Package ‘seawaveQ’

February 20, 2015

Type Package
Title U.S. Geological Survey seawaveQ model
Version 1.0.0
Date 2013-12-13
Author Karen R. Ryberg and Aldo V. Vecchia
Maintainer Karen R. Ryberg <kryberg@usgs.gov>
License Unlimited
LazyLoad yes
Description A model and utilities for analyzing trends in chemical concentrations in streams with a seasonal wave (seawave) and adjustment for streamflow (Q) and other ancillary variables
Depends R (>= 2.15.3), survival, NADA, lubridate
Suggests waterData
URL http://dx.doi.org/10.3133/ofr20131255
NeedsCompilation no
Repository CRAN
Date/Publication 2013-12-30 22:13:01

R topics documented:

seawaveQ-package .. 2
cenScatPlot .. 3
combineData .. 5
compwaveconv ... 6
cqwMoRivOmaha .. 7
examplecavdat ... 8
examplecavmat .. 9
examplecdatsub ... 10
examplecentmp .. 11
exampleclog .. 12
exampleqwcols .. 12
Description

An R package for the U.S. Geological Survey seawaveQ model, a parametric regression model specifically designed for analyzing seasonal- and flow-related variability and trends in pesticide concentrations. See Vecchia and others (2008) for the original description of the model and see Sullivan and others (2009), Ryberg and others (2010), and Vecchia and others (2009) for applications of the model.

Details

- **Package:** seawaveQ
- **Type:** Package
- **Version:** 1.0.0
- **Date:** 2013–12–13
- **License:** Unlimited | file LICENSE
- **LazyLoad:** yes

Author(s)

Karen R. Ryberg <kryberg@usgs.gov> and Aldo V. Vecchia <avecchia@usgs.gov>
References

cenScatPlot Scattered plot of water-quality data

Description

Function to generate a scatter plot that indicates censored and estimated water-quality concentrations.

Usage
cenScatPlot(data, datescol = "dates", pname, qwcols = c("R", "P"), site = "", xlabel = "", ylabel = "Concentration", legpos = "topright", legcex = 1, ...)

Arguments
data is the dataset with columns that begin with P followed by alphanumeric characters indicating concentration data and columns that begin with R followed by alphanumeric characters that match those of the concentration data indicating qualification codes. See example datasets for more information about the data format, see IllRivValleyCty and qmRivOmaha.
datescol is the column label for the dates column.
pname is the the column heading (paramenter name) for the particular water-quality constituent to be plotted (omit the the starting character, for example for sulfate data indicated by P00945, enter "00945").
cenScatPlot

qwcols is a character vector with the beginning of the column headers for remarks code (default is R), and beginning of column headers for concentration data (default is P for parameter).

site is a label for the plot title indicating the site where the water-quality samples were collected.

xlabel is the label for the x-axis, defaults to no label.

ylabel is the label for the y-axis.

legpos is the position of the legend, see legend.

legcex is a numerical value giving the amount by which the legend text and symbols should be magnified relative to the default, 1.

... arguments to be passed to plot method.

Details

This function uses the qualification, or remark, column associated with water-quality concentration values to indicate which samples are unqualified, which are estimated, and which are censored. A blank remark field or an "_" indicates that the concentration value is not qualified; an "E" indicates the values has been estimated; and a less than symbol, "<", indicates the value has been censored as less than a minimum reporting level. See Oblinger Childress (1999) for information on the minimum reporting level and the definition of "E" for U.S. Geological Survey data. Other users may have a different definition of the minimum reporting level, but censored values need to be qualified with a "<". Using the "E" code is optional.

Value

a scatter plot

Author(s)

Karen R. Ryberg

References

Examples

data(swData)
scatter plot of Simazine concentrations
cenScatPlot(IllRivValleyCty, pname="04035")
scatter plot with many additional plotting arguments
par(las=1, tcl=0.5)
cenScatPlot(IllRivValleyCty, pname="04035",
 site="05586100 Illinois River at Valley City, IL",
 ylabel="Simazine concentration, in micrograms per liter")
combineData

Combine water-quality sample data and continuous ancillary variables

Description

Function to combine water-quality sample data and continuous (daily) ancillary variables and drop unnecessary columns.

Usage

```r
combineData(qwdat, cqwdat, qwcols = c("staid", "dates", "R", "P"))
```

Arguments

- `qwdat`: is the dataset containing water-quality sample data with columns that begin with a P (or other user-defined indicator) followed by alphanumeric characters. These columns are concentration data. In addition there need to be columns that begin with an R (or other user-defined indicator) followed by alphanumeric characters that match those of the associated concentration data. The R columns contain data qualification codes. See example datasets for more information about the data format, `IllRivValleyCty` and `qwMoRivOmaha`.

- `qwcols`: is a character vector with column headings for a station (location) identifier, a dates column identifier, beginning of column headers for remarks code (default is R), and beginning of column headers for concentration data (default is P for parameter).

- `cqwdat`: is the dataset containing variables that can be used as explanatory variables for the seawaveQ model. See example dataset for more information about the data format `cqwMoRivOmaha`. These are daily values with no missing values allowed between the first and the last date in the dataset.

Format

A dataframe with the number of rows equal to the number of rows in the dataframe indicated by `qwdat`. The number of columns depend on the two input data frames. Minimally there will be a station identification column, a dates column, a column of qualification codes, and a column of water-quality data.
Value

a dataframe

Note

The columns indicated by qwcols[1:2] are used to combine the datasets. The first column is the station identifier and the second column is the date column. These two column headings must be the same in the two datasets being combined and the dates in the datasets being combined must be for the class Date and be in the same format.

Author(s)

Karen R. Ryberg and Aldo V. Vecchia

Examples

data(swData)
MorivOmaha<- combineData(qwdat=qwMorivOmaha, cqwdat=cqwMorivOmaha, qwcols=c("staid", "dates", "R", "P"))

compwaveconv
Seasonal Wave Computation

Description

Function to compute seasonal wave.

Usage

`compwaveconv(cmaxt, jmod, hlife, mclass = 1)`

Arguments

- `cmaxt` is the time of the maximum chemical concentration, decimal time in years.
- `jmod` is the choice of model or pulse input function, an integer 1 through 14.
- `hlife` is the model half-life in months, 1 to 4 months
- `mclass` has not been implemented yet, but will provide additional model options.

Value

a numeric vector of size 361 with discrete values of the seasonal wave for decimal season $\text{seq}(0, 1/360)$.
Note

The seasonal wave is a dimensionless, periodic function of time with an annual cycle, similar to a mixture of sine and cosine functions often used to model seasonality in concentration data. However, the seasonal wave is better suited for modeling seasonal behavior of pesticide data than a mixture of sines and cosines. The pulse input function, represented by \(j_{\text{mod}} \), has either one or two distinct application seasons (when pesticides may be transported to the stream) of lengths from 1 to 6 months. Therefore, 56 (14x4) choices for the wave function are available. The numeric vector is a discrete approximation of the continuous wave function defined on the interval 0 to 1.

Author(s)

Aldo V. Vecchia

References

Examples

```r
# evaluate seasonal wave for specified decimal seasons
# these example decimal dates represent days at points 0.25, 0.5, and
# 0.75 percent of the way through the year and the end of the year
dseas <- c(0.25, 0.5, 0.75, 1)
swave <- compwaveconv(cmaxt=0.483, jmod=2, hlife=4, mclass=1)
swave[floor(SVP * dseas)]
plot(seq(0,1,1/360),swave, typ="l")
```

cqwMoRivOmaha

Description

Continuously monitored (daily) data for 06610000 Missouri River at Omaha, Neb.

Usage

cqwMoRivOmaha
Format

A data frame containing 2,922 daily observations of two hydrologic variables, streamflow and sediment, and streamflow and sediment anomalies. There are eight variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>staid</td>
<td>character</td>
<td>USGS Station identification number</td>
</tr>
<tr>
<td>dates</td>
<td>date</td>
<td>date water-quality sample collected</td>
</tr>
<tr>
<td>dflow</td>
<td>numeric</td>
<td>daily mean streamflow, cubic feet per second</td>
</tr>
<tr>
<td>flowa30</td>
<td>numeric</td>
<td>30-day streamflow anomaly</td>
</tr>
<tr>
<td>flowa1</td>
<td>numeric</td>
<td>1-day streamflow anomaly</td>
</tr>
<tr>
<td>dsed</td>
<td>numeric</td>
<td>daily mean sediment concentration, milligrams per liter</td>
</tr>
<tr>
<td>seda30</td>
<td>numeric</td>
<td>30-day sediment anomaly</td>
</tr>
<tr>
<td>seda1</td>
<td>numeric</td>
<td>1-day sediment anomaly</td>
</tr>
</tbody>
</table>

Details

The streamflow and sediment anomalies were generated using the R package waterData (Ryberg and Vecchia, 2012).

Note

See Ryberg and Vecchia (2012) for more information on calculating the anomalies and for additional references documenting the use of streamflow anomalies in water-quality trend analysis studies.

Source

References

Examples

```r
data(swData)

# summary of water-quality concentrations
apply(cqMoRivOmaha[,3:8], 2, summary)
```

examplecavdat
Example continuous ancillary variable data.

Description

This is an example of the continuous ancillary data that is passed internally to subfunctions of `fitswavecav`. It is provided here for use with examples of internal functions.
Usage

examplecavdat

Format

A data frame containing 2,893 data variables and 30-day and 1-day streamflow anomalies (Ryberg and Vecchia, 2012).

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yrx</td>
<td>numeric</td>
<td>Year</td>
</tr>
<tr>
<td>mox</td>
<td>numeric</td>
<td>Month</td>
</tr>
<tr>
<td>dax</td>
<td>numeric</td>
<td>Day</td>
</tr>
<tr>
<td>jdayx</td>
<td>numeric</td>
<td>Julian day from first day water year for start year in <code>fitwavecav</code></td>
</tr>
<tr>
<td>flowa30</td>
<td>numeric</td>
<td>30-day streamflow anomaly</td>
</tr>
<tr>
<td>flowa1</td>
<td>numeric</td>
<td>1-day streamflow anomaly</td>
</tr>
</tbody>
</table>

Source

Internal data captured from the following function call:

```r
cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha, 
tanm="myexample", pnames=c("04041"), yrstart=1995, 
yrend=2003, tndbeg=1995, tndend=2003, 
iwcav=c("flowa30","flowa1"), dcol="dates", 
qwcols=c("R","P"))
```

References

Examples

```r
data(swData)
head(examplecavdat)
```

examplecavmat

Example continuous ancillary variable matrix.

Description

This is an example of the continuous ancillary matrix that is passed internally to subfunctions of `fitwavecav`. It is provided here for use with examples of internal functions.

Usage

```r
examplecavmat
```
Format

A matrix containing 115 30-day and 1-day streamflow anomalies (Ryberg and Vecchia, 2012).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>yrc</td>
<td></td>
<td>Year</td>
</tr>
<tr>
<td>moc</td>
<td></td>
<td>Month</td>
</tr>
<tr>
<td>dac</td>
<td></td>
<td>Day</td>
</tr>
<tr>
<td>jdayc</td>
<td></td>
<td>Julian day from first day of start year in \textit{fitswavecav}</td>
</tr>
<tr>
<td>flowa30</td>
<td></td>
<td>30-day streamflow anomaly</td>
</tr>
<tr>
<td>flowa1</td>
<td></td>
<td>1-day streamflow anomaly</td>
</tr>
<tr>
<td>seda30</td>
<td></td>
<td>30-day sediment anomaly</td>
</tr>
<tr>
<td>seda1</td>
<td></td>
<td>1-day sediment anomaly</td>
</tr>
</tbody>
</table>

Source

Internal data captured from the following function call:

\begin{verbatim}
fitswavecav(cdat=modMoRivOmaha, cavdat=qwMoRivOmaha,
 tann="myexample", pnames=c("04041"), yrstart=1995,
 yrend=2003, tndbeg=1995, tndend=2003,
 iwca=c("flowa30","flowa1"), dcol="dates",
 qwcols=c("R","P"))
\end{verbatim}

Examples

\begin{verbatim}
data(swData)
head(examplecavmat)
\end{verbatim}

Example water-quality data.

Description

This is an example of the water-quality data that is passed internally to subfunctions of \textit{fitswavecav}. It is provided here for use with examples of internal functions.

Usage

`examplecdatsub`

Format

A data frame containing 115 observations of 10 variables. The date variables were internally calculated. The columns R04041 and P04041 are a subset of \textit{qwMoRivOmaha} and the 30-day and 1-day streamflow and sediment anomalies are a subset of \textit{cqwmorivomaha}.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>numeric</th>
</tr>
</thead>
<tbody>
<tr>
<td>yrc</td>
<td></td>
<td>Year</td>
</tr>
<tr>
<td>moc</td>
<td></td>
<td>Month</td>
</tr>
<tr>
<td>dac</td>
<td></td>
<td>Day</td>
</tr>
<tr>
<td>jdayc</td>
<td></td>
<td>Julian day from first day of start year in \textit{fitswavecav}</td>
</tr>
<tr>
<td>flowa30</td>
<td></td>
<td>30-day streamflow anomaly</td>
</tr>
<tr>
<td>flowa1</td>
<td></td>
<td>1-day streamflow anomaly</td>
</tr>
<tr>
<td>seda30</td>
<td></td>
<td>30-day sediment anomaly</td>
</tr>
<tr>
<td>seda1</td>
<td></td>
<td>1-day sediment anomaly</td>
</tr>
</tbody>
</table>
examplecentmp

Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
            tanm="myexample", pnames=c("04041"), yrstart=1995,
            yrend=2003, tndbeg=1995, tndend=2003,
            iwcav=c("flowa30","flowa1"), dcol="dates",
            qwcols=c("R","P"))
```

See Also

qwMoRivOmaha cqwMoRivOmaha

Examples

```r
data(swData)
head(examplecdatsub)
```

```
examplecentmp  Example logical vector.
```

Description

This is an example of data that is passed internally to subfunctions of `fitswavecav`. This logical vector indicates which water-quality values are censored. It is provided here for use with examples of the internal functions.

Usage

examplecentmp

Format

A logical vector of 115 observations.

Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
            tanm="myexample", pnames=c("04041"), yrstart=1995,
            yrend=2003, tndbeg=1995, tndend=2003,
            iwcav=c("flowa30","flowa1"), dcol="dates",
            qwcols=c("R","P"))
```

Examples

```r
data(swData)
examplecentmp
```
exampleclog
Example of logarithmically transformed concentration data.

Description

This is an example of data that is used internally by fitMod and passed to its subfunction `seawaveQPlots`. This numeric vector represents the base-10 logarithm of the water-quality concentrations. It is provided here for use with examples of the internal functions.

Usage

`exampleclog`

Format

A numeric vector of 115 observations.

Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha, 
  tanm="myexample", pnames=c("04041"), yrstart=1995, 
  yrend=2003, tndbeg=1995, tndend=2003, 
  iwcav=c("flowa30","flowal"), dcol="dates", 
  qwcols=c("R","P"))
```

Examples

```r
data(swData)
exampleclog
```

exampleqwcols
Example data indicators.

Description

This is an example of the character vector used to indicate which columns represent qualification codes and which represent water-quality concentration data. It is provided here for use with examples of the internal functions.

Usage

`exampleqwcols`
examplestpars

Format

A numeric vector of 115 observations.

Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha, 
    tanm="myexample", pnames=c("04041"), yrstart=1995, 
    yrend=2003, tndbeg=1995, tndend=2003, 
    iwcav=c("flowa30","flowa1"), dcol="dates", 
    qwcols=c("R","P"))
```

See Also

prepData fitMod

Examples

```r
data(swData)
exampleqwcols
```

Description

This is an example of data that is passed internally to subfunctions of *fitswavecav*. It is provided here for use with examples of the internal functions.

Usage

```r
examplestpars
```

Format

A numeric matrix of two rows and 14 columns.

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mclass, model class has not been implemented yet and is equal to 1</td>
</tr>
<tr>
<td>2 model chosen (a number 1-56), this number represents both the pulse input function and the half-life</td>
</tr>
<tr>
<td>3 is the scale factor from the survreg.object</td>
</tr>
<tr>
<td>4 is the likelihood for the model chosen</td>
</tr>
<tr>
<td>5 is the coefficient for the model intercept</td>
</tr>
<tr>
<td>6 is the coefficient for the seasonal wave component of the model</td>
</tr>
<tr>
<td>7 is the coefficient for the trend component of the model</td>
</tr>
<tr>
<td>8 is the coefficient for the 30-day flow anomaly</td>
</tr>
<tr>
<td>9 is the coefficient for the 1-day flow anomaly</td>
</tr>
</tbody>
</table>
10 is the standard error for the intercept term
11 is the standard error for the seasonal wave term
12 is the standard error for the trend term
13 is the standard error for the 30-day flow anomaly term
14 is the standard error for the 1-day flow anomaly term
15 is cmaxt, the decimal season of maximum concentration
16 is the p-value for the trend line

Source
Internal data captured from the following function call:

```r
tanm="myexample", pnames=c("04041"), yrstart=1995, 
yrend=2003, tndbeg=1995, tndend=2003, 
iwcav=c("flowa30","flowa1"), dcol="dates", 
qwcols=c("R","P")
```

See Also

fitswavecav

Examples

```r
data(swData)
examplesstpars
```

Description

This is an example of data that is passed internally to `seawaveQPlots`. This numeric vector contains trend coefficients for the water-quality samples. It is provided here for use with examples of the internal functions.

Usage

exampletndlin

Format

A numeric vector of 115 observations.
Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha, 
  tanm="myexample", pnames=c("04041"), yrstart=1995, 
  yrend=2003, tndbeg=1995, tndend=2003, 
  iwcav=c("flowa30","flowa1"), dcol="dates", 
  qwcols=c("R","P"))
```

Examples

```r
data(swData)
head(exampletndlin)
```

exampletndlin
Example numeric vector used internally.

Description

This is an example of data that is passed internally to `seawaveQPlots`. This numeric vector contains trend coefficients for a continuous water-quality prediction based on the continuous ancillary variables. It is provided here for use with examples of the internal functions.

Usage

`exampletndlin`

Format

A numeric vector of 2,893 observations.

Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha, 
  tanm="myexample", pnames=c("04041"), yrstart=1995, 
  yrend=2003, tndbeg=1995, tndend=2003, 
  iwcav=c("flowa30","flowa1"), dcol="dates", 
  qwcols=c("R","P"))
```

Examples

```r
data(swData)
head(exampletndlin)
```
exampletseas

Example numeric vector used internally.

Description
This is an example of data that is passed internally to seawaveQPlots. This numeric vector contains decimal seasonal (0-1) values for the water-quality samples. It is provided here for use with examples of the internal functions.

Usage
exampletseas

Format
A numeric vector of 115 observations.

Source
Internal data captured from the following function call:

fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
tanm="myexample", pnames=c("04041"), yrstart=1995,
yrend=2003, tndbeg=1995, tndend=2003,
iwcav=c("flowa30","flowa1"), dcol="dates",
qwcols=c("R","P"))

Examples

data(swData)
head(exampletseas)

exampletseaspr

Example numeric vector used internally.

Description
This is an example of data that is passed internally to seawaveQPlots. This numeric vector contains decimal seasonal (0-1) values for the continuous ancillary data. It is provided here for use with examples of the internal functions.

Usage
exampletseaspr
exampletyr

Format

A numeric vector of 2,893 observations.

Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
  tanm="myexample", pnames=c("04041"), yrstart=1995,
  yrend=2003, tndbeg=1995, tndend=2003,
  iwcav=c("flowa30","flowa1"), dcol="dates",
  qwcols=c("R","P"))
```

Examples

```r
data(swData)
head(exampletseaspr)
```

exampletyr

Example numeric vector used internally.

Description

This is an example of data that is passed internally to `seawaveQPlots`. This numeric vector contains decimal dates for the water-quality samples. It is provided here for use with examples of the internal functions.

Usage

```r
exampletyr
```

Format

A numeric vector of 115 observations.

Source

Internal data captured from the following function call:

```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
  tanm="myexample", pnames=c("04041"), yrstart=1995,
  yrend=2003, tndbeg=1995, tndend=2003,
  iwcav=c("flowa30","flowa1"), dcol="dates",
  qwcols=c("R","P"))
```

Examples

```r
data(swData)
head(exampletyr)
```
exampletyrpr
Example numeric vector used internally.

Description
This is an example of data that is passed internally to `seawaveQPlots`. This numeric vector contains decimal dates for continuous ancillary variables. It is provided here for use with examples of the internal functions.

Usage
```r
eexampletyrpr
```

Format
A numeric vector of 2,893 observations.

Source
Internal data captured from the following function call:
```r
fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha, 
            tanm="myexample", pnames=c("04041"), yrstart=1995, 
            yrend=2003, tndbeg=1995, tndend=2003, 
            iwcav=c("flowa30","flowa1"), dcol="dates", 
            qwcols=c("R","P"))
```

Examples
```r
data(swData)
head(exampletyrpr)
```

fitMod
Internal function that fits the seawaveQ model.

Description
`fitMod` is called from within `fitswavecav` but can be invoked directly. It fits the seawaveQ model and returns the results.

Usage
```r
fitMod(cdatsub, cavdat, yrstart, yrend, tndbeg, tndend, 
       tanm, pnames, qwcols, mclass = 1)
```
fitswavecav

Arguments

cdatsub is the concentration data
cavdat is the continuous (daily) ancillary data
yrstart is the starting year of the analysis (treated as January 1 of that year).
yrend is the ending year of the analysis (treated as December 31 of that year).
tndbeg is the beginning (in whole or decimal years) of the trend period.
tndend is the end (in whole or decimal years) of the trend period.
tanm is a character identifier that names the trend analysis run. It is used to label output files.
pnames is the parameter (water-quality constituents) to analyze (if using USGS parameters, omit the starting 'P', such as "00945" for sulfate).
qwcols is a character vector with the beginning of the column headers for remarks code (default is R), and beginning of column headers for concentration data (default is P for parameter).
mclass has not been implemented yet, but will provide additional model options.

Value

a pdf file containing plots (see seawaveQPlots), a text file showing the best model survival regression call and results, and a list. The first element of the list contains information about the data and the model(s) selected (see examplespars). The second element of the list contains the summary of the survival regression call. The third element of the list is itself a list containing the observed concentrations (censored and uncensored) and the predicted concentrations used by seawaveQPlots to generate the plots.

Author(s)

Aldo V. Vecchia and Karen R. Ryberg

Examples

data(swData)
myRes <- fitMod(cdatsub=examplecdatsub, cavdat=examplecavdat,
pnames=c("04041"), qwcols=c("R", "P"))

fitswavecav Fit seasonal wave and continuous ancillary data for trend analysis

Description

Function to prepare data and fit the seawaveQ model.
Usage

```r
fitswavecav(cdat, cavdat, tanm = "trend1", pnames,  
            yrstart = 0, yrend = 0, tndbeg = 0, tndend = 0,  
            iwcav = c("none"), dcol = "dates",  
            qwcols = c("R", "P"), mclass = 1)
```

Arguments

- **cdat**: is the concentration data
- **cavdat**: is the continuous (daily) ancillary data
- **tanm**: is a character identifier that names the trend analysis run. It is used to label output files.
- **pnames**: are the parameters (water-quality constituents) to analyze (omit the starting character, for example for sulfate data indicated by P00945, enter "00945").
- **yrstart**: is the starting year of the analysis (treated as January 1 of that year). Zero means the start date will be determined by the start date of cavdat, the continuous ancillary data.
- **yrend**: is the ending year of the analysis (treated as December 31 of that year). Zero means the end date will be determined by the end date of cavdat, the continuous ancillary data.
- **tndbeg**: is the beginning (in whole or decimal years) of the trend period. Zero means the begin date will be the beginning of the concentration data, cdat.
- **tndend**: is the end of the trend (treated as December 31 of that year). Zero means the end date will be the end of the concentration data, cdat.
- **iwcav**: is a character vector indicating which continuous ancillary variables to include, if none are used for analysis, use iwcav=c("none").
- **dcol**: is the column name for the dates, should be the same for both cdat and cavdat
- **qwcols**: is a character vector with the beginning of the column headers for remarks code (default is R), and beginning of column headers for concentration data (default is P for parameter).
- **mclass**: has not been implemented yet but will provide additional model options.

Format

The data frame returned has one row for each parameter analyzed and the number of columns depend on the number of continuous ancillary variables used. The general format is as follows:

- **pname**: character Parameter analyzed
- **mclass**: numeric Currently a value of 1
- **jmod**: numeric The choice of pulse input function, an integer 1–14.
- **hlife**: numeric the model half-life in months, an integer, 1 to 4 months
- **cmxt**: numeric the decimal season of maximum concentration
- **scl**: numeric the scale factor from the survreg.object
- **loglik**: numeric the log-likelihood for the model
fitswavecav

- **cint**: numeric coefficient for model intercept
- **cwave**: numeric coefficient for the seasonal wave
- **ctnd**: numeric coefficient for the trend component of model
- **c[alphanumeric]**: numeric 0 or more coefficients for the continuous ancillary variables
- **seint**: numeric standard error for the intercept
- **sewave**: numeric standard error for the seasonal wave
- **setnd**: numeric standard error for the trend
- **se[alphanumeric]**: numeric 0 or more standard errors for the continuous ancillary variables
- **pvaltnd**: numeric the p-value for the trend line

Details

Fits the seawaveQ model (Vecchia and others, 2008) using a seasonal wave and continuous ancillary variables (streamflow anomalies and other continuous variables such as conductivity or sediment) to model water quality.

Value

A pdf file containing plots of the data and modeled concentration, a text file containing a summary of the survival regression call for each model selected, and a list. The first element of the list is a data frame described under format. The second element of the list is the summary of the survival regression call. The third element is the observed concentration data (censored and uncensored). The fourth element is the concentration data predicted by the model. The fifth element provides summary statistics for the predicted concentrations.

Note

The assumed data format is one with columns for water-quality concentration values and a related column for qualification of those values, such as in the case of left-censored values less than a particular value. For example, a water-quality sample was collected and the laboratory analysis indicated that the concentration was less than 0.01 micrograms per liter. The USGS parameter code for simazine is 04035 (U.S. Geological Survey, 2013b). When the data are retrieved through the National Water Information System: Web Interface (http://waterdata.usgs.gov/nwis; U.S. Geological Survey, 2013a), the concentration values are in a column labeled P04035 and the qualification information, or remark codes, are in a column labeled R04035. To use this function, the argument pnames would be the unique identifier for simazine values and qualifications, 04035, and the qwcols argument would be c("R", "P") to indicate that the qualification column starts with an R and the values column starts with a P.

Other users may have data in different format that can be changed to use with this function. For example, a user may have concentration values and qualification codes in one column, such as a column labeled simazine with the values 0.05, 0.10, <0.01, <0.01, and 0.90. In this case, the less thans and any other qualification codes should be placed in a separate column. The column names for the qualification codes and the concentration values should be the same with the exception of different beginning letters to indicate which column is which. The columns could be named Rsimazine and Psimazine. Then the argument pnames = "simazine" and the argument qwcols = c("R", "P").

Users should exercise caution when their water-quality data have multiple censoring limits and may
want to recensor the data to a single censoring level. Censoring and recensoring issues are discussed
in the text and Appendix 1 of Ryberg and others (2010).

Author(s)

Aldo V. Vecchia and Karen R. Ryberg

References

Ryberg, K.R., Vecchia, A.V., Martin, J.D., and Gilliom, R.J., 2010, Trends in pesticide concentra-
Vecchia, A.V., Martin, J.D., and Gilliom, R.J., 2008, Modeling variability and trends in pesticide

See Also

The functions that fitswavecav calls internally:
prepData and fitMod.

Examples

data(swData)
modMoRivOmaha<–combineData(qwdat=qwMoRivOmaha, cqwdat=cqwMoRivOmaha)
myfit1 <- fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
tanm="myfit1", pnames=c("04035", "04037", "04041"), yrstart=1995,
yrend=2003, tndbeg=1995, tndend=2003, iwcav=c("flowa30", "flowa1"),
dcol="dates", qwcols=c("R","P"))
Not run:
myfit2 <- fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
tanm="myfit2", pnames=c("04035", "04037", "04041"), yrstart=1995,
yrend=2003, tndbeg=1995, tndend=2003, iwcav=c("sedn30", "sedn1"),
dcol="dates", qwcols=c("R","P"))
myfit3 <- fitswavecav(cdat=modMoRivOmaha, cavdat=cqwMoRivOmaha,
tanm="myfit3", pnames=c("04035", "04037", "04041"), yrstart=1995,
yrend=2003, tndbeg=1995, tndend=2003, iwcav=c("flowa1","flowa1",
"sedn30", "sedn1"), dcol="dates", qwcols=c("R","P"))
End(Not run)
trend model results
myfit[[1]]
example regression call
myfit[[2]][[1]]
first few lines of observed concentrations
Description

Scatterplots of water-quality data for 05586100 Illinois River at Valley City, Ill.

05586100 Illinois River at Valley City, IL

- **Simazine concentration**, in micrograms per liter
 - Quantified concentrations
 - Estimated concentrations
 - Censored concentrations, less than

05586100 Illinois River at Valley City, IL

- **Prometon concentration**, in micrograms per liter
 - Quantified concentrations
 - Estimated concentrations
 - Censored concentrations, less than
Boxplot of data using regression on order statistics (Helsel, 2005; Lee, 2010) to estimate censored values.
IllRivValleyCty

Usage

IllRivValleyCty

Format

A data frame containing 168 water-quality samples for 4 constituents. There are 20 variables.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>site</td>
<td>Site abbreviation for study</td>
</tr>
<tr>
<td>staid</td>
<td>USGS Station identification number</td>
</tr>
<tr>
<td>dates</td>
<td>Date water-quality sample collected</td>
</tr>
<tr>
<td>yrc</td>
<td>Year</td>
</tr>
<tr>
<td>moc</td>
<td>Month</td>
</tr>
<tr>
<td>dac</td>
<td>Day</td>
</tr>
<tr>
<td>jdayc</td>
<td>Julian day from first day of associated streamflow data used</td>
</tr>
<tr>
<td>R04035</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P04035</td>
<td>Simazine, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R04037</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P04037</td>
<td>Prometon, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R82630</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P82630</td>
<td>Metribuzin, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R82668</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P82668</td>
<td>EPTC, water, filtered (0.7 micron glass fiber filter), recoverable, micrograms per liter</td>
</tr>
<tr>
<td>dflow</td>
<td>Streamflow, cubic feet per second</td>
</tr>
<tr>
<td>flowa30</td>
<td>30-day streamflow anomaly</td>
</tr>
<tr>
<td>flowa1</td>
<td>1-day streamflow anomaly</td>
</tr>
<tr>
<td>dsed</td>
<td>Sediment concentration, milligrams per liter</td>
</tr>
<tr>
<td>seda30</td>
<td>30-day sediment anomaly</td>
</tr>
<tr>
<td>seda1</td>
<td>1-day sediment anomaly</td>
</tr>
</tbody>
</table>

Censored values estimated using regression on order statistics
Details

Chemical concentration data are in the columns that start with a P and are followed by a number. Qualification codes for the concentration data are in the columns that start with an R followed by the same numbers as the associated concentration data. For example, column P04035 indicates simazine data, 04035, being the U.S. Geological Survey parameter code for simazine. The qualification codes for the simazine concentrations are found in the column R04035, indicating a U.S. Geological Survey remark code. Remark codes include _ or nothing, indicating no qualification of the value in the associated concentration field; <, indicating a censored value that is less than the number reported in the associated concentration field; and E, indicating that the value has been estimated. See Oblinger Childress and others (1999) for information on the remark codes used by the U.S. Geological Survey. The streamflow and sediment anomalies were generated using the R package waterData (Ryberg and Vecchia, 2012).

Source

References

Examples

data(swData)

summary of water-quality concentrations
apply(IllRivValleyCty[,grep("P[:digit:]",
dimnames(IllRivValleyCty)[[2]])), 2, summary)

simple boxplot of water-quality concentrations
rosBoxPlot(IllRivValleyCty)

same boxplot function with many additional plotting arguments
rosBoxPlot(IllRivValleyCty,
site="05586100 Illinois River at Valley City, Ill.", log="y",
yaxt="n", ylim=c(0.00000001, 1), qwcols=c("R", "P"),
ylab=c("Concentration, micrograms per liter"), col="skyblue1",
cex.axis=0.7, cex.sub=0.8, par(tcl=0.5, las=1,
 yaxs="i",
 mgp=c(3,0.5,0),
 mar=c(5,5,2,2),
cex.main=0.9))

axis(2, at=c(0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1),
 labels=c("0.0000001", "0.000001", "0.00001", "0.0001", "0.001", "0.01",
 "0.1", "1"), cex.axis=0.7)

scatter plot of simazine concentrations
cenScatPlot(IllRivValleyCty, pname="04035")
Scatter plot with many additional plotting arguments
par(las=1, tcl=0.5)
cenScatPlot(IllRivValleyCty, pname="04035",
site="05586100 Illinois River at Valley City, Ill.",
ylabel="Simazine concentration, in micrograms per liter",
legcex=0.7,
ylim=c(0, 10), yaxs="i", cex.lab=0.9, cex.axis=0.9,
xlim=c(as.Date("1996-01-01"), as.Date("2012-01-01")),
axis(1, as.Date(axdates), labels=c("1996", "2000", "2004", "2008", "2012"), cex.axis=0.9)

Prometon scatter plot

cenScatPlot(IllRivValleyCty, pname="04037",
site="05586100 Illinois River at Valley City, Ill.",
ylabel="Prometon concentration, in micrograms per liter",
legcex=0.7,
ylim=c(0, 0.1), yaxs="i", cex.lab=0.9, cex.axis=0.9,
xlim=c(as.Date("1996-01-01"), as.Date("2012-01-01")),
axis(1, as.Date(axdates), labels=c("1996", "2000", "2004", "2008", "2012"), cex.axis=0.9)

Metribuzin scatter plot

cenScatPlot(IllRivValleyCty, pname="82630",
site="05586100 Illinois River at Valley City, Ill.",
ylabel="Metribuzin concentration, in micrograms per liter",
legcex=0.7,
ylim=c(0, 0.1), yaxs="i", cex.lab=0.9, cex.axis=0.9,
xlim=c(as.Date("1996-01-01"), as.Date("2012-01-01")),
axis(1, as.Date(axdates), labels=c("1996", "2000", "2004", "2008", "2012"), cex.axis=0.9)

EPTC scatter plot

cenScatPlot(IllRivValleyCty, pname="82668",
site="05586100 Illinois River at Valley City, Ill.",
ylabel="EPTC concentration, in micrograms per liter",
legcex=0.7, ylim=c(0, 0.01), yaxs="i", cex.lab=0.9, cex.axis=0.9,
xlim=c(as.Date("1996-01-01"), as.Date("2012-01-01")),
axis(1, as.Date(axdates), labels=c("1996", "2000", "2004", "2008", "2012"), cex.axis=0.9)
prepData

Preliminary data is usually called from within `fitswavecav` but can be invoked directly. It performs some date calculations, removes rows with missing values for concentration or continuous variables, and returns the concentration and continuous ancillary data to be used by `fitswavecav` and its other internal functions.

Usage

```r
prepData(cdat, cavdat, yrstart, yrend, dcol, pnames,
iwcav, qwcols)
```

Arguments

- `cdat`: is the concentration data.
- `cavdat`: is the continuous (daily) ancillary data.
- `yrstart`: is the starting year of the analysis (treated as January 1 of that year). Zero means the start date will be determined by the start date of cavdat, the continuous ancillary data.
- `yrend`: is the ending year of the analysis (treated as December 31 of that year). Zero means the end date will be determined by the end date of cavdat, the continuous ancillary data.
- `dcol`: is the column name for the dates, should be the same for both cdat and cavdat.
- `pnames`: are the parameters (water-quality constituents) to analyze (if using USGS parameters, omit the starting 'P', such as "00945" for sulfate).
- `iwcav`: is a character variable indicating which continuous ancillary variables to include, if none use iwcav="none".
- `qwcols`: is a character vector with the beginning of the column headers for remarks code (default is R), and beginning of column headers for concentration data (default is P for parameter).

Value

A list. The first element is the concentration data with additional date information, missing values removed, and extra columns removed. The second element is the continuous ancillary data with additional date information, missing values removed, and extra columns removed.

Author(s)

Aldo V. Vecchia and Karen R. Ryberg
Examples

data(swData)
modMoRivOmaha<-combineData(qwdat=qwMoRivOmaha, cqwdat=cqwMoRivOmaha)
preppedDat <- prepData(modMoRivOmaha, cqwMoRivOmaha, yrstart=1995,
yrend=2003, dcol="dates", pnames=c("04035", "04037", "04041"),
 iwcav=c("flowa30"."flowa1"), qwcols=c("R","P"))

qwMoRivOmaha Water-quality data for 06610000 Missouri River at Omaha, Nebr.

Description

Scatterplots of water-quality data for 06610000 Missouri River at Omaha, Nebr.
Boxplot of data using regression on order statistics (Helsel, 2005; Lee, 2010) to estimate censored values.
Usage

qwMoRivOmaha

Format

A data frame containing 115 water-quality samples for eight chemical constituents. There are 20 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>staid</td>
<td>character</td>
<td>USGS Station identification number</td>
</tr>
<tr>
<td>dates</td>
<td>date</td>
<td>Date water-quality sample collected</td>
</tr>
<tr>
<td>times</td>
<td>numeric</td>
<td>Time sample was collected</td>
</tr>
<tr>
<td>R04035</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P04035</td>
<td>numeric</td>
<td>Simazine, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R04037</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P04037</td>
<td>numeric</td>
<td>Prometon, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R04041</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P04041</td>
<td>numeric</td>
<td>Cyanazine, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R39415</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P39415</td>
<td>numeric</td>
<td>Metolachlor, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R46342</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P46342</td>
<td>numeric</td>
<td>Alachlor, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R82630</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P82630</td>
<td>numeric</td>
<td>Metribuzin, water, filtered, recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R82661</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P82661</td>
<td>numeric</td>
<td>Trifluralin, water, filtered (0.7 micron glass fiber filter), recoverable, micrograms per liter</td>
</tr>
<tr>
<td>R82668</td>
<td>character</td>
<td>Remark code (blank, _, <, or E)</td>
</tr>
<tr>
<td>P82668</td>
<td>numeric</td>
<td>EPTC, water, filtered (0.7 micron glass fiber filter), recoverable, micrograms per liter</td>
</tr>
</tbody>
</table>

Details

Chemical concentration data are in the columns that start with a P and are followed by a number. Qualification codes for the concentration data are in the columns that start with an R followed by
the same numbers as the associated concentration data. For example, column P04035 indicates simazine data, 04035, being the U.S. Geological Survey parameter code for simazine. The qualification codes for the simazine concentrations are found in the column R04035, indicating a U.S. Geological Survey remark code. Remark codes include _ or nothing, indicating no qualification of the value in the associated concentration field; <, indicating a censored value that is less than the number reported in the associated concentration field; and E, indicating that the value has been estimated. See Oblinger Childress and others (1999) for information on the remark codes used by the U.S. Geological Survey.

Source

References

Examples

data(swData)

summary of water-quality concentrations
apply(qwMoRivOmaha[,grep("P[[:digit:]]","dimnames(qwMoRivOmaha)[[2]]")],
2, summary)

simple boxplot of water-quality concentrations
rosBoxPlot(qwMoRivOmaha, qwcols=c("R", "P"))

same boxplot function with many additional plotting arguments
rosBoxPlot(qwMoRivOmaha, site="06610000 Missouri River at Omaha, Nebr.",
log="y", xaxt="n", ylim=c(0.000001, 10), qwcols=c("R", "P"),
ylab=c("Concentration, micrograms per liter"), col="skyblue1",
cex.axis=0.7, cex.sub=0.8, par(tcl=0.5, las=1,
yaxs="i",
mgp=c(3,0.5,0),
mar=c(5,5,2,2),
cex.main=0.9))

axis(2, at=c(0.000001, 0.0001, 0.001, 0.01, 0.1, 1, 10),
labels=c("0.000001", "0.00001", "0.0001", "0.001", "0.01",
"0.1", "1", "10"), cex.axis=0.7)

scatter plot of Simazine concentrations
cenScatPlot(qwMoRivOmaha, pname="04035")

scatter plot with many additional plotting arguments
par(las=1, tcl=-0.5)
cenScatPlot(qwMoRivOmaha, pname="04035",
site="06610000 Missouri River at Omaha, Nebr.",
ylabel="Simazine concentration, in micrograms per liter",
C prometon scatter plot
\texttt{cenScatPlot(qwMoRivOmaha, pname="04037", }
\texttt{site="06610000 Missouri River at Omaha, Nebr.", }
\texttt{ylabel="Prometon concentration, in micrograms per liter", }
\texttt{legcex=0.7, qwcols=c("R", "P"), }
\texttt{ylim=c(0, 0.1), yaxs="i", cex.lab=0.9, cex.axis=0.9, }
\texttt{xlim=c(as.Date("1996-01-01"), as.Date("2004-01-01")), xaxs="i", }
\texttt{xaxt="n") }
\texttt{"2004-01-01") }
\texttt{axis(1, as.Date(axdates), labels=c("1996", "1998", "2000", "2002", }
\texttt{"2004"), cex.axis=0.9)}

Cyanazine scatter plot
\texttt{cenScatPlot(qwMoRivOmaha, pname="04041", }
\texttt{site="06610000 Missouri River at Omaha, Nebr.", }
\texttt{ylabel="Cyanazine concentration, in micrograms per liter", }
\texttt{legcex=0.7, qwcols=c("R", "P"), }
\texttt{ylim=c(0.001, 5), yaxs="i", cex.lab=0.9, cex.axis=0.9, }
\texttt{xlim=c(as.Date("1996-01-01"), as.Date("2004-01-01")), xaxs="i", }
\texttt{xaxt="n", log="y") }
\texttt{"2004-01-01") }
\texttt{axis(1, as.Date(axdates), labels=c("1996", "1998", "2000", "2002", }
\texttt{"2004"), cex.axis=0.9)}

Metolachlor scatter plot
\texttt{cenScatPlot(qwMoRivOmaha, pname="39415", }
\texttt{site="06610000 Missouri River at Omaha, Nebr.", }
\texttt{ylabel="Metolachlor concentration, in micrograms per liter", }
\texttt{legcex=0.7, qwcols=c("R", "P"), }
\texttt{ylim=c(0, 0.001), yaxs="i", cex.lab=0.9, cex.axis=0.9, }
\texttt{xlim=c(as.Date("1996-01-01"), as.Date("2004-01-01")), xaxs="i", }
\texttt{xaxt="n", log="y", legpos="bottomleft") }
\texttt{"2004-01-01") }
\texttt{axis(1, as.Date(axdates), labels=c("1996", "1998", "2000", "2002", }
\texttt{"2004"), cex.axis=0.9)}

Alachlor scatter plot
\texttt{cenScatPlot(qwMoRivOmaha, pname="46342",}
C metribuzin scatter plot
censcatplot(qwMoRivOmaha, pname="82638",
 site="06610000 Missouri River at Omaha, Nebr.",
 ylabel="Metribuzin concentration, in micrograms per liter",
 legcex=0.7, qwcols=c("R", "P"),
 ylim=c(0, 0.1), yaxs="i", cex.lab=0.9, cex.axis=0.9,
 xlim=c(as.Date("1996-01-01"),
 as.Date("2004-01-01")), xaxs="i",
 xaxt="n")
 "2004-01-01")
axis(1, as.Date(axdates), labels=c("1996", "1998", "2000", "2002",
 "2004"), cex.axis=0.9)

Trifluralin scatter plot
censcatplot(qwMoRivOmaha, pname="82661",
 site="06610000 Missouri River at Omaha, Nebr.",
 ylabel="Trifluralin concentration, in micrograms per liter",
 legcex=0.7, qwcols=c("R", "P"),
 ylim=c(0, 0.03), yaxs="i", cex.lab=0.9, cex.axis=0.9,
 xlim=c(as.Date("1996-01-01"),
 as.Date("2004-01-01")), xaxs="i",
 xaxt="n")
 "2004-01-01")
axis(1, as.Date(axdates), labels=c("1996", "1998", "2000", "2002",
 "2004"), cex.axis=0.9)

EPTC scatter plot
censcatplot(qwMoRivOmaha, pname="82668",
 site="06610000 Missouri River at Omaha, Nebr.",
 ylabel="EPTC concentration, in micrograms per liter",
 legcex=0.7, qwcols=c("R", "P"),
 ylim=c(0, 0.01), yaxs="i", cex.lab=0.9, cex.axis=0.9,
 xlim=c(as.Date("1996-01-01"),
 as.Date("2004-01-01")), xaxs="i",
 xaxt="n", log="y")
 "2004-01-01")
axis(1, as.Date(axdates), labels=c("1996", "1998", "2000", "2002",
 "2004"), cex.axis=0.9)
Description

Function to create boxplots of water-quality data that include censored values.

Usage

```
rosBoxPlot(data, site = "", qwcols = c("R", "P"), ...)
```

Arguments

data: is the dataset with columns that begin with P followed by a number indicating concentration data and columns that begin with R followed by numbers that match those of the concentration data indicating qualification codes. See example data sets for more information about the data format, IllRivValleyCty and qwMoRivOmaha.

qwcols: is a character vector with the beginning of the column headers for remarks code (default is R), and beginning of column headers for concentration data (default is P for parameter).

site: is a label for the plot title indicating the site where the water-quality samples were collected.

... arguments to be passed to `plot` method.

Details

This function determines the columns within the data set that have concentration data, based on them having column headings that start with P (or a user-specified indicator in the second element of the qwcols argument) followed by a number. The function determines the associated remark, or qualification columns, based on them having column headings that start with R (or a user-specified indicator in the first element of the qwcols argument) followed by numbers that match the associated concentration data. Then it determines which values are censored, indicated by a less than symbol in the R columns, performs regression on order statistics, `ros`, using the NADA package, and estimates values for the censored concentrations for constituents with less than 90-percent censoring. The water-quality concentrations are then depicted by boxplots.

Value

a boxplot

Note

The regression on order statistics function in R package NADA (Lee, 2012), `ros`, is an implementation of a regression on order statistics designed for multiply-censored analytical-chemistry data (Helsel, 2005). The method assumes data contains zero to many left-censored (less-than) values. For highly censored data, `ros` may produce a warning message. Such as,
Warning messages: 1: In ros(my.list$obs,
 my.list$cen) : Input > 80% censored -- Results are
tenuous.

The boxplot will still be generated, but the user should consider the warning message when inter-
preting the plots. See Oblinger Childress and others (1999) for information on the remark codes
used by the U.S. Geological Survey.

Author(s)
Karen R. Ryberg

References
Lee, Lopaka, 2012, Nondetects and data analysis for environmental data: R package version 1.5-4,
http://CRAN.R-project.org/package=NADA.

Oblinger Childress, C.J., Foreman, W.T., Connor, B.F., and Maloney, T.J., 1999, New reporting pro-
cedures based on long-term method detection levels and some considerations for interpretations of
water-quality data provided by the U.S. Geological Survey: U.S. Geological Survey Open-File Re-

Examples

data(swData)
summary of water-quality concentrations
apply(ILLRivValleyCty[, grep("P[[:digit:]]",
 dimnames(ILLRivValleyCty)[2][])], 2, summary)
simple boxplot of water-quality concentrations
rosBoxPlot(ILLRivValleyCty)
same boxplot function with many additional plotting arguments
rosBoxPlot(ILLRivValleyCty,
site="05586100 Illinois River at Valley City, IL",
log="y", yaxt="n", ylim=c(0.000001, 1), qwcols=c("R", "P"),
ylab="Concentration, micrograms per liter"),
col="skyblue", cex.axis=0.7, cex.sub=0.8,
par(tcl=0.5, las=1, yaxs="i", mgp=c(3, 0.5, 0),
 mar=c(5, 5, 2, 2), cex.main=0.9))
axis(2,
at=c(0.000001, 0.000001, 0.00001, 0.0001, 0.001, 0.1, 1),
labels=c("0.000001", "0.000001", "0.00001", "0.0001", "0.001",
 "0.01", "0.1", "1"), cex.axis=0.7)
Description

seawaveQPlots is usually called from within fitMod but can be invoked directly. It generates plots of data and model results, as well as diagnostic plots, and returns the observed and predicted concentrations so that users may plot the concentrations using their own functions.

Usage

seawaveQPlots(stpars, cmaxt, tseas, tseaspr, tndlin, tndlinpr, cdatsub, cavdat, cavmat, clog, centmp, yrstart, yrend, tyr, tyrpr, pnames, tanm, mclass = 1)

Arguments

stpars is a matrix of information about the best seawaveQ model for the concentration data, see examplestpars.
cmaxt is the decimal season of maximum chemical concentration.
tseas is the decimal season of each concentration value in cdatsub.
tseaspr is the decimal season date used to model concentration using the continuous data set cavdat.
tndlin is the decimal time centered on the midpoint of the trend for the sample data, cdatsub.
tndlinpr is is the decimal time centered on the midpoint of the trend for the continuous data, cavdat.
cdatsub is the concentration data
cavdat is the continuous (daily) ancillary data
cavmat is a matrix containing the continuous ancillary variables.
clog is a vector of the base-10 logarithms of the concentration data.
centmp is a logical vector indicating which concentration values are censored.
yrstart is the starting year of the analysis (treated as January 1 of that year).
yrend is the ending year of the analysis (treated as December 31 of that year).
tyr is a vector of decimal dates for the concentration data
typr is a vector of decimal dates for the continuous ancillary variables.
pnames is the parameter (water-quality constituents) to analyze (if using USGS parameters, omit the the starting 'P', such as "00945" for sulfate).
tanm is an a character identifier that names the trend analysis run. It is used to label output files.
mclass has not been implemented yet, but will provide additional model options.

Value

a pdf file containing plots of the data and modeled concentrations and regression diagnostic plots and a list containing the observed concentrations (censored and uncensored) and the predicted concentrations used for the plot.
Note

The plotting position used for representing censored values in the plots produced by \texttt{seawaveQPlots} is an important consideration for interpreting model fit. Plotting values obtained by using the censoring limit, or something smaller such as one-half of the censoring limit, produce plots that are difficult to interpret if there are a large number of censored values. Therefore, to make the plots more representative of diagnostic plots used for standard (non-censored) regression, a method for substituting randomized residuals in place of censored residuals was used. If a log-transformed concentration is censored at a particular limit, $\log C < L$, then the residual for that concentration is censored as well, $\log C - \text{fitted}(\log C) < L - \text{fitted}(\log C) = \text{rescen}$. In that case, a randomized residual was generated from a conditional normal distribution

$$\text{resran} \leftarrow scl \times \text{qnorm}(\text{runif}(1) \times \text{pnorm}(ext{rescen} / scl)),$$

where scl is the scale parameter from the survival regression model, pnorm is the R function for computing cumulative normal probabilities, runif is the R function for generating a random variable from the uniform distribution, and qnorm is the R function for computing quantiles of the normal distribution. Under the assumption that the model residuals are uncorrelated, normally distributed random variables with mean zero and standard deviation scl, the randomized residuals generated in this manner are an unbiased sample of the true (but unknown) residuals for the censored data. This is an application of the probability integral transform (Mood and others, 1974) to generate random variables from continuous distributions. The plotting position used a censored concentration is $\text{fitted}(\log C) + \text{resran}$. Note that each time a new model fit is performed, a new set of randomized residuals is generated and thus the plotting positions for censored values can change.

Author(s)

Aldo V. Vecchia and Karen R. Ryberg

References

Examples

data(swData)
myPlots <- seawaveQPlots(stpars=exemplerstpars, cmaxL=0.4808743,
tseas=exemplertseas, tseaspr=exemplertseaspr, tndlin=exampletns,
tndlinpr=exemplertnslinpr, cdatsub=exemplcdatsub, cavdat=examplecavdat,
cavmat=examplecavmat, clog=exampleclog, centmp=examplecentmp,
yrstart=1995, yrend=2003, tyr=exampleyr, tyrpr=exampleyrpr,
pnames=c("#4041"), tanm="examplePlots04041")
Index

+Topic **datagen**
 - compwaveconv, 6

+Topic **datasets**
 - cqwMoRivOmaha, 7
 - examplecavdat, 8
 - examplecavmat, 9
 - examplecdatsub, 10
 - illRivValleyCty, 23
 - qwMoRivOmaha, 29

+Topic **dplot**
 - seawaveQPlots, 37

+Topic **hplot**
 - cenScatPlot, 3
 - rosBoxPlot, 36
 - seawaveQPlots, 37

+Topic **manip**
 - combineData, 5
 - prepData, 28

+Topic **models**
 - fitMod, 18
 - fitswavecav, 19

+Topic **package**
 - seawaveQ-package, 2

+Topic **regression**
 - fitMod, 18
 - fitswavecav, 19

+Topic **survival**
 - fitMod, 18
 - fitswavecav, 19

+Topic **ts**
 - fitMod, 18
 - fitswavecav, 19

- **cenScatPlot**: 3
- **combineData**: 5
- **compwaveconv**: 6
- **cqwMoRivOmaha**: 5, 7, 10, 11
- **examplecavdat**: 8
- **examplecavmat**: 9
- **examplecdatsub**: 10
- **examplecentmp**: 11
- **exampleclog**: 12
- **exampleqcols**: 12
- **examplestpars**: 13, 19, 38
- **exampletndlin**: 14
- **exampletndlinpr**: 15
- **exampletseas**: 16
- **exampletseaspr**: 16
- **exampletyr**: 17
- **exampletyrpr**: 18
- **fitMod**: 12, 13, 18, 22, 38
- **fitswavecav**: 8–10, 13, 14, 18, 19, 28
- **illRivValleyCty**: 3, 5, 23, 36
- **legend**: 4
- **plot**: 4, 36
- **prepData**: 13, 22, 28
- **qwMoRivOmaha**: 3, 5, 10, 11, 29, 36
- **ros**: 36
- **rosBoxPlot**: 36
- **seawaveQ(seawaveQ-package)**: 2
- **seawaveQ-package**: 2
- **seawaveQPlots**: 12, 14–19, 37, 39