assume a scale parameter b and a selection parameter r. For given shape parameter α, the user gets b and r such that approximately P(β ≤ c1 | spike) ≥ 1 - α1 and P(β ≥ c2 | slab) ≥ 1 - α2 hold. Note that if you observe numerical instabilities try not to specify α1 and α2 smaller than 0.1.
Usage

hyperparlin(alpha1 = 0.1, alpha2 = 0.1, c1 = 0.1, c2 = 0.1,
eps = .Machine$double.eps, a = 5)

Arguments

alpha1 denotes the 1-\(\alpha_1\) level for \(b\).
alpha2 denotes the 1-\(\alpha_2\) level for \(r\).
c1 denotes the expected range of the linear effect in the slab part.
c2 denotes the expected range of the linear effect in the spike part.
eps denotes the error tolerance of the result, default is .Machine$double.eps.
a is the shape parameter of the inverse gamma distribution, default is 5.

Value

an object of class list with root values \(r, b\) from `unirroot`.

Warning

\(\alpha_1\) and \(\alpha_2\) should not be smaller than 0.1 due to numerical sensitivity and possible instability. Better change \(c1, c2\).

Author(s)

Nadja Klein

References

Examples

```r
set.seed(123)
result <- hyperparlin()
 r <- result$r
 b <- result$b

hyperparlin(alpha1=0.1,alpha2=0.1,c1=0.5,c2=0.1,a=5)
```
hyperpar_mod
Find Scale Parameter for modular regression

Description
Find Scale Parameter for modular regression

Usage

```r
hyperpar_mod(Z, K1, K2, A, c = 0.1, alpha = 0.1, omegaseq, omegaprob,
R = 10000, myseed = 123, thetaseq = NULL, type = "IG",
lowrank = FALSE, k = 5, mc = FALSE, ncores = 1, truncate = 1)
```

Arguments
- `Z`: rows from the tensor product design matrix
- `K1`: precision matrix1
- `K2`: precision matrix2
- `A`: constraint matrix
- `c`: threshold from eq. (8) in Klein & Kneib (2016)
- `alpha`: probability parameter from eq. (8) in Klein & Kneib (2016)
- `omegaseq`: sequence of weights for the anisotropy
- `omegaprob`: prior probabilities for the weights
- `R`: number of simulations
- `myseed`: seed in case of simulation. default is 123.
- `thetaseq`: possible sequence of thetas. default is NULL.
- `type`: type of hyperprior for tau/tau^2; options: IG => IG(1,theta) for tau^2, SD => WE(0.5,theta) for tau^2, HN => HN(0,theta) for tau, U => U(0,theta) for tau, HC => HC(0,theta) for tau
- `lowrank`: default is FALSE. If TRUE a low rank approximation is used for Z with k columns.
- `k`: only used if lowrank=TRUE. specifies target rank of low rank approximation. Default is 5.
- `mc`: default is FALSE. only works im thetaseq is supplied. can parallel across thetaseq.
- `ncores`: default is 1. number of cores is mc=TRUE
- `truncate`: default is 1. If < 1 the lowrank approximation is based on on cumsum(values)/sum(values).

Value
the optimal value for theta
Author(s)
Nadja Klein

References

mdbeta

Marginal Density of β

Description
This function computes the marginal density of β and for β on an equidistant grid specified by the user. Currently only implemented for $\dim(\beta) = 1, 2$.

Usage
mdbeta(D = 1L, rangebeta, ngridbeta, a = 5, b = 25, r = 0.00025,
a0 = 0.5, b0 = 0.5, plot = FALSE, log = FALSE)

Arguments
- D: dimension of β.
- rangebeta: a vector containing the start and ending point of β to be computed for.
- ngridbeta: the number of grid values.
- a: shape parameter of inverse gamma prior of ψ^2.
- b: scale parameter of inverse gamma prior of ψ^2.
- r: the scaling parameter $r(\delta = 1)$ in the variance $r(\delta)\psi^2$ of prior of τ^2.
- a0: shape parameter of beta prior of ω.
- b0: scale parameter of beta prior of ω.
- plot: logical value (default is FALSE). If TRUE, a plot is also returned as the function pl()
- log: logical value (default is FALSE). If TRUE, $\log(p(\beta))$ is also returned in logval as well as, if necessary, a plot function logpl()

Value
the marginal density, the sequence of β and depending on specified plot, log arguments also the log-density and plot functions.

Author(s)
Nadja Klein
mddf\textsubscript{aunif}

References

Examples

```r
set.seed(123)
# 1-dimensional example
D = 1
ngridbeta = 1000
rangebeta = c(0.000001,1)
a0 = b0 = 0.5
a = 5
b = 50
r = 0.005
mdf <- mdbeta(D=1,rangebeta,ngridbeta,a=a,b=b,r=r,a0=a0,b0=b0)

# 2-dimensional example
D = 2
ngridbeta = 100
rangebeta = c(0.000001,8)
a0 = b0 = 0.5
a = 5
b = 50
r = 0.005
mdf <- mdbeta(D=2,rangebeta,ngridbeta,a=a,b=b,r=r,a0=a0,b0=b0,plot=TRUE,log=TRUE)
```


ddf\textsubscript{aunif} \hspace{1cm} Marginal Density for Given Scale Parameter and Approximated Uniform Prior for \(\tau \)

Description
This function computes the marginal density of \(z'p\beta \) for approximated uniform hyperprior for \(\tau \)

Usage
```
 mddf\_aunif(f, theta, Z, Kinv)
```

Arguments

- `f` point the marginal density to be evaluated at.
- `theta` denotes the scale parameter of the approximated uniform hyperprior for \(\tau \).
- `Z` the row of the design matrix evaluated.
- `Kinv` the generalised inverse of \(K \).
Value
the marginal density evaluated at point x.

Author(s)
Nadja Klein

References

Examples
set.seed(123)
library(MASS)
prior precision matrix (second order differences)
of a spline of degree l=3 and with m=20 inner knots
yielding dim(K)=m+l-1=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
generalised inverse of K
Kinv <- ginv(K)
covariate x
x <- runif(1)
Z <- matrix(Design(x)$Z_B,nrow=1)
fgird <- seq(-3,3,length=1000)
mdf <- mdf_aunif(fgrid,theta=0.0028,Z=Z,Kinv=Kinv)

mdf_ga
Marginal Density for Given Scale Parameter and Half-Normal Prior for \(\tau \)

Description
This function computes the marginal density of \(z_{p,\beta}^\tau \) for gamma priors for \(\tau^2 \) (referring to a half-normal prior for \(\tau \)).

Usage
mdf_ga(f, theta, Z, Kinv)

Arguments
- f point the marginal density to be evaluated at.
- theta denotes the scale parameter of the gamma hyperprior for \(\tau^2 \) (half-normal for \(\tau \)).
- Z the row of the design matrix evaluated.
- Kinv the generalised inverse of K.
mdf_gbp

Value
the marginal density evaluated at point x.

Author(s)
Nadja Klein

References

Examples
```r
set.seed(123)
library(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+l-1=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B,nrow=1)
fgrid <- seq(-3,3,length=1000)
mdf <- mdf_ga(fgrid,theta=0.0028,Z>Z,Kinv=Kinv)
```

Description
This function computes the marginal density of $z_p'\beta$ for generalised beta prior hyperprior for τ^2 (half-Cauchy for τ)

Usage
```r
mdf_gbp(f, theta, Z, Kinv)
```

Arguments
- **f**: point the marginal density to be evaluated at.
- **theta**: denotes the scale parameter of the generalised beta prior hyperprior for τ^2 (half-Cauchy for τ).
- **Z**: the row of the design matrix evaluated.
- **Kinv**: the generalised inverse of K.
Value
the marginal density evaluated at point x.

Author(s)
Nadja Klein

References

Examples
```r
set.seed(123)
library(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+1-1=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B,nrow=1)
fgrid <- seq(-3,3,length=1000)
mdf <- mdf_gbp(fgrid,theta=0.0028,Z=Z,Kinv=Kinv)
```

mdf_ig

Marginal Density for Given Scale Parameter and Inverse Gamma Prior for τ^{-2}

Description
This function computes the marginal density of $z'_p \beta$ for inverse gamma hyperpriors with shape parameter $a=1$.

Usage
```
mdf_ig(f, theta, Z, Kinv)
```

Arguments
- `f` point the marginal density to be evaluated at.
- `theta` denotes the scale parameter of the inverse gamma hyperprior.
- `Z` the row of the design matrix evaluated.
- `Kinv` the generalised inverse of K.
Value

the marginal density evaluated at point \(x \).

Author(s)

Nadja Klein

References

Examples

```r
set.seed(123)
library(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+1-1=22
K <- t(diff(diag(22), differences=2))%*%diff(diag(22), differences=2)
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_B,nrow=1)
fgrid <- seq(-3.3, length=1000)
mdf <- mdf_ig(fgrid, theta=0.0028, Z=Z, Kinv=Kinv)
```

mdf_sd

Marginal Density for Given Scale Parameter and Scale-Dependent Prior for \(\tau^2 \)

Description

This function computes the marginal density of \(z_{p}\beta \) for scale-dependent priors for \(\tau^2 \)

Usage

```r
mdf_sd(f, theta, Z, Kinv)
```

Arguments

- **f**: point the marginal density to be evaluated at.
- **theta**: denotes the scale parameter of the scale-dependent hyperprior for \(\tau^2 \).
- **Z**: the row of the design matrix evaluated.
- **Kinv**: the generalised inverse of K.
Value

the marginal density evaluated at point x.

Author(s)

Nadja Klein

References

Examples

```r
set.seed(123)
library(MASS)
# prior precision matrix (second order differences)
# of a spline of degree l=3 and with m=20 inner knots
# yielding dim(K)=m+1-l=22
K <- t(diff(diag(ZZ), differences=2))%*%diff(diag(ZZ), differences=2)
# generalised inverse of K
Kinv <- ginv(K)
# covariate x
x <- runif(1)
Z <- matrix(DesignM(x)$Z_b,nrow=1)
frgrid <- seq(-3,3,length=1000)
mdf <- mdf_sd(fgrid,theta=0.0028,Z=Z,Kinv=Kinv)
```

`papprox_unif`
Compute Cumulative Distribution Function of Approximated (Differentiably) Uniform Distribution.

Description

Compute Cumulative Distribution Function of Approximated (Differentiably) Uniform Distribution.

Usage

`papprox_unif(x, scale, tildec = 13.86294)`

Arguments

- `x`: denotes the argument of cumulative distribution function
- `scale`: the scale parameter originally defining the upper bound of the uniform distribution.
- `tildec`: denotes the ratio between scale parameter \(\theta \) and \(s \). The latter is responsible for the closeness of the approximation to the uniform distribution. See also below for further details and the default value.
The cumulative distribution function of \texttt{dapprox_unif} is given by

\[
\frac{1}{(\log(1 + \exp(-\tilde{c})) + \tilde{c})} \times \left(\tilde{c} \times \left(\frac{t^2}{1/2}\right)/\theta - \log(\exp\left(\frac{t^2}{1/2} \times \tilde{c}/\theta\right) + \exp(\tilde{c}))\right)
\]

\(\tilde{c}\) is chosen such that \(P(t^2 \leq \theta) \geq 0.95\).

Value

the cumulative distribution function.

Author(s)

Nadja Klein

References

See Also

\texttt{rapprox_unif}, \texttt{dapprox_unif}

\texttt{rapprox_unif}\hspace{1cm} \textit{Draw Random Numbers from Approximated (Differentiably) Uniform Distribution.}

Description

Draw Random Numbers from Approximated (Differentiably) Uniform Distribution.

Usage

\texttt{rapprox_unif(n = 100, scale, tildec = 13.86294, seed = 123)}

Arguments

- **n**: number of draws.
- **scale**: the scale parameter originally defining the upper bound of the uniform distribution.
- **tildec**: denotes the ratio between scale parameter \(\theta\) and \(s\). The latter is responsible for the closeness of the approximation to the uniform distribution. See also below for further details and the default value.
- **seed**: denotes the seed
Details

The method is based on the inversion method and the quantile function is computed numerically using `uniroot`.

Value

n draws with density `papprox_unif`.

Author(s)

Nadja Klein

References

See Also

`rapprox_unif`, `papprox_unif`

Description

This is a 57x57 matrix containing row- and columnwise the regions of Zambia, and the entries define the neighbourhood structure. The corresponding map sambia.bnd can be downloaded from http://www.stat.uni-muenchen.de/~kneib/regressionsbuch/daten_e.html. From the bnd file the posterior precision matrix is obtained by:

```R
library(BayesX)
map <- read.bnd("zambia.bnd")
K <- bnd2gra(map)
```

Description

The primary goal of a statistical analysis is to determine the effect of certain socioeconomic variables of the child, the mother, and the household on the child’s nutritional condition.

- `zscore` child’s Z-score
- `c_breastf` duration of breastfeeding in months
- `c_age` child’s age in months
- `m_agebirth` mother’s age at birth in years
zambia_height92

• m_height mother’s height in centimeter
• m_bmi mother’s body mass index
• m_education mother’s level of education
• m_work mother’s work status
• region region of residence in Zambia
• district district of residence in Zambia

Format

A data frame with 4421 rows and 21 variables

Source

http://www.stat.uni-muenchen.de/~kneib/regressionsbuch/daten_e.html
Index

dapprox_unif, 2, 23
DesignM, 3

get_theta, 4
get_theta_aunif, 5
get_theta_ga, 6
get_theta_gbp, 8
get_theta_ig, 9
get_theta_linear, 11

hyperpar, 12
hyperpar_mod, 15
hyperparlin, 13

mdbeta, 16
mdf_aunif, 17
mdf_ga, 18
mdf_gbp, 19
mdf_ig, 20
mdf_sd, 21

papprox_unif, 3, 22, 24
rapprox_unif, 3, 23, 24

uniroot, 4, 6–8, 10, 11, 13, 14, 24

zambia_graph, 24
zambia_height92, 24