Package ‘sdmpredictors’

September 20, 2021

Type Package

Title Species Distribution Modelling Predictor Datasets

Version 0.2.10

Date 2021-09-20

Depends R (>= 3.2.5), raster (>= 2.5-8), rgdal (>= 1.1-10)

Imports R.utils (>= 2.4.0), stats, utils, RCurl

Description Terrestrial and marine predictors for species distribution modelling
from multiple sources, including WorldClim <https://www.worldclim.org/>,
and MARSPEC <http://www.marspec.org/>.

License MIT + file LICENSE

URL http://lifewatch.github.io/sdmpredictors/

BugReports https://github.com/lifewatch/sdmpredictors/issues

Suggests ggplot2, reshape2, testthat, knitr, rmarkdown

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Author Samuel Bosch [aut],
Lennert Tyberghein [ctb],
Olivier De Clerck [ctb],
Salvador Fernandez [aut, cre],
Lennert Schepers [ctb]

Maintainer Salvador Fernandez <salvador.fernandez@vliz.be>

Repository CRAN

Date/Publication 2021-09-20 12:50:02 UTC

1
R topics documented:

- calculate_statistics .. 2
- correlation_groups ... 3
- dataset_citations .. 4
- equalareaproj ... 5
- get_future_layers .. 5
- get_layers_info ... 6
- get_paleo_layers ... 7
- layers_correlation .. 8
- layer_citations .. 8
- layer_stats ... 9
- list_datasets ... 10
- list_layers ... 11
- list_layers_future ... 12
- list_layers_paleo .. 13
- load_layers ... 14
- lonlatproj ... 15
- pearson_correlation_matrix ... 15
- plot_correlation .. 16
- sdmpredictors ... 17
- sdm_to_bo ... 18

calculate_statistics

Calculate statistics for a given raster.

Description

Method used to calculate the statistics of all layers. It can be re-used to calculate statistics for a cropped version of the rasters.

Usage

```r
calculate_statistics(layercode, raster)
```

Arguments

- `layercode` character. Name of the layer.
- `raster` RasterLayer. The raster you want to calculate statistics for.

Value

A dataframe with the layercode and all basic statistics.

See Also

- `layer_stats`
correlation_groups

Examples

```r
## Not run:
# calculate statistics of the SST and salinity in the Baltic Sea
#
# warning using tempdir() implies that data will be downloaded again in the
# next R session
x <- load_layers(c("BO_sstmax", "BO_salinity"), datadir = tempdir())
e <- extent(13, 31, 52, 66)
baltics <- crop(x, e)
View(rbind(calculate_statistics("SST Baltic Sea", raster(x, layer = 1)))
     calculate_statistics("Salinity Baltic Sea", raster(x, layer = 2)))
## End(Not run)
```

correlation_groups Groups layers based on the Pearson correlation

Description

`correlation_groups` returns groups of layer codes such as each layer from one group has an absolute Pearson product-moment correlation coefficient (Pearson’s r) that is smaller than the maximum_correlation (default 0.7) with each variable in any other group. The correlation values of quadratic layers are used for creating the groups but only non quadratic layer codes are returned.

Usage

```r
correlation_groups(layers_correlation, max_correlation=0.7)
```

Arguments

- `layers_correlation`
 matrix or dataframe. A square matrix with the layers correlations you want to group.

- `max_correlation`
 number. The maximum correlation 2 layers may have before they are put in the same correlation group.

Value

A list of vectors with each vector containing the layer codes of one correlation group.

References

dataset_citations

dataset_citations returns dataset citations as text or as "bibentry" objects.

Usage

dataset_citations(datasets = c(), astext = TRUE)

Arguments

datasets character vector. Code of the datasets. When no datasets are provided (default), then all citations are returned.
astext logical. When TRUE (default), then citations are returned as text otherwise they are returned as "bibentry" objects.

Details

Note that in order to generate a full list of citations it is preferable to run the layer_citations function.

Value

Either a character vector or a list of "bibentry" objects.

See Also

layer_citations, bibentry, list_datasets

Examples

print the Bio-ORACLE citation
print(dataset_citations("Bio-ORACLE"))

print all citations as Bibtex
print(lapply(dataset_citations(astext = FALSE), toBibtex))
equalareaproj

World Behrmann equal area coordinate reference system (ESRI:54017), used when using load_layers with equal_area = TRUE

Description

World Behrmann equal area coordinate reference system (ESRI:54017), used when using load_layers with equal_area = TRUE

Usage

equalareaproj

Format

An object of class CRS of length 1.

get_future_layers

Get the name of future climate layer(s) based on the current climate layer(s)

Description

get_future_layers returns information on the future climate layers for the matching current climate layers.

Usage

get_future_layers(current_layer_codes, scenario, year)

Arguments

<table>
<thead>
<tr>
<th>current_layer_codes</th>
<th>character vector. Code(s) of the current climate layers either as a character vector or as the dataframe provided by list_layers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>scenario</td>
<td>character vector. Climate change scenario, e.g. "B1", "A1B", "A2".</td>
</tr>
<tr>
<td>year</td>
<td>integer. Year for which you want the climate change prediction, e.g. 2100, 2200.</td>
</tr>
</tbody>
</table>

Details

Stops with an exception if no matching future climate layer was found for one or more of the provided current climate layer codes.
get_layers_info

Value
A dataframe with information on the future layer(s) matching the provided current layer(s).

See Also
list_layers_future, list_layers, load_layers

Examples
future_layers <- get_future_layers(c("BO_salinity", "BO_sstmean"),
scenario = "B1", year = 2100)
future_layers$layer_code

get_layers_info Layer info for specific layer codes

Description
get_layers_info returns all detailed information on the current or future climate layers of one or more datasets.

Usage
get_layers_info(layer_codes = c())

Arguments
layer_codes character vector. Vector with the layer codes of the layers you want the full information for. This can also be a dataframe with as column layer_code.

Value
A list with four dataframes common, current, future and paleo, the common dataframe contains data for all shared columns in the other three dataframes. The other dataframes contain all detailed information on the layer(s) matching the layer codes. By default information for all layers is returned.

See Also
list_layers, list_layers_future, list_layers_paleo, load_layers

Examples
info <- get_layers_info(c("BO_salinity", "BO_B1_2100_salinity"))
info$common
info$current
info$future
info$paleo
get_paleo_layers

Get the name of paleo climate layer(s) based on the current climate layer(s)

Description

get_paleo_layers returns information on the future climate layers for the matching current climate layers.

Usage

get_paleo_layers(current_layer_codes, model_name = NA, epoch = NA, years_ago = NA)

Arguments

current_layer_codes character vector. Code(s) of the current climate layers either as a character vector or as the dataframe provided by list_layers.

model_name character vector. Paleo climate model name see the model_name column in the result from list_layers_paleo.

epoch character vector. Epoch for which you want the paleo layer, e.g. "mid-Holocene", "Last Glacial Maximum".

years_ago integer. Years for which you want the paleo layer, e.g. 6000, 21000.

Details

Stops with an exception if no matching paleo layer was found for one or more of the provided current climate layer codes.

Value

A dataframe with information on the paleo layer(s) matching the provided current layer(s).

See Also

list_layers_paleo, list_layers, load_layers

Examples

paleo_layers <- get_paleo_layers("MS_biogeo08_sss_mean_5m", years_ago = 6000)
paleo_layers$layer_code
layers_correlation

Gives the Pearson correlation between layers

Description

layers_correlations returns the Pearson product-moment correlation coefficient (Pearson’s r) for every combination of the given layercodes. The correlation between a terrestrial and a marine layer has been set to NA.

Usage

layers_correlation(layercodes = c())

Arguments

layercodes character vector or dataframe. Codes of the layers, you want the correlation matrix of, as a character vector or a dataframe with a "layer_code" column. With the default empty vector the correlation between all layers is returned.

Value

A dataframe with the Pearson product-moment correlation coefficients.

See Also

list_layers layer_stats correlation_groups plot_correlation

Examples

correlation of the first 10 layers
layers_correlation()[1:10,1:10]
layers_correlation(c("BO_calcite", "MS_bathy_5m"))
layers_correlation(c("BO_calcite", "MS_bathy_5m"))

layer_citations

Generate citations for all layers

Description

layer_citations returns layer citations as text or as "bibentry" objects.

Usage

layer_citations(layers = c(), astext = TRUE)
layer_stats

Arguments

layers character vector. Code of the layers from past, current and future climate layers. When no layers are provided (default), then all citations are returned.

astext logical. When TRUE (default), then citations are returned as text otherwise they are returned as "bibentry" objects.

Details

Note that for some layers multiple references are returned as some of the predictors have been published separately.

Value

Either a character vector or a list of "bibentry" objects.

See Also

layer_citations, bibentry, list_datasets

Examples

print the citation for the Bio-ORACLE salinity layer
print(layer_citations("BO_salinity"))

print the citation for a MARSPEC paleo layer
print(layer_citations("MS_biogeo02_aspect_NS_21kya"))

print all citations as Bibtex
print(lapply(layer_citations(astext = FALSE), toBibtex))

layer_stats

Gives basic layer statistics

Description

layer_stats returns basic statistics (minimum, q1, median, q3, maximum, median absolute deviation (mad), mean, standard deviation (sd)) for each given layercode.

Usage

layer_stats(layercodes = c())

Arguments

layercodes character vector or dataframe. Codes of the layers you want the basic statistics of as a character vector or a dataframe with a "layer_code" column. With the default empty vector all statistics are returned.
list_datasets

Lists the supported datasets

Description

list_datasets returns information on the supported datasets.

Usage

list_datasets(terrestrial = NA, marine = NA, freshwater = NA)

Arguments

- terrestrial: logical. When TRUE, then datasets that only have terrestrial data (seamasked) are returned.
- marine: logical. When TRUE, then datasets that only have marine data (landmasked) are returned.
- freshwater: logical. When TRUE, then datasets that only have freshwater data are returned.

Details

By default it returns all datasets, when both marine, freshwater and terrestrial are FALSE then only datasets without land- nor seamasks are returned.

Value

A dataframe with information on the supported datasets.

See Also

list_layers, list_layers_future, list_layers_paleo
list_layers

Examples

 list_datasets()
 list_datasets(marine=TRUE)
 list_datasets(terrestrial=TRUE)

list_layers List the current climate layers provided by one or more datasets

Description

list_layers returns information on the layers of one or more datasets.

Usage

 list_layers(datasets=c(), terrestrial = NA, marine = NA, freshwater = NA, monthly = TRUE, version = NULL)

Arguments

 terrestrial logical. When TRUE (default), then datasets that only have terrestrial data (seamasked) are returned.
 marine logical. When TRUE (default), then datasets that only have marine data (landmasked) are returned.
 freshwater logical. When TRUE, then datasets that only have freshwater data are returned.
 monthly logical. When FALSE, then no monthly layers are returned. All annual and monthly layers are returned by default.
 version numeric vector. When NULL then layers from all versions of datasets are returned (default) else layers are filtered by version number.

Details

By default it returns all layers from all datasets, when both marine and terrestrial are FALSE then only layers from datasets without land- nor seamasks are returned. Layers for paleo and future climatic conditions can be listed with list_layers_paleo and list_layers_future. Available paleo and future climate layers for a current climate layer code can be listed with the functions get_paleo_layers and get_future_layers.

Value

A dataframe with information on the supported current climate layers.

See Also

 load_layers, list_datasets, list_layers_future, list_layers_paleo, get_future_layers, get_paleo_layers
Examples

list the first 5 layers
list_layers()[1:5,]

list the layercodes all monthly layers from WorldClim
worldclim <- list_layers("WorldClim")
worldclim[!is.na(worldclim$month),]$layer_code

list layer codes for Bio-ORACLE and MARSPEC
list_layers(c("Bio-ORACLE","MARSPEC"))$layer_code

list the first 5 terrestrial layers
list_layers(terrestrial=FALSE)[1:5,]

list the first 5 marine layers
list_layers(marine=FALSE)[1:5,]

list all annual MARSPEC layers (remove monthly layers)
list_layers("MARSPEC", monthly = FALSE)

list_layers_future

List the future climate layers provided by one or more datasets

Description

list_layers_future returns information on the future climate layers of one or more datasets.

Usage

list_layers_future(datasets = c(), scenario = NA, year = NA,
 terrestrial = NA, marine = NA, freshwater = NA, monthly = TRUE, version = NULL)

Arguments

scenario character vector. Climate change scenario, e.g. "B1", "A1B", "A2".
year integer. Year for which you want the climate change prediction, e.g. 2100, 2200.
terrestrial logical. When TRUE (default), then datasets that only have terrestrial data (sea-masked) are returned.
marine logical. When TRUE (default), then datasets that only have marine data (land-masked) are returned.
freshwater logical. When TRUE, then datasets that only have freshwater data are returned.
monthly logical. When FALSE, then no monthly layers are returned. All annual and monthly layers are returned by default.
version numeric vector. When NULL then layers from all versions of datasets are returned (default) else layers are filtered by version number.

Details

By default it returns all layers from all datasets, when both marine and terrestrial are FALSE then only layers without land- nor seamasks are returned.
A dataframe with information on the supported future climate layers.

See Also

list_layers, list_layers_paleo, list_datasets, load_layers

Examples

list the first 5 layers
list_layers_future()[1:5,]
list layer codes for Bio-ORACLE with scenario B1 and year 2100
list_layers_future("Bio-ORACLE", scenario = "B1", year = 2100)$layer_code

list_layers_paleo

List the paleo climate layers provided by one or more datasets

Description

list_layers_paleo returns information on the paleo climate layers of one or more datasets.

Usage

list_layers_paleo(datasets = c(), model_name = NA, epoch = NA,
 years_ago = NA, terrestrial = NA, marine = NA, freshwater = NA, monthly =
 TRUE, version = NULL)

Arguments

model_name character vector. Paleo climate model name see the model_name column in the result.
epoch character vector. Epoch for which you want the paleo layer, e.g. "mid-Holocene", "Last Glacial Maximum".
years_ago integer. Years for which you want the paleo layer, e.g. 6000, 21000.
terrestrial logical. When TRUE (default), then datasets that only have terrestrial data (seamasked) are returned.
marine logical. When TRUE (default), then datasets that only have marine data (land-masked) are returned.
freshwater logical. When TRUE, then datasets that only have freshwater data are returned.
memonic logical. When FALSE, then no monthly layers are returned. All annual and monthly layers are returned by default.
version numeric vector. When NULL then layers from all versions of datasets are returned (default) else layers are filtered by version number.
load_layers

Details
By default it returns all layers from all datasets, when both marine and terrestrial are FALSE then only layers without land- nor seamasks are returned.

Value
A dataframe with information on the supported paleo climate layers.

See Also
list_layers, list_layers_future, list_datasets, load_layers

Examples
list the first 5 layers
list_layers_paleo()[1:5,]
list layer codes for MARSPEC for the mid-Holocene
list_layers_paleo("MARSPEC", epoch = "mid-Holocene")$layer_code

load_layers

Description
Method to load rasters from disk or from the internet. By default a RasterStack is returned but this is only possible when all rasters have the same spatial extent and resolution.

Usage
load_layers(layercodes, equalarea=FALSE, rasterstack=TRUE, datadir=NULL)

Arguments
layercodes character vector or dataframe. Layer_codes of the layers to be loaded or dataframe with a "layer_code" column.
equalarea logical. If TRUE then layers are loaded with a Behrmann cylindrical equal-area projection (equalareaproj), otherwise unprojected (lonlatproj). Default is FALSE.
rasterstack logical. If TRUE (default value) then the result is a stack otherwise a list of rasters is returned.
datadir character. Directory where you want to store the data. If NULL is passed (default) then the sdmpredictors_datadir option is read. To set this run options(sdmpredictors_datadir="<your preferred directory>") in every session or add it to your .RProfile.

Value
RasterStack or list of raster
lonlatproj

See Also
list_layers, layer_stats, layers_correlation

Examples
Not run:
warning using tempdir() implies that data will be downloaded again in the
next R session
env <- load_layers("BO_calcite", datadir = tempdir())
End(Not run)

lonlatproj

Longitude/latitude coordinate reference system (EPSG:4326), used when using load_layers with equal_area = FALSE

Description
Longitude/latitude coordinate reference system (EPSG:4326), used when using load_layers with equal_area = FALSE

Usage
lonlatproj

Format
An object of class CRS of length 1.

pearson_correlation_matrix

Calculate the Pearson correlation coefficient matrix for a rasterstack

Description
Calculate the Pearson correlation coefficient matrix for a rasterstack

Usage
pearson_correlation_matrix(x, cachesize = 20, same_mask = FALSE)
Arguments

- **x**
 - `RasterStack`. The stack of rasters you want to calculate the Pearson correlation coefficient matrix for. This can be obtained by calling `load_layers`.

- **cachesize**
 - integer. For how many rasters should the values be kept in local memory. By default this is set to 20, a parameter which works reasonably well on a windows computer with 8GB RAM.

- **same_mask**
 - logical. Whether we can assume that the mask is the same for all layers (same NA values), default is `FALSE`.

Value

A correlation matrix.

See Also

`layers_correlation`, `plot_correlation`, `load_layers`

Examples

```r
## Not run:
# calculate correlation between SST and salinity in the Baltic Sea

# warning using tempdir() implies that data will be downloaded again in the
# next R session
x <- load_layers(c("BO_sstmax", "BO_salinity"), datadir = tempdir())
e <- extent(13, 31, 52, 66)
baltics <- crop(x, e)
print(pearson_correlation_matrix(baltics))

## End(Not run)
```

plot_correlation
Plot the correlation matrix for the provided layercodes

Description

`plot_correlation` creates a plot of the correlation between different layers

Usage

```r
plot_correlation(layers_correlation, prettynames = list(),
                 palette = c("#2c7bb6", "#abd9e9", "#fffbf6", "#fdae61", "#d7191c"))
```
Arguments

- **layers_correlation**: matrix or dataframe. A square matrix with the layers correlations you want to plot as returned by `layers_correlation` or `pearson_correlation_matrix`.
- **prettynames**: list. Optional list with as names the layercodes and as values the name of the layer to be used in the plot.
- **palette**: character vector. Optional vector with 5 entries for the range of colors to be used for the correlation matrix plot.

Details

This function requires ggplot2 and plots the correlations for the layers in the same order as the layercodes are provided to this function.

Value

A ggplot object that can be printed or saved.

See Also

- `layers_correlation`
- `pearson_correlation_matrix`
- `list_layers`
- `layer_stats`
- `correlation_groups`

Examples

```r
 correlation <- layers_correlation(c("BO_calcite", "BO_damin", "MS_bathy_5m"))
 p <- plot_correlation(correlation)
 print(p)
```

sdmpredictors

sdmpredictors: Species Distribution Modeling Predictor Datasets

Description

References

sdm_to_bo
Translate file name from sdmpredictors to bio-oracle

Description

Translate file name from sdmpredictors to bio-oracle

Usage

```r
sdm_to_bo(sdm)
```

Arguments

- `sdm`
 the name of the sdm string

Value

A string with the name of the same file in bio-oracle

Examples

```r
sdm_to_bo("BO2_tempmean_ss.tif")
sdm_to_bo("BO21_RCP26_2050_curvelltmax_bdmax.tif")
```
Index

* datasets
 equalareaproj, 5
 lonlatproj, 15
bibentry, 4, 8, 9

calculate_statistics, 2
correlation_groups, 3, 8, 17
dataset_citations, 4
equalareaproj, 5, 14
get_future_layers, 5, 11
get_layers_info, 6
get_paleo_layers, 7, 11
layer_citations, 4, 8, 9
layer_stats, 2, 4, 8, 9, 15, 17
layers_correlation, 4, 8, 10, 15–17
list_datasets, 4, 9, 10, 11, 13, 14
list_layers, 4–8, 10, 11, 13–15, 17
list_layers_future, 6, 10, 11, 12, 14
list_layers_paleo, 6, 7, 10, 11, 13, 14
load_layers, 6, 7, 11, 13, 14, 14, 16
lonlatproj, 14, 15

pearson_correlation_matrix, 15, 17
plot_correlation, 8, 16, 16

sdm_to_bo, 18
sdmpredictors, 17
stack, 14