Package ‘sdcSpatial’

July 19, 2019

Title Statistical Disclosure Control for Spatial Data
Version 0.1.1
License GPL-2
Encoding UTF-8
LazyData true
URL https://github.com/edwindj/sdcSpatial
BugReports https://github.com/edwindj/sdcSpatial/issues
RoxygenNote 6.1.1
Suggests testthat, knitr, rmarkdown, sp, sf
Imports raster, methods
Depends R (>= 2.10)
VignetteBuilder knitr
NeedsCompilation no
Author Edwin de Jonge [aut, cre] (<https://orcid.org/0000-0002-6580-4718>), Peter-Paul de Wolf [aut], Sapphire Han [ctb]
Maintainer Edwin de Jonge <edwindjonge@gmail.com>
Repository CRAN
Date/Publication 2019-07-19 17:50:02 UTC
R topics documented:

sdcSpatial-package ... 2
disclosure_risk ... 3
dwellings ... 4
enterprises ... 5
is_sensitive ... 6
plot.sdc_raster ... 7
plot_sensitive ... 8
protect_quadtree ... 8
protect_smooth .. 10
remove_sensitive .. 11
sdc_raster .. 13
sensitivity_score .. 14
smooth_raster ... 15

sdcSpatial-package Privacy Protected maps

Description

sdcSpatial contains functions to create spatial distribution maps, assess the risk of disclosure on a location and to suppress or adjust revealing values at certain locations.

Details

sdcSpatial working horse is the sdc_raster() object upon which the following methods can be applied:

Sensitivity assessment

• plot.sdc_raster(), plot_sensitive()
• print
• is_sensitive()

Protection methods

• remove_sensitive()
• protect_smooth()
• protect_quadtree()

Extraction

• sum, extract the sum layer from a sdc_raster object
• mean, extract the mean layer from a sdc_raster object
Author(s)

Maintainer: Edwin de Jonge <edwindjonge@gmail.com> (0000-0002-6580-4718)

Authors:

- Peter-Paul de Wolf

Other contributors:

- Sapphire Han [contributor]

References

See Also

Useful links:

- https://github.com/edwindj/sdcSpatial
- Report bugs at https://github.com/edwindj/sdcSpatial/issues

disclosure_risk Calculate disclosure risk for raster cells

Description

The disclosure risk function is used by is_sensitive() to determine the risk of a raster cell. It returns a score between 0 and 1 for cells that have a finite value (otherwise NA).

Usage

disclosure_risk(x, risk_type = x$risk_type)

Arguments

x sdc_raster object.

risk_type character: "external", "internal", "discrete".
Details

Different risk functions include:

• external (numeric variable), calculates how much the largest value comprises the total sum within a cell
• internal (numeric variable), calculates how much the largest value comprises the sum without the second largest value
• discrete (logical variable), calculates the fraction of TRUE vs FALSE

Value

raster::raster object with the disclosure risk.

See Also

Other sensitive: is_sensitive, plot_sensitive, remove_sensitive, sdc_raster, sensitivity_score

dwellings Simulated dwellings data set

Description

The data are generated with residence/household locations from the Dutch open data BAG register\(^1\). The locations are realistic, but the associated data is simulated.

Usage
dwellings

Format

An object of class data.frame with 90603 rows and 4 columns.

Details

• x, integer, x coordinate of dwelling (crs 28992)
• y, integer, y coordinate of dwelling (crs 28992)
• consumption, numeric, simulated continuous value
• unemployed, logical, simulated discrete value

References

Basisregistratie Adressen en Gebouwen https://zakelijk.kadaster.nl/bag-producten

\(^1\)https://zakelijk.kadaster.nl/bag-producten
Examples

dwellings is a data.frame, the best way is to first turn it
into a sf or sp object.

create an sf object from our data
if (requireNamespace("sf")) {
 dwellings_sf <- sf::st_as_sf(dwellings, coords=c("x", "y"), crs=28992)

 unemployed <- sdc_raster(dwellings_sf
 , "unemployed"
 , r=200
 , max_risk = 0.9
)

 plot(unemployed)
 sensitivity_score(unemployed)

 unemployed_smoothed <- protect_smooth(unemployed, bw = 0.4e3)
 plot(unemployed_smoothed, main="Employment rate")
 plot(unemployed_smoothed, "sum", main = "Employment")
} else {
 message("Package 'sf' was not installed.")
}

dwellings_sp <- dwellings
or change a data.frame into a sp object
sp::coordinates(dwellings_sp) <- ~ x + y
tryCatch{
 # not working on some OS versions.
 sp::proj4string(dwellings_sp) <- "+init=epsg:28992"
}

consumption <- sdc_raster(dwellings_sp, dwellings_sp$consumption, r = 500)
consumption

plot(consumption)

but we can also create a raster directly from a data.frame
unemployed <- sdc_raster(dwellings[c("x","y")], dwellings$unemployed)

enterprises
Simulated data set with enterprise locations.

Description
enterprises is generated from the dutch open data BAG register\(^2\). The locations are realistic, but the associated data is simulated.

\(^2\)[https://zakelijk.kadaster.nl/bag-producten]
Usage

```
enterprises
```

Format

An object of class `SpatialPointsDataFrame` with 8348 rows and 2 columns.

Details

- `production numeric` simulated production (lognormal).
- `fined logical` simulated variable if an enterprise is fined or not.

References

Basisregistratie Adressen en Gebouwen: https://zakelijk.kadaster.nl/bag-producten

Examples

```r
library(sdcSpatial)
library(raster)
data("enterprises")

production <- sdc_raster(enterprises, "production", min_count = 10)
print(production)

# show the average production per cell
plot(production, "mean")
production$min_count <- 2 # adjust norm for sdc
plot(production)

production_safe <- remove_sensitive(production)
plot(production_safe)
```

`is_sensitive`

Return raster with sensitive locations.

Description

Create a binary raster with sensitive locations.

Usage

```
is_sensitive(x, max_risk = x$max_risk, min_count = x=min_count, risk_type = x$risk_type)
```
Arguments

- `x` - *sdc_raster* object.
- `max_risk` - a risk value higher than `max_risk` will be sensitive.
- `min_count` - a count lower than `min_count` will be sensitive.
- `risk_type` - what kind of measure should be used (see details).

Details

By default the risk settings are taken from `x`, but they can be overridden.

Different risk functions can be used:

- external (numeric variable), calculates how much the largest value comprises the total sum
- internal (numeric variable), calculates how much the largest value comprises the sum without the second largest value
- discrete (logical variable), calculates the fraction of sensitive values.

See Also

Other sensitive: disclosure_risk, plot_sensitive, remove_sensitive, sdc_raster, sensitivity_score

Examples

dwellings_sp <- dwellings
sp::coordinates(dwellings_sp) <- ~ x + y
tryCatch(
 # does not work on some OS versions
 sp::proj4string(dwellings_sp) <- '+init=epsg:28992'
)
create a 1km grid
unemployed <- sdc_raster(dwellings_sp, dwellings_sp$unemployed, r = 1e3)
print(unemployed)

retrieve the sensitive cells
is_sensitive(unemployed)

plot.sdc_raster

Plot a sdc_raster object

Description

Plot a sdc_raster object together with its sensitivity.

Usage

```r
## S3 method for class 'sdc_raster'
plot(x, value = "mean", sensitive = TRUE, ..., 
     main = paste(substitute(x)), col)
```
plot_sensitive

Arguments

x sdc_raster object to be plotted
value character which value layer to be used for plotting, e.g. "sum", "count", "mean" (default).
sensitive logical show the sensitivity in the plot?
... passed on to raster::plot()
main title of plot
col color palette to be used, passed on to raster::plot().

Details

When sensitive is set to TRUE, a side-by-side plot will be made of the value and its sensitivity.

See Also

Other plotting: plot_sensitive

Description

Plots the sensitive cells of the sdc_raster. The sensitive cells are plotted in red. The sensitive cells are determined using is_sensitive.

Usage

plot_sensitive(x, value = "mean", main = "sensitive", col, ...)

Arguments

x sdc_raster object
value character which value layer to be used for values, e.g. "sum", "count", "mean" (default).
main character title of map.
col color palette to be used, passed on to raster::plot().
... passed on to plot.sdc_raster.

See Also

Other plotting: plot.sdc_raster
Other sensitive: disclosure_risk, is_sensitive, remove_sensitive, sdc_raster, sensitivity_score
protect_quadtree

Protect a raster with a quadtree method.

Description

protect_quadtree reduces sensitivity by aggregating sensitive cells with its three neighbors, and does this recursively until no sensitive cells are left or when the maximum zoom levels has been reached.

Usage

protect_quadtree(x, max_zoom = Inf, ...)

Arguments

x sdc_raster object to be protected.
max_zoom numeric, restricts the number of zoom steps and thereby the max resolution for the blocks. Each step will zoom with a factor of 2 in x and y so the max resolution = resolution * 2^max_zoom.
...
Arguments passed on to is_sensitive
x sdc_raster object.
max_risk a risk value higher than max_risk will be sensitive.
min_count a count lower than min_count will be sensitive.
risk_type what kind of measure should be used (see details).

Details

This implementation generalizes the method as described by Suñé et al., in which there is no risk function, and only a min_count to determine sensitivity. Furthermore the method the article only handles count data (x$value$count), not mean or summed values. Currently the translation feature of the article is not (yet) implemented, for the original method does not take the disclosure_risk into account.

Value

a sdc_raster object, in which sensitive cells have been recursively aggregated until not sensitive or when max_zoom has been reached.

References

See Also

Other protection methods: protect_smooth, remove_sensitive
Examples

```r
library(raster)

fined <- sdc_raster(enterprises, enterprises$fined)
plot(fined)
fined_qt <- protect_quadtree(fined)
plot(fined_qt)

fined <- sdc_raster(enterprises, enterprises$fined, r=50)
plot(fined)
fined_qt <- protect_quadtree(fined)
plot(fined_qt)
```

protect_smooth
Protect a sdc_raster by smoothing

Description

`protect_smooth` reduces the sensitivity by applying a Gaussian smoother, making the values less localized.

Usage

```r
protect_smooth(x, bw = raster::res(x$value), ...)
```

Arguments

- **x**
raster object
- **bw**
bandwidth
- **...**
passed through to focal.

Details

The sensitivity of a raster can be decreased by applying a kernel density smoother as argued by de Jonge et al. (2016) and de Wolf et al. (2018). Smoothing spatially spreads localized values, reducing the risk for location disclosure. Note that smoothing often visually enhances detection of spatial patterns. The kernel applied is a Gaussian kernel with a bandwidth `bw` supplied by the user. The smoother acts upon the `x$value$count` and `x$value$sum` from which a new `x$value$mean` is derived.

References

See Also

Other protection methods: `protect_quadtree, remove_sensitive`

Examples

library(sdcSpatial)
library(raster)

data(enterprises)

create a sdc_raster from point data with raster with
a resolution of 200m
production <- sdc_raster(enterprises, variable = "production"
, r = 200, min_count = 3)

print(production)

plot the raster
zlim <- c(0, 3e4)
show which raster cells are sensitive
plot(production, zlim=zlim)

but we can also retrieve directly the raster
sensitive <- is_sensitive(production, min_count = 3)
plot(sensitive, col = c('white', 'red'))

what is the sensitivity fraction?
sensitivity_score(production)
or equally
cellStats(sensitive, mean)

let's smooth to reduce the sensitivity
smoothed <- protect_smooth(production, bw = 400)
plot(smoothed)

what is the sensitivity fraction?
sensitivity_score(smoothed)

let's remove the sensitive data.
smoothed_safe <- remove_sensitive(smoothed, min_count = 3)
plot(smoothed_safe, zlim=zlim)

let's communicate!
production_mean <- mean(smoothed_safe)
production_total <- sum(smoothed_safe)

and create a contour plot
raster::filledContour(production_mean, nlevels = 6, main = "Mean production")

generated with R 3.6 =>
#col <- hcl.colors(10, rev=TRUE)
remove_sensitive

Description

remove_sensitive removes sensitive cells from a sdc_raster. The sensitive cells, as found by is_sensitive() are set to NA.

Usage

remove_sensitive(x, max_risk = x$max_risk, min_count = x$min_count, ...)

mask_sensitive(x, max_risk = x$max_risk, min_count = x$min_count, ...)

Arguments

x sdc_raster object.
max_risk a risk value higher than max_risk will be sensitive.
min_count a count lower than min_count will be sensitive.
... passed on to is_sensitive.

Details

Removing sensitive cells is a protection method, which often is useful to finalize map protection after other protection methods have been applied. mask_sensitive and remove_sensitive are synonyms, to accommodate both experienced raster users as well as sdc users.

Value

sdc_raster object with sensitive cells set to NA.

See Also

Other sensitive: disclosure_risk, is_sensitive, plot_sensitive, sdc_raster, sensitivity_score
Other protection methods: protect_quadtree, protect_smooth
Examples

```r
library(raster)

unemployed <- sdc_raster(dwellings[1:2], dwellings$unemployed, r=200)

# plot the normally rastered data
plot(unemployed, zlim=c(0,1))
plot_sensitive(unemployed)

unemployed_safe <- remove_sensitive(unemployed, risk_type="discrete")
plot_sensitive(unemployed_safe, zlim=c(0,1))
print(unemployed)
unemployed$value
```

sdc_raster

Create a raster map with privacy awareness

Description

sdc_raster creates multiple *raster::raster* objects ("count", "mean", "sum") from supplied point data \(x \) and calculates the sensitivity to privacy disclosure for each location.

Usage

```r
sdc_raster(x, variable, r = 200, max_risk = 0.95, min_count = 10,
           risk_type = c("external", "internal", "discrete"), 
           ..., field = variable)
```

Arguments

- **x**:
 - sp::SpatialPointsDataFrame, sf::sf or a two column matrix or data.frame that is used to create a raster map.

- **variable**:
 - name of data column or numeric with same length as \(x \) to be used for the data in the raster map.

- **r**:
 - either a desired resolution or a pre-existing raster object. In the first case, the crs of \(x \) (if present) will be used, in the latter the properties of the \(r \) will be kept.

- **max_risk**:
 - numeric, the maximum risk score (disclosure_risk) before a cell in the map is considered sensitive.

- **min_count**:
 - numeric, a raster cell with less then \(\text{min_count} \) observations is considered sensitivized.

- **risk_type**:
 - passed on to disclosure_risk().

- **...**:
 - passed through to raster::rasterize()

- **field**:
 - synonym for variable. If both supplied, field has precedence.
Details

A `sdc_raster` object is the vehicle that does the book keeping for calculating sensitivity. Protection methods work upon a `sdc_raster` and return a new `sdc_raster` in which the sensitivity is reduced. The sensitivity of the map can be assessed with `sensitivity_score`, `plot.sdc_raster()`, `plot_sensitive()` or `print`. Reducing the sensitivity can be done with `protect_smooth()`, `protect_quadtree()` and `remove_sensitive()`. Raster maps for `mean`, `sum` and `count` data can be extracted from the `$value(brick())`.

Value

object of class "sdc_raster":

- `$value`: raster::brick() object with different layers e.g. `count`, `sum`, `mean`.
- `$max_risk`: see above.
- `$min_count`: see above.
- `$scale`: used together with `$min_count` to determine sensitivity: result of protection operation `protect_smooth()` or `protect_quadtree()`.
- `$type`: data type of variable, either numeric or logical
- `$risk_type`, "external", "internal" or "discrete" (see `disclosure_risk()`)

See Also

Other sensitive: `disclosure_risk`, `is_sensitive`, `plot_sensitive`, `remove_sensitive`, `sensitivity_score`

Examples

```r
library(raster)
prod <- sdc_raster(enterprises, field = "production", r = 500)
print(prod)

prod <- sdc_raster(enterprises, field = "production", r = 1e3)
print(prod)

# get raster with the average production per cell averaged over the enterprises
prod_mean <- mean(prod)
summary(prod_mean)

# get raster with the total production per cell
prod_total <- sum(prod)
summary(prod_total)
```
sensitivity_score

Mean sensitivity for raster

Description

sensitivity_score calculates the fraction of cells (with a value) that are considered sensitive according to the used disclosure_risk.

Usage

sensitivity_score(x, max_risk = x$max_risk, min_count = x$min_count, ...)

Arguments

x sdc_raster object.
max_risk a risk value higher than max_risk will be sensitive.
min_count a count lower than min_count will be sensitive.
... passed on to is_sensitive

See Also

Other sensitive: disclosure_risk, is_sensitive, plot_sensitive, remove_sensitive, sdc_raster

Examples

collection <- sdc_raster(dwellings[1:2], variable = dwellings$consumption, r = 500)
sensitivity_score(collection)
same as
print(collection)

change the rules! A higher norm generates more sensitive cells
sensitivity_score(collection, min_count = 20)

smooth_raster

Create kde density version of a raster

Description

Create kde density version of a raster
Usage

smooth_raster(x, bw = raster::res(x), smooth_fact = 5,
keep_resolution = TRUE, na.rm = TRUE, pad = TRUE,
threshold = NULL, ...)

Arguments

x raster object
bw bandwidth
smooth_fact integer, disaggregate factor to have a better smoothing
keep_resolution integer, should the returned map have same resolution as x or keep the disaggregated raster resulting from smooth_fact?
na.rm should the NA value be removed from the raster?
pad should the data be padded?
threshold cells with a lower (weighted) value of this threshold will be removed.
... passed through to focal.