Package ‘seismic’

June 5, 2015

Type Package

Title Predict Information Cascade by Self-Exciting Point Process

Version 1.0

Date 2015-06-01

Author Hera He, Murat Erdogdu, Qingyuan Zhao

Maintainer Qingyuan Zhao <qingyzhao@gmail.com>

Description An implementation of self-exciting point process model for information cascades, which occurs when many people engage in the same acts after observing the actions of others (e.g. post reshарings on Facebook or Twitter). It provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. See http://snap.stanford.edu/seismic/ for more information and datasets.

URL http://snap.stanford.edu/seismic/

License GPL-3

NeedsCompilation no

Repository CRAN

Date/Publication 2015-06-05 22:23:38

R topics documented:

get.infectiousness .. 2
pred.cascade .. 3
seismic ... 3
tweet ... 4

Index 5
get.infectiousness

Estimate the infectiousness of an information cascade

Description

Estimate the infectiousness of an information cascade

Usage

get.infectiousness(share.time, degree, p.time, max.window = 2 * 60 * 60,
 min.window = 300, min.count = 5)

Arguments

share.time observed resharing times, sorted, share.time[1] = 0
degree observed node degrees
p.time equally spaced vector of time to estimate the infectiousness, p.time[1] = 0
max.window maximum span of the locally weight kernel
min.window minimum span of the locally weight kernel
min.count the minimum number of resharings included in the window

Details

Use a triangular kernel with shape changing over time. At time p.time, use a triangular kernel with slope = \min(\max(1/(p.time/2), 1/min.window), max.window).

Value

a list of three vectors:

- infectiousness. the estimated infectiousness
- p.up. the upper 95 percent approximate confidence interval
- p.low. the lower 95 percent approximate confidence interval

Examples

data(tweet)
pred.time <- seq(0, 6 * 60 * 60, by = 60)
infectiousness <- get.infectiousness(tweet[, 1], tweet[, 2], pred.time)
plot(pred.time, infectiousness$infectiousness)
pred.cascade

Description
Predict the popularity of information cascade

Usage
```r
pred.cascade(p.time, infectiousness, share.time, degree, n.star = 100,
features.return = FALSE)
```

Arguments
- `p.time`: equally spaced vector of time to estimate the infectiousness, `p.time[1]=0`
- `infectiousness`: a vector of estimated infectiousness, returned by `get.infectiousness`
- `share.time`: observed resharing times, sorted, `share.time[1]=0`
- `degree`: observed node degrees
- `n.star`: the average node degree in the social network
- `features.return`: if TRUE, returns a matrix of features to be used to further calibrate the prediction

Value
a vector of predicted popularity at each time in `p.time`.

Examples
```r
data(tweet)
pred.time <- seq(0, 6 * 60 * 60, by = 60)
infectiousness <- get.infectiousness(tweet[, 1], tweet[, 2], pred.time)
pred <- pred.cascade(pred.time, infectiousness$infectiousness, tweet[, 1], tweet[, 2], n.star = 100)
plot(pred.time, pred)
```

seismic

Description
Predicting information cascade by self-exciting point process model

This package implements a self-exciting point process model for information cascades. An information cascade occurs when many people engage in the same acts after observing the actions of others. Typical examples are post/photo resharings on Facebook and retweets on Twitter. The package provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. For more information, see http://snap.stanford.edu/seismic/.
References
SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity by Q. Zhao, M. Erdogdu, H. He, A. Rajaraman, J. Leskovec, ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2015.

Description
A dataset containing all the (relative) resharing time and node degree of a tweet. The original Twitter ID is 127001313513967616.

Format
A data frame with 15563 rows and 2 columns

Details
- relative_time_second. resharing time in seconds
- number_of_followers. number of followers

Source
http://board.muse.mu/archive/index.php/t-85075.html
Index

get.infectiousness, 2, 3
pred.cascade, 3
seismic, 3
seismic-package (seismic), 3
tweet, 4