Package ‘seasonal’

June 6, 2020

Type Package
Title R Interface to X-13-ARIMA-SEATS
Version 1.7.1
Date 2020-06-06
Description Easy-to-use interface to X-13-ARIMA-SEATS, the seasonal adjustment software by the US Census Bureau. It offers full access to almost all options and outputs of X-13, including X-11 and SEATS, automatic ARIMA model search, outlier detection and support for user defined holiday variables, such as Chinese New Year or Indian Diwali. A graphical user interface can be used through the 'seasonalview' package. Uses the X-13-binaries from the 'x13binary' package.
Depends R (>= 2.15)
Imports x13binary
Suggests seasonalview (>= 0.1.3)
License GPL-3
URL http://www.seasonal.website

BugReports https://github.com/christophsax/seasonal
LazyData true
RoxygenNote 7.1.0
Encoding UTF-8

Author Christoph Sax [aut, cre] (<https://orcid.org/0000-0002-7192-7044>), Dirk Eddelbuettel [ctb] (<https://orcid.org/0000-0001-6419-907X>)
Maintainer Christoph Sax <christoph.sax@gmail.com>
Repository CRAN

Date/Publication 2020-06-06 10:10:02 UTC
R topics documented:

seasonal-package .. 2
arimamodel ... 4
as.data.frame.seas .. 5
checkX13 .. 6
cpi ... 6
easter ... 7
exp ... 7
final ... 8
fivebestmdl .. 9
genhol ... 10
identify.seas .. 13
iip ... 14
import.spc ... 15
import.ts .. 17
na.x13 .. 18
out ... 19
outlier ... 20
plot.seas .. 21
predict.seas .. 23
seas ... 24
series ... 28
spc ... 34
SPECS ... 35
static .. 35
summary.seas ... 37
transformfunction .. 39
udg ... 40
unemp ... 41
update.seas .. 42
view ... 43

Index 45

seasonal-package seasonal: R interface to X-13ARIMA-SEATS

Description

seasonal is an asy-to-use interface to X-13-ARIMA-SEATS, the seasonal adjustment software by the US Census Bureau. It offers full access to almost all options and outputs of X-13, including X-11 and SEATS, automatic ARIMA model search, outlier detection and support for user defined holiday variables, such as Chinese New Year or Indian Diwali. A graphical user interface can be used through the seasonalview package. Uses the X-13-binaries from the x13binary package.

The best way to start is to have a look at the vignette:

vignette("seas")
Installation

Seasonal depends on the \texttt{x13binary} package, which downloads and installs the X-13 binaries. To install both packages, simply type to the R console:

\begin{verbatim}
install.packages("seasonal")
\end{verbatim}

A startup message is given if the path to X-13 is specified manually. To suppress the message, use \texttt{suppressPackageStartupMessages}.

Setting the X-13 path manually

Sometimes, you either cannot or don’t want to rely on the binaries provided by \texttt{x13binary}:

\begin{itemize}
\item because you are on an unsupported system, like Solaris. If you manage to build X-13 on such a system, please let the developers of \texttt{x13binary} know.
\item because you cannot run executable files in your R library folders, due to corporate IT policy.
\item because you are using your own Fortran compilation of X-13ARIMA-SEATS.
\end{itemize}

Setting the path manually can be done as in previous versions of seasonal. In order to tell seasonal where to find the binary executables of X-13ARIMA-SEATS, the specific environmental variable \texttt{X13_PATH} needs to be set. This may be done during your active session in R:

\begin{verbatim}
Sys.setenv(X13_PATH = "YOUR_X13_DIRECTORY")
\end{verbatim}

Exchange \texttt{YOUR_X13_DIRECTORY} with the path to your installation of X-13ARIMA-SEATS. You can always check your installation with:

\begin{verbatim}
checkX13()
\end{verbatim}

If it works, you may want to set the environmental variable permanently, by adding the \texttt{Sys.setenv} line to one of your .\texttt{Rprofile} files. The easiest is to use the one located in your home directory, which can be written directly from R:

\begin{verbatim}
write('Sys.setenv(X13_PATH = "YOUR_X13_DIRECTORY")', file = "~/.Rprofile", append = TRUE)
\end{verbatim}

If the file does not exist (by default), it will be created. Make sure that you get the quotes right: double quotes around your directory, single quotes around the whole \texttt{Sys.setenv} line, such that R understands your string. Check first that the the \texttt{Sys.setenv} line works correctly; once it is written you may have to edit \texttt{.Rprofile} manually. (Or add a second, overwriting line to it.) For other ways to set an environmental variable permanently in R, see Startup.

Author(s)

Christoph Sax <christoph.sax@gmail.com>

References

See Also

\texttt{seas} for the core function and more information on package usage.
Defunct Functions

Description
The arimamodel functions is defunct now. Use the more universal udg function.
The inspect functions is defunct now. Use the extended view function instead.

Usage

arimamodel(x)

inspect(x, fun = NULL, check.version = TRUE, quiet = TRUE, ...)

Arguments

x an object of class "seas".
fun a function or a list of functions (see details)
check.version logical, should the version of shiny be checked
quiet logical, if TRUE (default), error messages from calls in inspect are not shown in
the console
... further arguments, passed on to runApp. (The launch.browser argument of
version 0.8 can be still used that way)

See Also

udg, for universal access to X-13 statistics
view, for an extended graphical user interface.

Examples

Not run:
m <- seas(AirPassengers)
udg(x, "x13mdl")

End(Not run)
Not run:
m <- seas(AirPassengers)
view(m)

End(Not run)
Coerce Output to data.frame

Description

These methods coerce the output to a data.frame. This is useful for further processing. (This is a second attempt to do that; the first experimental attempt in version 1.4 used an argument data.frame in the call to the functions, and is now obsolete. The present approach seems cleaner and is likely to stay, but still consider it as experimental.)

Usage

S3 method for class 'seas'
as.data.frame(x, ...)

S3 method for class 'summary.seas'
as.data.frame(x, ...)

Arguments

x
an object of class "seas" or "summary.seas", usually, the result of a call to the functions with the same name.

...
unused.

Details

The data.frames produced by these functions follow the naming conventions from the 'broom' package, but do not depend on it otherwise.

Value

a data.frame without row names.

Examples

Not run:
m <- seas(AirPassengers, x11 = "")

a data.frame containing data
as.data.frame(m)

a data.frame containing the summary information on the coefficients
as.data.frame(summary(m))

End(Not run)
checkX13

Check Installation of X-13ARIMA-SEATS

Description

Check the installation of the binary executables of X-13ARIMA-SEATS. See `seasonal` for details on how to set `X13_PATH` manually if you intend to use your own binaries.

Usage

```
checkX13(fail = FALSE, fullcheck = TRUE, htmlcheck = TRUE)
```

Arguments

- **fail** logical, whether an error should interrupt the process. If `FALSE`, a message is returned.
- **fullcheck** logical, whether a full test should be performed. Runs `Testairline.spc` (which is shipped with X-13ARIMA-SEATS) to test the working of the binaries. Returns a message.
- **htmlcheck** logical, whether the presence of the the HTML version of X-13 should be checked.

Examples

```
## Not run:
old.path <- Sys.getenv("X13_PATH")
Sys.setenv(X13_PATH = "")  # its broken now
checkX13()

Sys.setenv(X13_PATH = old.path)  # fix it (provided it worked in the first place)
checkX13()

## End(Not run)
```

cpi

Consumer Price Index of Switzerland

Description

Monthly consumer price index of Switzerland. Base year is 1993.

Format

Time series of class "ts".
easter

Source
Federal Statistical Office, Switzerland

Examples

data(seasonal)
cpi

easter

Dates of Chinese New Year, Indian Diwali and Easter

Description
Dates of Chinese New Year, Indian Diwali and Easter, suitable for the use in genhol.

Format
Objects of class "Date".

Source
https://www.census.gov/srd/www/genhol/genhol_downloads.html
Ministry of Statistics and Programme Implementation, with help from Pinaki Mukherjee

Examples

data(holiday)
cny
diwali
easter

exp

Exports and Imports of China

Description
Monthly exports and imports of China (July 1983 to December 2013).

Format
Each time series is an object of class "ts".
Details
In 100 mio. U.S. Dollar.

Source
China Customs

Examples

data(seasonal)
imp
exp

final Time Series of a Seasonal Adjustment Model

Description
Functions to extract the main time series from a "seas" object. For universal import of X-13ARIMA-SEATS tables, use the series function.

Usage
final(object)
original(object)
trend(object)
irregular(object)

S3 method for class 'seas'
residuals(object, ...)

Arguments
object an object of class "seas".
... not used. For compatibility with the generic.

Details
These functions support R default NA handling. If na.action = na.exclude is specified in the call to seas, the time series will also contain NAs.

Value
returns a "ts" object, depending on the function.
Five Best ARIMA Models

Description

Returns the five best models as chosen by the BIC criterion. It needs the automdl spec to be activated (default). If it is not activated, the function tries to re-evaluate the model with the automdl spec activated.

Usage

fivebestmdl(x)

Arguments

x object of class "seas"
References

Vignette with a more detailed description: http://www.seasonal.website/seasonal.html

Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.website/examples.html

See Also

seas for the main function.

series, for universal X-13 output extraction.

plot.seas, for diagnostical plots.

out, for accessing the full output of X-13ARIMA-SEATS.

Examples

Not run:

m <- seas(AirPassengers)
fivebestmdl(m)

End(Not run)

genhol

Generate Holiday Regression Variables

Description

A replacement for the genhol software by the U.S. Census Bureau, a utility that uses the same procedure as X-12-ARIMA to create regressors for the U.S. holidays of Easter, Labor Day, and Thanksgiving. This is a replacement written in R, the U.S. Census Bureau software is not needed.

Usage

genhol(x, start = 0, end = 0, frequency = 12, center = "none")

Arguments

x a vector of class "Date", containing the occurences of the holiday. It can be generated with as.Date.

start integer, shifts the start point of the holiday. Use negative values if start is before the specified date.

end integer, shifts end point of the holiday. Use negative values if end is before the specified date.

center integer, frequency of the resulting series
center character string. Either "calendar", "mean" or "none" (default). Centering avoids a bias in the resultign series. Use "calendar" for Easter or Chinese New Year, "mean" for Ramadan. See references: Notes on centering holiday.

Details

The resulting time series can be used as a user defined variable in seas. Usually, you want the holiday effect to be removed from the final series, so you need to specify regression.usertype = "holiday". (The default is to include user defined variables in the final series.)

Value

an object of class "ts" that can be used as a user defined variable in seas.

References

United States Census Bureau, Notes on centering holiday regressors: https://www.census.gov/srd/www/genhol/genhol_center.html

See Also

seas for the main function of seasonal.

Examples

Not run:

data(holiday) # dates of Chinese New Year, Indian Diwali and Easter

use of genhol

10 day before Easter day to one day after, quarterly data:
genhol(easter, start = -10, end = 1, frequency = 4)
genhol(easter, frequency = 2) # easter is allways in the first half-year

centering for overall mean or monthly calendar means
genhol(easter, center = "mean")
genhol(easter, center = "calendar")

replicating X-13's built-in Easter adjustment

built-in
m1 <- seas(x = AirPassengers,
 regression.variables = c("td1coef", "easter[1]", "ao1951.May"),
arima.model = "(0 1 1)(0 1 1)", regression.aictest = NULL,
 outlier = NULL, transform.function = "log", x11 = "")
summary(m1)

user defined variable
eal <- genhol(easter, start = -1, end = -1, center = "calendar")
regression.usertype = "holiday" ensures that the effect is removed from
the final series.
m2 <- seas(x = AirPassengers,
 regression.variables = c("td1coef", "ao1951.May"),
 xreg = ea1, regression.usertype = "holiday",
 arima.model = "(0 1 1)(0 1 1)", regression.aictest = NULL,
 outlier = NULL, transform.function = "log", x11 = "")
summary(m2)

all.equal(final(m2), final(m1), tolerance = 1e-06)

with genhol, its possible to do slight better, by adjusting the length
of easter from Friday to Monday:
e2 <- genhol(easter, start = -2, end = +1, center = "calendar")
m3 <- seas(x = AirPassengers,
 regression.variables = c("td1coef", "ao1951.May"),
 xreg = e2, regression.usertype = "holiday",
 arima.model = "(0 1 1)(0 1 1)", regression.aictest = NULL,
 outlier = NULL, transform.function = "log", x11 = "")
summary(m3)

Chinese New Year
data(seasonal)
data(holiday) # dates of Chinese New Year, Indian Diwali and Easter

de facto holiday length: http://en.wikipedia.org/wiki/Chinese_New_Year
cny.ts <- genhol(cny, start = 0, end = 6, center = "calendar")
m1 <- seas(x = imp, xreg = cny.ts, regression.usertype = "holiday", x11 = "",
 arima.model = "(0 1 2)(0 1 1)", regression.aictest = NULL,
 outlier = NULL, transform.function = "log")
summary(m1)

compare to identical no-CNY model
m2 <- seas(x = imp, x11 = "",
 arima.model = "(0 1 2)(0 1 1)", regression.aictest = NULL,
 outlier = NULL, transform.function = "log")
summary(m2)

ts.plot(final(m1), final(m2), col = c("red", "black"))

modeling complex holiday effects in Chinese imports
- positive pre-CNY effect
- negative post-CNY effect
pre_cny <- genhol(cny, start = -6, end = -1, frequency = 12, center = "calendar")
post_cny <- genhol(cny, start = 0, end = 6, frequency = 12, center = "calendar")
m3 <- seas(x = imp, x11 = "",
 regression.variables = c("td1coef", "ao1951.May"),
 xreg = e2, regression.usertype = "holiday",
 arima.model = "(0 1 1)(0 1 1)", regression.aictest = NULL,
 outlier = NULL, transform.function = "log", x11 = "")
xreg = cbind(pre_cny, post_cny), regression.usertype = "holiday",
x11 = list()
summary(m3)

Indian Diwali (thanks to Pinaki Mukherjee)

adjusting Indian industrial production
m4 <- seas(iip,
x11 = ",",
xreg = genhol(diwali, start = 0, end = 0, center = "calendar"),
regression.usertype = "holiday"
)
summary(m4)

without specification of 'regression.usertype', Diwali effects are added
back to the final series
m5 <- seas(iip,
x11 = ",",
xreg = genhol(diwali, start = 0, end = 0, center = "calendar")
)

ts.plot(final(m4), final(m5), col = c("red", "black"))

plot the Diwali factor in Indian industrial production
plot(series(m4, "regression.holiday"))

Using genhol to replicate the regARIMA estimation in R

easter regressor
ea <- genhol(easter, start = -1, end = -1, center = "calendar")
ea <- window(ea, start = start(AirPassengers), end = end(AirPassengers))

estimating ARIMA model in R base
arima(log(AirPassengers), order = c(0,1,1), seasonal = c(0,1,1), xreg = ea)

summary(seas(AirPassengers, regression.variables = c("easter[1]"),
regression.aictest = NULL))

Note that R defines the ARIMA model with negative signs before the MA term,
X-13 with a positive sign.

End(Not run)
Description

Select or deselect outliers by point and click. To quit and return the call, press ESC. Click several times to loop through different outlier types.

Usage

```r
## S3 method for class 'seas'
identify(x, type = c("ao", "tc", "ls"), ...)
```

Arguments

- `x`: an object of class "seas".
- `type`: character vector, types of outlier to loop through.
- `...`: unused, for compatibility with the generic function.

Value

an object of class "seas", containing the static call of the selected model.

Examples

```r
## Not run:
m <- seas(AirPassengers)
identify(m)
## End(Not run)
```

iip

Industrial Production of India

Description

Industrial Production of India (IIP).

Format

Time series of class "ts".

Details

Index value. IIP is used for measuring the performance overall industrial sector of the Indian economy. IIP is compiled by using data from 16 source agencies.

Source

Central Statistics Office of the Ministry of Statistics and Programme Implementation, with help from Pinaki Mukherjee
import.spc

Examples

```r
data(seasonal)
iip
```

import.spc

Import X-13 .spc Files

Description

Utility function to import .spc files from X-13. It generates a list of calls to seas (and import.ts) that can be run in R. Evaluating these calls should perform the same X-13 procedure as the original .spc file. The print method displays the calls in a way that they can be copy-pasted into an R script.

Usage

```r
import.spc(file, text = NULL)
```

S3 method for class 'import.spc'

```r
print(x, ...)
```

Arguments

- `file` character, path to the X-13 .spc file
- `text` character, alternatively, the content of a .spc file as a character string.
- `x` object of class import.spc
- `...` further arguments, not used

Value

returns an object of class import.spc, which is a list with the following (optional) objects of class call:

- `x` the call to retrieve the data for the input series
- `xtrans` the call to retrieve the data for the xtrans series (if required by the call)
- `xreg` the call to retrieve the data for the xreg series (if required by the call)
- `seas` the call to seas

See Also

- `import.ts`, for importing X-13 data files.
- `seas` for the main function of seasonal.
Examples

importing the original X-13 example file
import.spc(text =

series(
 title="International Airline Passengers Data from Box and Jenkins"
 start=1949.01
 data=(
 112 118 129 121 135 148 148 136 119 104 118
 115 126 141 135 125 149 170 170 158 133 114 140
 145 150 178 163 172 178 199 199 184 184 162 146 166
 171 180 193 181 183 218 230 242 209 191 172 172 194
 196 196 236 235 229 243 264 272 237 211 180 281
 204 188 235 227 234 264 302 293 259 229 203 229
 242 233 267 269 270 315 364 347 312 274 237 278
 284 277 317 313 318 374 413 405 355 306 271 306
 315 301 356 348 355 422 465 467 404 347 305 336
 340 318 362 348 363 435 491 505 404 359 310 337
 360 342 406 396 420 472 548 559 463 407 362 405
 417 391 419 461 472 535 622 606 508 461 390 432
)
 span=(1952.01,)
)
spectrum(
 savelog=peaks
)
transform(
 function=auto
 savelog=autotransform
)
regression(
 aictest=(td easter)
 savelog=aictest
)
automdl{
 savelog=automodel
}
outlier{ }
x11()
)

Not run:

reading .spc with multiple user regression and transformation series

running a complex seas call and save output in a temporary directory
tdir <- tempdir()
seas(x = AirPassengers, xreg = cbind(a = genhol(cny, start = 1, end = 4, center = "calendar"), b = genhol(cny, start = -3, end = 0, center = "calendar")), xtrans = cbind(sqrt(AirPassengers), AirPassengers^3), transform.function = "log", transform.type = "temporary",

```
regression.aictest = "td", regression.usertype = "holiday", dir = tdir, out = TRUE)

# importing the .spc file from the temporary location
ll <- import.spc(file.path(tdir, "iofile.spc"))

# ll is list containing four calls:
# - 'll$x', 'll$xreg' and 'll$xtrans': calls to import.ts(), which read the
#   series from the X-13 data files
# - 'll$seas': a call to seas() which performs the seasonal adjustment in R
str(ll)

# to replicate the original X-13 operation, run all four calls in a series.
# You can either copy/paste and run the print() output:
ll

# or use eval() to evaluate the call(s). To evaluate the first call and
# import the x variable:
eval(ll$x)

# to run all four calls in 'll', use lapply() and eval():
ee <- lapply(ll, eval, envir = globalenv())
ee$seas # the 'seas' object, produced by the final call to seas()

## End(Not run)

---

import.ts

Import Time Series from X-13 Data Files

Description

Utility function to read time series from X-13 data files. A call to import.ts is constructed and included in the output of import.spc.

Usage

import.ts(
  file,
  format = "datevalue",
  start = NULL,
  frequency = NULL,
  name = NULL
)

Arguments

file character, name of the X-13 file which the data are to be read from
format a valid X-13 file format as described in 7.15 of the X-13 manual: "datevalue", "datevaluecomma", "free", "freecomma", "x13save", "tramo" or an X-11 or Fortran format.
na.x13

Start

vector of length 2, time of the first observation (only for formats "free" and
"freecomma" and the Fortran formats.)

frequency

the number of observations per unit of time (only for formats "free", "freecomma"
and the X-11 or Fortran formats.)

name

(X-11 formats only) name of the series, to select from a file with multiple time
series. Omit if you want to read all time series from an X-11 format file.

Value

an object of class ts or mts

See Also

import.spc, for importing X-13 .spc files.

seas for the main function of seasonal.

Examples

## Not run:
tdir <- tempdir()
seas(x = AirPassengers, dir = tdir)
import.ts(file.path(tdir, "data.dta"))
import.ts(file.path(tdir, "iofile.rsd"), format = "x13save")

## End(Not run)

na.x13

Handle Missing Values by X-13

Description

Utility function to substitute NA values by -99999. Useful as a value for the na.action argument in seas.

Usage

na.x13(x)

Arguments

x

an object of class "ts"

Value

a time series, with NA values substituted by -99999.
Examples

```r
Not run:
#' AirPassengersNA <- AirPassengers
AirPassengersNA[20] <- NA
na.x13(AirPassengersNA)
seas(AirPassengersNA, na.action = na.x13)
End(Not run)
```

Description

The `out` function shows the full content of the X-13ARIMA-SEATS output in the browser. If you want to use a specific statistic in R, the `udg` function is preferable.

Usage

```r
out(x, browser = getOption("browser"), ...)
```

Arguments

- `x`: an object of class "seas".
- `browser`: browser to be used, passed on to `browseURL`.
- `...`: additional spec-arguments options sent to X-13ARIMA-SEATS during re-evaluation, passed to `update`.

Details

To keep the size of "seas" objects small, `seas` does not save the output by default. Instead, `out` re-evaluates the model.

Value

displays the output as a side effect.

References

- Vignette with a more detailed description: http://www.seasonal.website/seasonal.html
- Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.website/examples.html
See Also

`seas` for the main function of seasonal.

Examples

```r
Not run:
m <- seas(AirPassengers)
out(m)
customizing the output with additional elements
out(m, automdl.print = "autochoicemdl")
```

```r
End(Not run)
```

---

**Description**

Returns an object of class "ts" that contains the names of the outliers.

**Usage**

`outlier(x, full = FALSE)`

**Arguments**

- `x` an object of class "seas".
- `full` logical, should the full label of the outlier be shown? If FALSE, only the type of the outlier is shown.

**Value**

character string time series with outliers.

**Examples**

```r
Not run:
x <- seas(AirPassengers)
outlier(x)

End(Not run)
```
plot.seas Seasonal Adjustment Plots

Description

Functions to graphically analyze a "seas" object.

Usage

## S3 method for class 'seas'
plot(
x,          
outliers = TRUE,
trend = FALSE,
main = "Original and Adjusted Series",
xlab = "Time",
ylab = "",
transform = c("none", "PC", "PCY"),
...
)

residplot(
x,          
outliers = TRUE,
main = "residuals of regARIMA",
xlab = "Time",
ylab = "",
...
)

## S3 method for class 'seas'
monthplot(x, choice = c("seasonal", "irregular"), main, ...)

Arguments

x an object of class "seas", usually, a result of a call to seas.
outliers logical, should the outliers be drawn.
trend logical, should the trend be drawn.
main character string, title of the graph.
xlab character string, title for the x axis.
ylab character string, title for the y axis.
transform character string, optionally transform the data to period to period "PC" or year to year "PCY" percentage change rates.
... further arguments passed to the plotting functions.
choice character string, "seasonal" (default) or "irregular".
plot.seas

Details

plot calls the plot method for class "seas". It plots the adjusted and unadjusted series, as well as the outliers. Optionally draws the trend series.

residplot plots the residuals and the outliers.

monthplot calls the monthplot method for class "seas". It plots the seasonal and SI component periodwise. Despite its name, monthplot can be used for series of all frequencies.

Value

All plot functions return a plot as their side effect.

References

Vignette with a more detailed description: http://www.seasonal.website/seasonal.html
Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.website/examples.html

See Also

seas, for the main function.
udg, for diagnostical statistics.

Examples

## Not run:

m <- seas(AirPassengers)

plot(m)
plot(m, outliers = FALSE)
plot(m, trend = TRUE)

residplot(m)
residplot(m, outliers = FALSE)

monthplot(m)

# use standard R functions to analyze "seas" models
pacf(resid(m))
spectrum(diff(resid(m)))
plot(density(resid(m)))
qqnorm(resid(m))

## End(Not run)
predict.seas  

Seasonal Adjusted Series

Description

Returns the seasonally adjusted series of an (optionally re-evaluated) model of class "seas". Without further arguments, this is equivalent to a call to the `final` function.

Usage

```r
S3 method for class 'seas'
predict(object, newdata, ...)
```

Arguments

- `object` an object of class "seas".
- `newdata` an object of class "ts". new data values for the x argument in the `seas` function.
- `...` further arguments, passed to `update.seas`, to re-evaluate the model.

Details

With the `newdata` argument supplied, the "seas" object is re-evaluated, using the original model call. This is equivalent of calling `final(update(m,x = newdata))`.

Value

Object of class "ts".

Examples

```r
Not run:
Using data from Dec. 59 to estimate a model
ap.short <- window(AirPassengers, end = c(1959, 12))
m <- seas(ap.short)
predict(m)
final(m) # equivalent

Use Dec. 59 model specification to estimate data up to Dec. 60
predict(m, AirPassengers)

End(Not run)
```
seas  

Seasonal Adjustment with X-13ARIMA-SEATS

Description

Main function of the seasonal package. With the default options, seas calls the automatic procedures of X-13ARIMA-SEATS to perform a seasonal adjustment that works well in most circumstances. Via the ... argument, it is possible to invoke almost all options that are available in X-13ARIMA-SEATS (see details). The default options of seas are listed as explicit arguments and are discussed in the arguments section. A full-featured graphical user interface can be accessed by the view function.

Usage

seas(
  x,
  xreg = NULL,
  xtrans = NULL,
  seats.noadmiss = "yes",
  transform.function = "auto",
  regression.aictest = c("td", "easter"),
  outlier = "",
  automdl = "",
  na.action = na.omit,
  out = FALSE,
  dir = NULL,
  ...
)

Arguments

x  
object of class "ts": time series to seasonally adjust.

xreg  
(optional) object of class "ts": one or several user defined exogenous variables for regARIMA modelling, can be used both with regression or x11regression.

xtrans  
(optional) object of class "ts": one or two user defined exogenous variables for the transform spec. Can be specified together with xreg.

seats.noadmiss  
spec 'seats' with argument noadmiss = "yes" (default). Seasonal adjustment by SEATS, if SEATS decomposition is invalid, an alternative model is used (a message is returned). If noadmiss = "no", no approximation is done. If the seats spec is removed (seats = NULL), no seasonal adjustment is performed.

transform.function  
spec transform with argument function = "auto" (default). Automatic log transformation detection. Set equal to "none", "log" or any value that is allowed by X-13 to turn it off.
regression.aictest
   spec regression with argument aictest = c("td","easter") (default). AIC
   test for trading days and Easter effects. Set equal to NULL to turn it off.
outlier
   spec outlier without arguments (default). Automatic outlier detection. Set
   equal to NULL to turn it off.
automdl
   spec automdl without arguments (default). Automatic model search with the
   automdl spec. Set equal to NULL to turn it off.
na.action
   a function which indicates what should happen when the data contain NAs.
   na.omit (default), na.exclude or na.fail. If na.action = na.x13, NA han-
   ding is done by X-13, i.e. NA values are substituted by -99999.
out
   logical. Should the X-13ARIMA-SEATS standard output be saved in the "seas"
   object? (this increases object size substantially, it is recommended to re-evaluate
   the model using the out function instead.)
dir
   character string with a user defined file path. If specified, the X-13ARIMA-
   SEATS output files are copied to this folder. Useful for debugging.
...
   additional spec-arguments options sent to X-13ARIMA-SEATS (see details).
list
   a named list with additional spec-arguments options. This is an alternative to
   the ... argument. It is useful for programming.

Details

It is possible to use the almost complete syntax of X-13ARIMA-SEAT via the ... argument. The
syntax of X-13ARIMA-SEATS uses specs and arguments, and each spec optionally contains some
arguments. In seas, an additional spec-argument can be added by separating spec and argument by
a dot (.) (see examples). Alternatvily, spec-argument combinations can be supplied as a named list,
which is useful for programming.

Similarly, the series function can be used to read almost all series from X-13ARIMA-SEATS.
The udg function provides access to a large number of diagnostical statistics.

For a more extensive description, consider the vignette or the wiki page, which contains replications
of almost all examples from the official X-13ARIMA-SEATS manual.

Value

returns an object of class "seas", essentially a list with the following components:

series
   a list containing the output tables of X-13. To be accessed by the series func-
   tion.
data
   seasonally adjusted data, the raw data, the trend component, the irregular com-
   ponent and the seasonal component (deprecated).
err
   warning messages from X-13ARIMA-SEATS
udg
   content of the .udg output file
est
   content of the .est output file
model
   list with the model specification, similar to "spc". It typically contains "regression",
   which contains the regressors and parameter estimates, and "arima", which con-
   tains the ARIMA specification and the parameter estimates.
Best Five ARIMA Models (unparsed)

input series

object of class "spclist", a list containing the content of the .spc file that is used by X-13ARIMA-SEATS. Each spec is on the first level, each argument is on the second level.

function call

temporary directory in which X-13ARIMA-SEATS has been run

The final function returns the final adjusted series, the plot method shows a plot with the unadjusted and the adjusted series. summary gives an overview of the regARIMA model. The udg function returns diagnostical statistics.

References


On-Line Interface to seasonal http://www.seasonal.website

Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.website/examples.html


See Also

view, for accessing the graphical user interface.
update.seas, to update an existing "seas" model.
static, to return the 'static' call, with automated procedures substituted by their choices.
series, for universal X-13 table series import.
out, to view the full X-13 diagnostical output.

Examples

```r
Not run:

Basic call
m <- seas(AirPassengers)
summary(m)

Graphical user interface
view(m)

invoke X-13ARIMA-SEATS options as 'spec.argument' through the ... argument
(consult the X-13ARIMA-SEATS manual for many more options and the list of
R examples for more examples)
seas(AirPassengers, regression.aictest = c("td")) # no easter testing
seas(AirPassengers, force.type = "denton") # force equality of annual values
seas(AirPassengers, x11 = "") # use x11, overrides the 'seats' spec
```
seas

# 'spec.argument' combinations can also be supplied as a named list, which is # useful for programming
seas(AirPassengers, list = list(regression.aictest = c("td"), outlier = NULL))
# constructing the list step by step
ll <- list()
ll["x"] <- AirPassengers
ll["regression.aictest"] <- "td"
ll["outlier"] <- list(NULL) # assigning NULL to a list using single brackets
seas(list = ll)

# options can be entered as vectors
seas(AirPassengers, regression.variables = c("td1coef", "easter[1]"))
seas(AirPassengers, arima.model = c(0, 1, 1, 0, 1, 1))
seas(AirPassengers, arima.model = "(0 1 1)(0 1 1)") # equivalent

# turn off the automatic procedures
seas(AirPassengers, regression.variables = c("td1coef", "easter[1]",
"ao1951.May"), arima.model = "(0 1 1)(0 1 1)", regression.aictest = NULL,
outlier = NULL, transform.function = "log")

# static replication of 'm <- seas(AirPassengers)'
static(m) # this also tests the equivalence of the static call
static(m, test = FALSE) # no testing (much faster)
static(m, coef = TRUE) # also fixes the coefficients

# updating an existing model
update(m, x11 = "")

# specific extractor functions
final(m)
predict(m) # equivalent
original(m)
resid(m)
coef(m)
fivebestmdl(m)
out(m) # the X-13 .out file (see ?out, for details)
spc(m) # the .spc input file to X-13 (for debugging)

# universal extractor function for any X-13ARIMA-SEATS output (see ?series)
series(m, "forecast.forecasts")

# copying the output of X-13 to a user defined directory
seas(AirPassengers, dir = "~/mydir")

# user defined regressors (see ?genhol for more examples)
# a temporary level shift in R base
tls <- ts(0, start = 1949, end = 1965, freq = 12)
window(tls, start = c(1955, 1), end = c(1957, 12)) <- 1
seas(AirPassengers, xreg = tls, outlier = NULL)
# identical to a X-13ARIMA-SEATS specification of the the level shift
seas(AirPassengers, regression.variables = c("tl1955.01-1957.12"),
outlier = NULL)
# forecasting an annual series without seasonal adjustment
m <- seas(airmiles, seats = NULL, regression.aictest = NULL)
series(m, "forecast.forecasts")

# NA handling
AirPassengersNA <- window(AirPassengers, end = 1962, extend = TRUE)
final(seas(AirPassengersNA, na.action = na.omit))  # no NA in final series
final(seas(AirPassengersNA, na.action = na.exclude))  # NA in final series
# final(seas(AirPassengersNA, na.action = na.fail))  # fails

# NA handling by X-13 (works with internal NAs)
AirPassengersNA[20] <- NA
final(seas(AirPassengersNA, na.action = na.x13))

## performing 'composite' adjustment
m.direct <- seas(ldeaths, x11 = "")
final.direct <- final(m.direct)
m.indirect <- lapply(list(mdeaths, fdeaths), seas, x11 = "")

# not very efficient, but keeps time series properties
final.indirect <- Reduce("+", lapply(m.indirect, final))

ts.plot(cbind(final.indirect, final(m.direct)), col = 1:2)
legend("topright", legend = c("disagregated", "aggregated"), lty = 1, col = 1:2)

## End(Not run)

---

### Import X-13ARIMA-SEATS Output Tables

**Description**

With the exception of the composite spec, the `series` function imports all tables that can be saved in X-13ARIMA-SEATS.

**Usage**

```r
series(x, series, reeval = TRUE, verbose = TRUE)
```

**Arguments**

- `x`: an object of class "seas".
- `series`: character vector, short or long names of an X-13ARIMA-SEATS table. If a long name is specified, it needs to be combined with the spec name and separated by a dot (it is not unique, otherwise. See list below.). More than one series can be specified (see examples).
- `reeval`: logical, if TRUE, the model is re-evaluated with the corresponding specs enabled.
- `verbose`: logical, if TRUE, a message is returned if a spec is added during reevaluation.
Details

If the save argument is not specified in the model call, series re-evaluates the call with the corresponding specs enabled (also returning a message). Note that re-evaluation doubles the overall computational time. If you want to accelerate the procedure, you have to be explicit about the output in the model call (see examples).

List of all importable tables from X-13ARIMA-SEATS:

<table>
<thead>
<tr>
<th>spec</th>
<th>long name</th>
<th>short name</th>
</tr>
</thead>
<tbody>
<tr>
<td>check</td>
<td>check.acf</td>
<td>acf</td>
</tr>
<tr>
<td>check</td>
<td>check.acfsquared</td>
<td>ac2</td>
</tr>
<tr>
<td>check</td>
<td>check.pacf</td>
<td>pcf</td>
</tr>
<tr>
<td>estimate</td>
<td>estimate.armacmatrix</td>
<td>acm</td>
</tr>
<tr>
<td>estimate</td>
<td>estimate.iterations</td>
<td>itr</td>
</tr>
<tr>
<td>estimate</td>
<td>estimate.regcmatrix</td>
<td>rcm</td>
</tr>
<tr>
<td>estimate</td>
<td>estimate.regressioneffects</td>
<td>ref</td>
</tr>
<tr>
<td>estimate</td>
<td>estimate.residuals</td>
<td>rsd</td>
</tr>
<tr>
<td>estimate</td>
<td>estimate.roots</td>
<td>rts</td>
</tr>
<tr>
<td>force</td>
<td>force.forcefactor</td>
<td>ffc</td>
</tr>
<tr>
<td>force</td>
<td>force.revseasons</td>
<td>e6a</td>
</tr>
<tr>
<td>force</td>
<td>force.rndseasons</td>
<td>e6r</td>
</tr>
<tr>
<td>force</td>
<td>force.seasadjot</td>
<td>saa</td>
</tr>
<tr>
<td>forecast</td>
<td>forecast.backcasts</td>
<td>bct</td>
</tr>
<tr>
<td>forecast</td>
<td>forecast.forecasts</td>
<td>fct</td>
</tr>
<tr>
<td>forecast</td>
<td>forecast.transformed</td>
<td>ftr</td>
</tr>
<tr>
<td>forecast</td>
<td>forecast.transformedbcst</td>
<td>btr</td>
</tr>
<tr>
<td>forecast</td>
<td>forecast.variances</td>
<td>fvr</td>
</tr>
<tr>
<td>history</td>
<td>history.chngestimates</td>
<td>che</td>
</tr>
<tr>
<td>history</td>
<td>history.chngrevisions</td>
<td>chr</td>
</tr>
<tr>
<td>history</td>
<td>history.fcsterrors</td>
<td>fce</td>
</tr>
<tr>
<td>history</td>
<td>history.fcsthistory</td>
<td>fch</td>
</tr>
<tr>
<td>history</td>
<td>history.indsaestimates</td>
<td>iae</td>
</tr>
<tr>
<td>history</td>
<td>history.indsaestimations</td>
<td>iar</td>
</tr>
<tr>
<td>history</td>
<td>history.lkhhistory</td>
<td>lkh</td>
</tr>
<tr>
<td>history</td>
<td>history.outlierhistory</td>
<td>rot</td>
</tr>
<tr>
<td>history</td>
<td>history.saestimates</td>
<td>sae</td>
</tr>
<tr>
<td>history</td>
<td>history.sarevisions</td>
<td>sar</td>
</tr>
<tr>
<td>history</td>
<td>history.seatsmdlhistory</td>
<td>smh</td>
</tr>
<tr>
<td>history</td>
<td>history.sfestimates</td>
<td>sfe</td>
</tr>
<tr>
<td>history</td>
<td>history.sfhistory</td>
<td>sfh</td>
</tr>
<tr>
<td>history</td>
<td>history.sfrevisions</td>
<td>sfr</td>
</tr>
<tr>
<td>history</td>
<td>history.trendchngestimates</td>
<td>tce</td>
</tr>
<tr>
<td>history</td>
<td>history.trendchngrevisions</td>
<td>tcr</td>
</tr>
<tr>
<td>history</td>
<td>history.trendestimates</td>
<td>tre</td>
</tr>
<tr>
<td>history</td>
<td>history.trendrevisions</td>
<td>trr</td>
</tr>
<tr>
<td>identify</td>
<td>identify.acf</td>
<td>iac</td>
</tr>
<tr>
<td>identify</td>
<td>identify.pacf</td>
<td>ipc</td>
</tr>
<tr>
<td>outlier</td>
<td>outlier.finaltests</td>
<td>fts</td>
</tr>
<tr>
<td>Series</td>
<td>Seats</td>
<td>Spectrum</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>outlier</td>
<td>outlier.iterations</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.aoutlier</td>
<td>regression.speccomposite</td>
</tr>
<tr>
<td>regression</td>
<td>regression.holiday</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.levelshift</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.outlier</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.regressionmatrix</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.regseasonal</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.seasonaloutlier</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.temporarychange</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.tradingday</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.transitory</td>
<td></td>
</tr>
<tr>
<td>regression</td>
<td>regression.userdef</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.adjustfac</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.adjustmentratio</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.cycle</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.diffseasonaladj</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.diffiftrend</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.irregular</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.longtermtrend</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.seasadjconst</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.seasonal</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.seasonaladj</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.seasonaladjfcstdecomp</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.seasonalfcstdecomp</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.seasonalsum</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.seriesfcstdecomp</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.totaladjustment</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.transitory</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.transitoryfcstdecomp</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.trend</td>
<td></td>
</tr>
<tr>
<td>seats</td>
<td>seats.trendconst</td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>series.adjoriginal</td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>series.calendaradjorig</td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>series.externalseries</td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>series.seriesmvadj</td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>series.span</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.chngspans</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.indchngspans</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.indsaspan</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.indsfspan</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.indychngspan</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.sfspan</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.tdspan</td>
<td></td>
</tr>
<tr>
<td>slidingspans</td>
<td>slidingspans.ychngspan</td>
<td></td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.speccomposite</td>
<td></td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specindir</td>
<td></td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specindsa</td>
<td></td>
</tr>
<tr>
<td>series</td>
<td>spectrum</td>
<td>sp2</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specirr</td>
<td>sp0</td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specorig</td>
<td>spr</td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specresidual</td>
<td>spr</td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specca</td>
<td>sp1</td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.speceartxresiduals</td>
<td>ser</td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specseatirr</td>
<td>s2s</td>
</tr>
<tr>
<td>spectrum</td>
<td>spectrum.specseatssa</td>
<td>s1s</td>
</tr>
<tr>
<td>transform</td>
<td>transform.permprior</td>
<td>a2p</td>
</tr>
<tr>
<td>transform</td>
<td>transform.permprioradjusted</td>
<td>a3p</td>
</tr>
<tr>
<td>transform</td>
<td>transform.permprioradjustedptd</td>
<td>a4p</td>
</tr>
<tr>
<td>transform</td>
<td>transform.prior</td>
<td>a2</td>
</tr>
<tr>
<td>transform</td>
<td>transform.prioradjusted</td>
<td>a3</td>
</tr>
<tr>
<td>transform</td>
<td>transform.prioradjustedptd</td>
<td>a4d</td>
</tr>
<tr>
<td>transform</td>
<td>transform.seriesconstant</td>
<td>a1c</td>
</tr>
<tr>
<td>transform</td>
<td>transform.tempprior</td>
<td>a2t</td>
</tr>
<tr>
<td>transform</td>
<td>transform.transformed</td>
<td>trn</td>
</tr>
<tr>
<td>x11</td>
<td>x11.adjoriginalc</td>
<td>c1</td>
</tr>
<tr>
<td>x11</td>
<td>x11.adjoriginald</td>
<td>d1</td>
</tr>
<tr>
<td>x11</td>
<td>x11.adjustdiff</td>
<td>fad</td>
</tr>
<tr>
<td>x11</td>
<td>x11.adjustfac</td>
<td>d16</td>
</tr>
<tr>
<td>x11</td>
<td>x11.adjustmentratio</td>
<td>e18</td>
</tr>
<tr>
<td>x11</td>
<td>x11.biasfactor</td>
<td>bcf</td>
</tr>
<tr>
<td>x11</td>
<td>x11.calendar</td>
<td>d18</td>
</tr>
<tr>
<td>x11</td>
<td>x11.calendaradjchanges</td>
<td>e8</td>
</tr>
<tr>
<td>x11</td>
<td>x11.combholiday</td>
<td>chl</td>
</tr>
<tr>
<td>x11</td>
<td>x11.extreme</td>
<td>c20</td>
</tr>
<tr>
<td>x11</td>
<td>x11.extremeb</td>
<td>b20</td>
</tr>
<tr>
<td>x11</td>
<td>x11.irregular</td>
<td>d13</td>
</tr>
<tr>
<td>x11</td>
<td>x11.irregularadjao</td>
<td>iao</td>
</tr>
<tr>
<td>x11</td>
<td>x11.irregularb</td>
<td>b13</td>
</tr>
<tr>
<td>x11</td>
<td>x11.irregulararc</td>
<td>c13</td>
</tr>
<tr>
<td>x11</td>
<td>x11.irrwt</td>
<td>c17</td>
</tr>
<tr>
<td>x11</td>
<td>x11.irrwtb</td>
<td>b17</td>
</tr>
<tr>
<td>x11</td>
<td>x11.mcdmovavg</td>
<td>f1</td>
</tr>
<tr>
<td>x11</td>
<td>x11.modirregular</td>
<td>e3</td>
</tr>
<tr>
<td>x11</td>
<td>x11.modoriginal</td>
<td>e1</td>
</tr>
<tr>
<td>x11</td>
<td>x11.modseasadj</td>
<td>e2</td>
</tr>
<tr>
<td>x11</td>
<td>x11.modsic4</td>
<td>c4</td>
</tr>
<tr>
<td>x11</td>
<td>x11.modsid4</td>
<td>d4</td>
</tr>
<tr>
<td>x11</td>
<td>x11.origchanges</td>
<td>e5</td>
</tr>
<tr>
<td>x11</td>
<td>x11.replacsi</td>
<td>d9</td>
</tr>
<tr>
<td>x11</td>
<td>x11.replac sic9</td>
<td>c9</td>
</tr>
<tr>
<td>x11</td>
<td>x11.robustsa</td>
<td>e11</td>
</tr>
<tr>
<td>x11</td>
<td>x11.sachanges</td>
<td>e6</td>
</tr>
<tr>
<td>x11</td>
<td>x11.seasadj</td>
<td>d11</td>
</tr>
<tr>
<td>x11</td>
<td>x11.seasadjb11</td>
<td>b11</td>
</tr>
<tr>
<td>x11</td>
<td>x11.seasadjb6</td>
<td>b6</td>
</tr>
<tr>
<td>x11</td>
<td>x11.seasadjc11</td>
<td>c11</td>
</tr>
</tbody>
</table>
x11 x11.seasadjc6 c6
x11 x11.seasadjoconst sac
d6
x11 x11.seasonal d10
x11 x11.seasonaladjregsea ars
x11 x11.seasonalb10 b10
x11 x11.seasonalb5 b5
x11 x11.seasonalc10 c10
x11 x11.seasonalc5 c5
d5
x11 x11.seasonald5 d5
x11 x11.seasonald6 fsd
x11 x11.sib3 b3
x11 x11.sib8 b8
c19
x11 x11.tdadjorig b19
tad
d12
tal
b2
b7
c2
c7
e7
tac
d2
d7
d8
d8b
e4
x11 yrtotals
x11regression x11regression.calendar xca
x11regression x11regression.calendarb bxc
x11regression x11regression.combcalendar xcc
x11regression x11regression.combcalendarb bcc
c18
b18
c14
b14
x11regression x11regression.holiday xhl
x11regression x11regression.holidayb bxh
x11regression x11regression.outlieriter xoi
x11regression x11regression.priortd a4
x11regression x11regression.tradingday c16
b16
x11regression x11regression.x11reg c15
x11regression x11regression.x11regb b15
x11regression x11regression.xregressioncmatrix xrc
x11regression x11regression.xregressionmatrix xrm
Value
depending on the table, either an object of class "ts" or "data.frame".

References
Vignette with a more detailed description: http://www.seasonal.website/seasonal.html
Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.website/examples.html

See Also
seas for the main function.

Examples

## Not run:
m <- seas(AirPassengers)
series(m, "fct") # re-evaluate with the forecast spec activated

# more than one series
series(m, c("rsd", "fct"))

m <- seas(AirPassengers, forecast.save = "fct")
series(m, "fct") # no re-evaluation (much faster!)

# using long names
series(m, "forecast.forecasts")

# history spec
series(m, "history.trendestimates")
series(m, "history.sfestimates")
series(m, "history.saestimates")
series(m, c("history.sfestimates", "history.trendestimates"))

# slidingspans spec
series(m, "slidingspans.sfspans")
series(m, "slidingspans.tdspans")

# fundamental identities of seasonal adjustment
# Y = T * I * (S * TD)
all.equal(AirPassengers, series(m, "seats.trend") *
series(m, "seats.irregular") * series(m, "seats.adjustfac"))
# Y_sa = Y / (S * TD)
all.equal(final(m), AirPassengers / series(m, "seats.adjustfac"))

### Some X-13ARIMA-SEATS functions can be replicated in R:

# X-13ARIMA-SEATS spectrum
spectrum(diff(log(AirPassengers)), method = "ar")

# X-13ARIMA-SEATS pacf
x13.pacf <- series(m, "identify.pacf")
plot(x13.pacf[,1], t = "h")
lines(x13.pacf[,2])
lines(-x13.pacf[,2])

# R equivalent: pacf from stats
pacf(AirPassengers, lag.max = 35)

## End(Not run)

---

**spc**

**spc File Content**

**Description**

Access the content of the .spc file that governs the behavior of X-13ARIMA-SEATS.

**Usage**

```r
spc(x)
```

**Arguments**

- `x` object of class "seas"

**Value**

returns an object of class "spclist", essentially a list that contains the information that is sent to X-13ARIMA-SEATS. The corresponding print method displays the content of the list as written to the .spc file.

**References**

Vignette with a more detailed description: [http://www.seasonal.website/seasonal.html](http://www.seasonal.website/seasonal.html)

Comprehensive list of R examples from the X-13ARIMA-SEATS manual: [http://www.seasonal.website/examples.html](http://www.seasonal.website/examples.html)

Official X-13ARIMA-SEATS manual: [https://www.census.gov/ts/x13as/docX13ASHTML.pdf](https://www.census.gov/ts/x13as/docX13ASHTML.pdf)

**See Also**

- `seas` for the main function.
- `series`, for universal X-13 output extraction.
- `plot.seas`, for diagnostical plots.
- `out`, for accessing the full output of X-13ARIMA-SEATS.
Examples

```r
Not run:

m <- seas(AirPassengers)
spc(m)

End(Not run)
```

---

**SPECS**  
*List of Available X-13ARIMA-SEATS Outputs*

**Description**

The data is used by several functions as a look-up table. Users should consider the table in `series` or in the official manual.

**Format**

An object of class "data.frame"

**Source**

United States Census Bureau

**References**

Official X-13ARIMA-SEATS manual: [https://www.census.gov/ts/x13as/docX13ASHTML.pdf](https://www.census.gov/ts/x13as/docX13ASHTML.pdf)

---

**static**  
*Static Call of a seas Object*

**Description**

In a 'static' call, the default automatic procedures in the model call are substituted by the choices they made.

**Usage**

```r
static(
 x,
 coef = FALSE,
 x11.filter = FALSE,
 test = TRUE,
 fail = FALSE,
 evaluate = FALSE
)
```
Arguments

x an object of class seas.

coef logical. If TRUE, the coefficients are treated as fixed, instead of being estimated.

x11.filter logical. X-11 only. If TRUE, the X-11 moving averages will be fixed as well. This leads to different filters at different stages, and the resulting series can be are slightly different. If test = TRUE, this may cause a warning message.

test logical. By default the static call is executed and compared to the input call. If the final series is not identical, a message is returned. If FALSE, no test is performed (faster).

fail logical. If TRUE, differences will cause an error. Ignored if test = FALSE.

evaluate logical. If TRUE, the call is evaluated.

Details

If evaluate = TRUE, the call is evaluated. The call can be copy/pasted to a script and used for further manipulations or future evaluation of the same model.

By default, the static call is tested. It is executed and compared to the input call. If the final series is not identical, a message is returned.

If coef = TRUE, the coefficients are fixed as well. If x11.filter = TRUE, the X-11 moving averages are fixed as well.

Value

Object of class "call". Or an object of class "seas" if evaluate = TRUE.

References

Vignette with a more detailed description: http://www.seasonal.website/seasonal.html

Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.website/examples.html


See Also

getcAll to extract the actual call.

seas for the main function of seasonal.

Examples

## Not run:

m <- seas(AirPassengers)
getCall(m) # default call
static(m) # static call
static(m, test = FALSE) # much faster
static(m, evaluate = TRUE) # returns an object of class "seas"
m <- seas(AirPassengers, x11 = "")

static(m, x11.filter = TRUE) # also fixes the X-11 filter (with a warning)
static(m, coef = TRUE)      # also fixes the coefficients

## End(Not run)

---

**summary.seas**

*Summary of a X13-ARIMA-SEATS seasonal adjustment*

**Description**

Like the corresponding method for "lm" objects, the method for "seas" objects returns the estimated coefficients, its standard errors, z-statistics and corresponding (two-sided) p-values. Coefficients are returned both for the exogenous regressors and the coefficients of the ARIMA model.

**Usage**

```r
S3 method for class 'seas'
summary(object, stats = getOption("seas.stats"), ...)

S3 method for class 'summary.seas'
print(
 x,
 digits = max(3, getOption("digits") - 3),
 signif.stars = getOption("show.signif.stars"),
 ...
)
```

**Arguments**

- `object` an object of class "seas", usually, a result of a call to `seas`.
- `stats` (experimental) character vector, additional stat to be shown in the summary output function. For a list of all possible values, see the `udg` function. If a value is not present, it will be ignored. Values can be specified via options. See examples.
- `...` further arguments passed to or from other methods.
- `x` an object of class "summary.seas", usually, a result of a call to `summary.seas`.
- `digits` the number of significant digits to use when printing.
- `signif.stars` logical. If TRUE, 'significance stars' are printed for each coefficient.
Details

The lower part of the output shows additional information on the estimation:

**Adjustment** use of SEATS or X11

**ARIMA** structure of the seasonal ARIMA model

**Obs.** number of observations

**Transform** prior transformation

**AICc, BIC** value of the information criterion (lower is better)

**QS** test for seasonality in the final series; null hypothesis: no seasonality in final; signif. codes are shown if the null hypothesis is rejected. QS statistics for more series (e.g., the original series) can be extracted with `qs`.

**Box-Ljung** test for residual autocorrelation; null hypothesis: no autocorrelation in residuals; signif. codes are shown if the null hypothesis is rejected. The test statistic is the result of `Box.test(resid(m), lag = 24, type = "Ljung")`

**Shapiro** test for normality of the residuals; null hypothesis: normal distribution of the residuals; signif. codes are shown if the null hypothesis is rejected. The test statistic is the result of `shapiro.test(resid(m))`

Value

`summary.seas` returns a list containing the summary statistics included in `object`, and computes the following additional statistics:

**coefficients** a named matrix containing coefficients, standard deviations, t-values and p-values

**transform** character string with the type of initial transformation

The print method prints the summary output in a similar way as the method for "lm".

Examples

```r
Not run:
m <- seas(AirPassengers)
summary(m)

user defined stats from the udg function
(experimental, see ?udg)
also show some M quality statistics for X11 in summary
options(seas.stats = c("f3.m01", "f3.m02", "f3.m03", "f3.m04"))
summary(seas(AirPassengers, x11 = ""))

this does not affect the SEATS output
summary(seas(AirPassengers))

reset to default
options(seas.stats = NULL)

End(Not run)
```
transformfunction

Description

Returns the transform function that has been applied.

Usage

transformfunction(x)

Arguments

x object of class "seas"

References

Vignette with a more detailed description: http://www.seasonal.website/seasonal.html

Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.website/examples.html


See Also

seas for the main function.

series, for universal X-13 output extraction.

plot.seas, for diagnostical plots.

out, for accessing the full output of X-13ARIMA-SEATS.

Examples

## Not run:

m <- seas(AirPassengers)
transformfunction(m)

## End(Not run)
Description

The `udg` function provides access to a large number of diagnostical statistics. The `qs` function and the `AIC`, `BIC` and `logLik` methods are wrappers that use `udg` to access some specific diagnostical statistics.

Usage

```r
udg(x, stats = NULL, simplify = TRUE, fail = TRUE)
qs(x)
S3 method for class 'seas'
AIC(object, ...)
S3 method for class 'seas'
BIC(object, ...)
S3 method for class 'seas'
nobs(object, ...)
S3 method for class 'seas'
logLik(object, ...)
```

Arguments

- `x, object` an object of class "seas".
- `stats` character vector; if specified, only a subset of the available stats are returned. This speeds up the call, as only a subset needs to be type converted. Should be used for programming.
- `simplify` logical; should the result be simplified to a vector or matrix, if possible?
- `fail` logical; if TRUE, an error is dropped if an element of `stats` is missing in `names(udg(x))`.
- `...` further arguments (not used)

Value

`qs` returns the QS statistics for seasonality of input and output series and the corresponding p-values.

`AIC`, `BIC`, `nobs` and `logLik` return the corresponding statistics.
unemp 41

References

Vignette with a more detailed description: http://www.seasonal.website/seasonal.html
Comprehensive list of R examples from the X-13ARIMA-SEATS manual: http://www.seasonal.
website/examples.html

See Also

seas for the main function.
series, for universal X-13 output extraction.
plot.seas, for diagnostical plots.
out, for accessing the full output of X-13ARIMA-SEATS.

Examples

## Not run:
m <- seas(AirPassengers, x11 = "")

qs(m)
AIC(m)
BIC(m)
nobs(m)
logLik(m)

# a list with all entries from udg
udg(m)

# extracting a few selected stats from udg
udg(m, c("f3.m02", "f3.m05", "qsori"))  # returns a list
udg(m, c("f3.m02", "f3.m05"))  # returns a vector

# faster than:
udg(m)[c("f3.m01", "f3.m02", "qsori")]

## End(Not run)

unemp

United States Unemployment Level

Description

Thousands of Persons

Format

Each time series is an object of class "ts".
**update.seas**

Source


Examples

```r
data(seasonal)
unemp
```

---

**update.seas**  
*Update and Re-evaluate a Seasonal Adjustment Model*

Description

Method to update and re-evaluate an object of class "seas".

Usage

```r
S3 method for class 'seas'
update(object, ..., evaluate = TRUE)
```

Arguments

- `object`: an object of class "seas", usually, a result of a call to `seas`.
- `...`: spec-argument options sent to X-13 (with the same syntax as in `seas`)
- `evaluate`: logical. If TRUE, the call is evaluated.

Details

Contrary to the default method of `update`, the "seas" method uses the evaluated call, rather than the actual call for re-evaluation. This means you can safely use it in other functions, which is useful with `lapply` and friends (see examples.)

Value

Object of class "seas". Or an object of class "call" if `evaluate = FALSE`.

See Also

- `seas` for the main function.
- `static`, to return the (optionally evaluated) static call of a "seas" object.
Examples

```r
Not run:
updating the call
m <- seas(AirPassengers)
update(m, x11 = "")
update(m, x = sqrt(AirPassengers), x11 = "")

'update' can be also used with lapply (or mapply)

a list of time series
dta <- list(fdeaths = fdeaths, mdeaths = mdeaths)

use 'seas' via lapply
ll <- lapply(dta, seas, x11 = "")

use 'update' via lapply
lapply(ll, update, arima.model = c(0, 1, 1, 0, 1, 1))

End(Not run)
```

Description

Interactively modify a "seas" object. The goal of view is to summarize all relevant options, plots and statistics of a seasonal adjustment model. The view function in the seasonal package imports the identical view function from the seasonalview package, so there is no need to explicitly load the seasonalview package.

Usage

```r
view(x = NULL, story = NULL, quiet = TRUE, ...)
```

Arguments

- `x` an object of class "seas".
- `story` character, local file path or URL to an ".Rmd" file.
- `quiet` logical, if TRUE (default), error messages from calls in view are not shown in the console.
- `...` arguments passed to runApp. E.g., for selecting if the GUI should open in the browser or in the RStudio viewer pane.
Details

Frequently used options can be modified using the drop down selectors in the upper left box. Each change will result in a re-estimation of the seasonal adjustment model. The R-call, the X-13 call, the graphical output and the summary are updated accordingly.

Alternatively, the R call can be modified manually in the lower left box. Click 'Run Call’ to re-estimate the model and to adjust the option selectors, the graphical output, and the summary. With the 'To console’ button, the GUI is closed and the call is imported to R. The 'Static’ button substitutes automatic procedures by the automatically chosen spec-argument options, in the same way as the static function.

If you are familiar with the X-13 spec syntax, you can modify the X-13 call, with the same consequences as when modifying the R call.

The lower right panel shows the summary, as described in the help page of summary.seas. The 'X-13 output’ button opens the complete output of X-13 in a separate tab or window.

If you have the x13story package installed (not yet on CRAN, see references), you can call the function with the story argument. This will render an R Markdown document and produce a story on seasonal adjustment that can be manipulated interactively.

Value

view returns an object of class "seas", the modified model; or NULL, if the story argument is supplied.

References

Seasonal vignette with a more detailed description: http://www.seasonal.website/seasonal.html

Development version of the x13story package: https://github.com/christophsax/x13story

Examples

```r
Not run:

m <- seas(AirPassengers)
view(m)

store the model after closing the GUI, for further processing in R
m.upd <- view(m)

End(Not run)
```
Index

*Topic datasets
  cpi, 6
easter, 7
exp, 7
iip, 14
SPECS, 35
unemp, 41

*Topic package
  seasonal-package, 2

AIC.seas (udg), 40
arimamodel, 4
as.data.frame.seas, 5
as.data.frame.summary.seas (as.data.frame.seas), 5
as.Date, 10
BIC.seas (udg), 40
browseURL, 19
checkX13, 6
cny (easter), 7
cpi, 6
Date, 10
diwali (easter), 7
easter, 7
exp, 7
final, 8, 23
fivebestndl, 9
genhol, 7, 10
getCall, 36
identify.seas, 13
iip, 14
imp (exp), 7
import.spc, 15, 17, 18
import.ts, 15, 17
INSPDATA (SPECS), 35
inspect (arimamodel), 4
irregular (final), 8
lapply, 42
logLik.seas (udg), 40
monthplot.seas (plot.seas), 21
na.x13, 18
nobs.seas (udg), 40
original (final), 8
out, 10, 19, 25, 26, 34, 39, 41
outlier, 20
plot.seas, 10, 21, 34, 39, 41
predict.seas, 23
print.import.spc (import.spc), 15
print.summary.seas (summary.seas), 37
qs, 38
qs (udg), 40
residplot (plot.seas), 21
residuals.seas (final), 8
runApp, 4, 43
seas, 3, 9–11, 15, 18, 20–23, 24, 33, 34, 36, 37, 39, 41, 42
seasonal, 6
seasonal (seasonal-package), 2
seasonal-package, 2
series, 8–10, 25, 26, 28, 34, 35, 39, 41
spc, 34
SPECS, 35
Startup, 3
static, 26, 35, 42, 44
summary.seas, 37, 44
suppressPackageStartupMessages, 3
transformfunction, 39
trend (final), 8
udg, 4, 19, 22, 25, 26, 37, 40
unemp, 41
update, 19, 42
update.seas, 23, 26, 42
view, 4, 24, 26, 43, 43