Package ‘selectiveInference’

October 4, 2017

Type Package
Title Tools for Post-Selection Inference
Version 1.2.4
Date 2017-09-18
Author Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
Maintainer Rob Tibshirani <tibs@stanford.edu>
Depends glmnet, intervals, survival, R (>= 3.4.0)
Suggests Rmpfr
Description New tools for post-selection inference, for use with forward stepwise regression, least angle regression, the lasso, and the many means problem. The lasso function implements Gaussian, logistic and Cox survival models.
License GPL-2
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-10-04 16:41:59 UTC

R topics documented:

 estimateSigma .. 2
 factorDesign .. 3
 fixedLassoInf ... 4
 forwardStop ... 8
 fs ... 10
 fsInf .. 11
 groupfs ... 14
 groupfsInf .. 15
 lars .. 16
 larsInf .. 18
 manyMeans ... 21
 plot.fs ... 22
estimateSigma

Estimate the noise standard deviation in regression

Description

Estimates the standard deviation of the noise, for use in the selectiveInference package

Usage

estimateSigma(x, y, intercept=TRUE, standardize=TRUE)

Arguments

x Matrix of predictors (n by p)
y Vector of outcomes (length n)
intercept Should glmnet be run with an intercept? Default is TRUE
standardize Should glmnet be run with standardized predictors? Default is TRUE

Details

This function estimates the standard deviation of the noise, in a linear regression setting. A lasso regression is fit, using cross-validation to estimate the tuning parameter lambda. With sample size n, yhat equal to the predicted values and df being the number of nonzero coefficients from the lasso fit, the estimate of sigma is \(\sqrt{\text{sum}((y-yhat)^2) / (n-df-1)} \). Important: if you are using glmnet to compute the lasso estimate, be sure to use the settings for the "intercept" and "standardize" arguments in glmnet and estimateSigma. Same applies to fs or lar, where the argument for standardization is called "normalize".

Value

- sigmahat The estimate of sigma
- df The degrees of freedom of lasso fit used

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
factorDesign

References

Examples
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

run forward stepwise
fsfit = fs(x,y)

estimate sigma
sigmahat = estimateSigma(x,y)$sigmahat

run sequential inference with estimated sigma
out = fsInf(fsfit,sigma=sigmahat)
out

factorDesign Expand a data frame with factors to form a design matrix with the full binary encoding of each factor.

Description
When using groupfs with factor variables call this function first to create a design matrix.

Usage
factorDesign(df)

Arguments
df Data frame containing some columns which are factors.

Value
List containing

x Design matrix, the first columns contain any numeric variables from the original data frame.
index Group membership indicator for expanded matrix.
fixedLassoInf

Inference for the lasso, with a fixed lambda

Description
Compute p-values and confidence intervals for the lasso estimate, at a fixed value of the tuning parameter lambda

Usage
```
fixedLassoInf(x, y, beta, lambda, family = c("gaussian", "binomial", "cox"), intercept=TRUE, status=NULL, sigma=NULL, alpha=0.1,
type=c("partial","full"), tol.beta=1e-5, tol.kkt=0.1,
gridrange=c(-100,100), bits=NULL, verbose=FALSE)
```

Arguments
- **x** Matrix of predictors (n by p);
- **y** Vector of outcomes (length n)
- **beta** Estimated lasso coefficients (e.g., from glmnet). This is of length p (so the intercept is not included as the first component).
Be careful! This function uses the "standard" lasso objective

\[
\frac{1}{2}\|y - x\beta\|^2_2 + \lambda\|\beta\|_1.
\]

In contrast, glmnet multiplies the first term by a factor of 1/n. So after running glmnet, to extract the beta corresponding to a value lambda, you need to use

\[
\text{beta} = \text{coef(obj, s=lambda/n)}[-1],
\]

where obj is the object returned by glmnet (and [-1] removes the intercept, which glmnet always puts in the first component)
- **lambda** Value of lambda used to compute beta. See the above warning
- **family** Response type: "gaussian" (default), "binomial", or "cox" (for censored survival data)
- **sigma** Estimate of error standard deviation. If NULL (default), this is estimated using the mean squared residual of the full least squares fit when n >= 2p, and using the standard deviation of y when n < 2p. In the latter case, the user should use

\text{estimateSigma} function for a more accurate estimate. Not used for family="binomial", or "cox"
alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each tail)

intercept Was the lasso problem solved (e.g., by glmnet) with an intercept in the model? Default is TRUE. Must be TRUE for "binomial" family. Not used for 'cox' family, where no intercept is assumed.

status Censoring status for Cox model; 1=failure 0=censored

type Contrast type for p-values and confidence intervals: default is "partial"—meaning that the contrasts tested are the partial population regression coefficients, within the active set of predictors; the alternative is "full"—meaning that the full population regression coefficients are tested. The latter does not make sense when p > n.

tol.beta Tolerance for determining if a coefficient is zero

tol.kkt Tolerance for determining if an entry of the subgradient is zero

grid.range Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. Default is NULL, in which case standard floating point calculations are performed. When not NULL, multiple precision floating point calculations are performed with the specified number of bits, using the R package Rmpfr (if this package is not installed, then a warning is thrown, and standard floating point calculations are pursued). Note: standard double precision uses 53 bits so, e.g., a choice of 200 bits uses about 4 times double precision. The confidence interval computation is sometimes numerically challenging, and the extra precision can be helpful (though computationally more costly). In particular, extra precision might be tried if the values in the output columns of tail.area differ noticeably from alpha/2.

verbose Print out progress along the way? Default is FALSE

Details

This function computes selective p-values and confidence intervals for the lasso, given a fixed value of the tuning parameter lambda. Three different response types are supported: gaussian, binomial and Cox. The confidence interval construction involves numerical search and can be fragile: if the observed statistic is too close to either end of the truncation interval (vlo and vup, see references), then one or possibly both endpoints of the interval of desired coverage cannot be computed, and default to +/- Inf. The output tail.area gives the achieved Gaussian tail areas for the reported intervals—these should be close to alpha/2, and can be used for error-checking purposes.

Important!: Before running glmnet (or some other lasso-solver) x should be centered, that is x <- scale(X,TRUE,FALSE). In addition, if standardization of the predictors is desired, x should be scaled as well: x <- scale(x,TRUE,TRUE). Then when running glmnet, set standardize=F. See example below.

The penalty.factor facility in glmnet—allowing different penalties lambda for each predictor, is not yet implemented in fixedLassoInf. However you can finesse this—see the example below. One caveat- using this approach, a penalty factor of zero (forcing a predictor in) is not allowed.

Note that the coefficients and standard errors reported are unregularized. Eg for the Gaussian, they are the usual least squares estimates and standard errors for the model fit to the active set from the lasso.
Value

- **type**: Type of coefficients tested (partial or full)
- **lambda**: Value of tuning parameter lambda used
- **pv**: One-sided P-values for active variables, uses the fact we have conditioned on the sign.
- **ci**: Confidence intervals
- **tailarea**: Realized tail areas (lower and upper) for each confidence interval
- **vlo**: Lower truncation limits for statistics
- **vup**: Upper truncation limits for statistics
- **vmat**: Linear contrasts that define the observed statistics
- **y**: Vector of outcomes
- **vars**: Variables in active set
- **sign**: Signs of active coefficients
- **alpha**: Desired coverage (alpha/2 in each tail)
- **sigma**: Value of error standard deviation (sigma) used
- **call**: The call to lassoInf

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Examples

```r
set.seed(43)
n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*runif(n)

# first run glmnet
gfit = glmnet(x,y,standardize=FALSE)

# extract coef for a given lambda; note the t/n factor!
# (and we don't save the intercept term)
```
lambda = .8
beta = coef(gfit, s=lambda/n, exact=TRUE,x=x,y=y)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta,lambda,sigma=sigma)
out

as above, but use lar function instead to get initial
lasso fit (should get same results)
lar = lar(x,y,normalize=FALSE)
beta = coef(lar, s=lambda, mode="lambda", x=x, y=y)
out2 = fixedLassoInf(x,y,beta,lambda,sigma=sigma)
out2

mimic different penalty factors by first scaling x
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*runif(n)

pf = c(rep(1,7),rep(.1,3)) # define penalty factors
pf = p*pf/sum(pf) # penalty factors should be rescaled so they sum to p
x = scale(x,FALSE,pf) # scale cols of x by penalty factors

first run glmnet

lfit = glmnet(x,y,standardize=FALSE)

extract coef for a given lambda; note the 1/n factor!
(and we don't save the intercept term)
lambda = .8
beta_hat = coef(lfit, s=lambda/n, exact=TRUE,x=x,y=y)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta_hat,lambda,sigma=sigma)

rescale conf points to undo the penalty factor
out$ci = t(scale(t(out$ci),FALSE,pf[out$vars]))
out

logistic model
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
x = scale(x,TRUE,TRUE)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
y=1*(y>mean(y))
first run glmnet
gfit = glmnet(x,y,standardize=FALSE,family="binomial")

extract coef for a given lambda; note the 1/n factor!
(and here we DO include the intercept term)
lambda = 8
beta_hat = coef(gfit, s=lambda/n, exact=TRUE,x=x,y=y)

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta_hat,lambda,family="binomial")
out

Cox model
set.seed(43)
n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)

beta = c(3,2,rep(0,p-2))
tim = as.vector(x%*%beta + sigma*rnorm(n))
tim= tim-min(tim)+1
status=sample(c(0,1),size=n,replace=TRUE)
first run glmnet

gfit = glmnet(x,Surv(tim,status),standardize=FALSE,family="cox")

extract coef for a given lambda; note the 1/n factor!

lambda = 1.5
beta_hat = as.numeric(coef(gfit, s=lambda/n, exact=TRUE,x=x,y=Surv(tim,status)))

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,tim,beta_hat,lambda,status=status,family="cox")
out

forwardStop
ForwardStop rule for sequential p-values

Description
Computes the ForwardStop sequential stopping rule of G’Sell et al (2014)
forwardStop

Usage

```r
forwardStop(pv, alpha=0.1)
```

Arguments

- `pv` Vector of **sequential** p-values, for example from `fsInf` or `larInf`
- `alpha` Desired type FDR level (between 0 and 1)

Details

Computes the ForwardStop sequential stopping rule of G’Sell et al (2014). Guarantees FDR control at the level alpha, for independent p-values.

Value

Step number for sequential stop.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Examples

```r
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

# run forward stepwise
fsfit = fs(x,y)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out = fsInf(fsfit)
out

# estimate optimal stopping point
forwardStop(out$pv, alpha=.10)
```
fs

Forward stepwise regression

Description
This function implements forward stepwise regression, for use in the selectiveInference package.

Usage

```r
fs(x, y, maxsteps=2000, intercept=TRUE, normalize=TRUE, verbose=FALSE)
```

Arguments

- `x`: Matrix of predictors (n by p)
- `y`: Vector of outcomes (length n)
- `maxsteps`: Maximum number of steps to take
- `intercept`: Should an intercept be included on the model? Default is TRUE
- `normalize`: Should the predictors be normalized? Default is TRUE. (Note: this argument has no real effect on model selection since forward stepwise is scale invariant already; however, it is included for completeness, and to match the interface for the lars function)
- `verbose`: Print out progress along the way? Default is FALSE

Details
This function implements forward stepwise regression, adding the predictor at each step that maximizes the absolute correlation between the predictors—once orthogonalized with respect to the current model—and the residual. This entry criterion is standard, and is equivalent to choosing the variable that achieves the biggest drop in RSS at each step; it is used, e.g., by the `step` function in R. Note that, for example, the lars package implements a stepwise option (with type="step"), but uses a (mildly) different entry criterion, based on maximal absolute correlation between the original (non-orthogonalized) predictors and the residual.

Value

- `action`: Vector of predictors in order of entry
- `sign`: Signs of coefficients of predictors, upon entry
- `df`: Degrees of freedom of each active model
- `beta`: Matrix of regression coefficients for each model along the path, one column per model
- `completepath`: Was the complete stepwise path computed?
- `b1s`: If completepath is TRUE, the full least squares coefficients
- `Gamma`: Matrix that captures the polyhedral selection at each step
- `nk`: Number of polyhedral constraints at each step in path
vreg Matrix of linear contrasts that gives coefficients of variables to enter along the path
x Matrix of predictors used
y Vector of outcomes used
bx Vector of column means of original x
by Mean of original y
sx Norm of each column of original x
intercept Was an intercept included?
normalize Were the predictors normalized?
call The call to fs

Author(s)
Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

See Also
fsInf, predict.fs, coef.fs, plot.fs

Examples

set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,rep(0,p-2))
y = x%*%beta + sigma*runif(n)

run forward stepwise, plot results
fsfit = fs(x,y)
plot(fsfit)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out = fsInf(fsfit)
out

fsInf Selective inference for forward stepwise regression

Description
Computes p-values and confidence intervals for forward stepwise regression
Usage

fsInf(obj, sigma=NULL, alpha=0.1, k=NULL, type=c("active","all","aic"),
gridrange=c(-100,100), bits=NULL, mult=2, ntimes=2, verbose=FALSE)

Arguments

obj Object returned by \texttt{fs} function

sigma Estimate of error standard deviation. If NULL (default), this is estimated using
the mean squared residual of the full least squares fit when \(n \geq 2p \), and using
the standard deviation of \(y \) when \(n < 2p \). In the latter case, the user should use
\texttt{estimateSigma} function for a more accurate estimate

alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each
tail)

k See "type" argument below. Default is NULL, in which case \(k \) is taken to be the
the number of steps computed in the forward stepwise path

type Type of analysis desired: with "active" (default), p-values and confidence inter-
vals are computed for each predictor as it is entered into the active step, all the
way through \(k \) steps; with "all", p-values and confidence intervals are computed
for all variables in the active model after \(k \) steps; with "aic", the number of steps
\(k \) is first estimated using a modified AIC criterion, and then the same type of
analysis as in "all" is carried out for this particular value of \(k \).

Note that the AIC scheme is defined to choose a number of steps \(k \) after which
the AIC criterion increases \(n \) times in a row, where \(n \) times can be specified
by the user (see below). Under this definition, the AIC selection event is char-
acterizable as a polyhedral set, and hence the extra conditioning can be taken
into account exactly. Also note that an analogous BIC scheme can be specified
through the \texttt{mult} argument (see below)

gridrange Grid range for constructing confidence intervals, on the standardized scale

bits Number of bits to be used for p-value and confidence interval calculations. De-
fault is NULL, in which case standard floating point calculations are performed.
When not NULL, multiple precision floating point calculations are performed with
the specified number of bits, using the R package \texttt{Rmpfr} (if this package
is not installed, then a warning is thrown, and standard floating point calcula-
tions are pursued). Note: standard double precision uses 53 bits so, e.g., a
choice of 200 bits uses about 4 times double precision. The confidence interval
computation is sometimes numerically challenging, and the extra precision can
be helpful (though computationally more costly). In particular, extra precision
might be tried if the values in the output columns of \texttt{tailarea} differ noticeably
from alpha/2.

mult Multiplier for the AIC-style penalty. Hence a value of 2 (default) gives AIC,
whereas a value of log(n) would give BIC

ntimes Number of steps for which AIC-style criterion has to increase before minimizing
point is declared

verbose Print out progress along the way? Default is FALSE
Details

This function computes selective p-values and confidence intervals (selection intervals) for forward stepwise regression. The default is to report the results for each predictor after its entry into the model. See the "type" argument for other options. The confidence interval construction involves numerical search and can be fragile: if the observed statistic is too close to either end of the truncation interval (vlo and vup, see references), then one or possibly both endpoints of the interval of desired coverage cannot be computed, and default to +/- Inf. The output tailarea gives the achieved Gaussian tail areas for the reported intervals—these should be close to alpha/2, and can be used for error-checking purposes.

Value

- **type**: Type of analysis (active, all, or aic)
- **k**: Value of k specified in call
- **khat**: When type is "active", this is an estimated stopping point declared by forwardStop; when type is "aic", this is the value chosen by the modified AIC scheme
- **pv**: One sided P-values for active variables, uses the sign that a variable entered the model with.
- **ci**: Confidence intervals
- **tailarea**: Realized tail areas (lower and upper) for each confidence interval
- **vlo**: Lower truncation limits for statistics
- **vup**: Upper truncation limits for statistics
- **vmat**: Linear contrasts that define the observed statistics
- **y**: Vector of outcomes
- **vars**: Variables in active set
- **sign**: Signs of active coefficients
- **alpha**: Desired coverage (alpha/2 in each tail)
- **sigma**: Value of error standard deviation (sigma) used
- **call**: The call to fsInf

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

See Also

- fs
Examples

```r
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p), n, p)
beta = c(3, 2, rep(0, p-2))
y = x %*% beta + sigma * rnorm(n)

# run forward stepwise
fsfit = fs(x, y)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out.seq = fsinf(fsfit)
out.seq

# compute p-values and confidence intervals after AIC stopping
out.aic = fsinf(fsfit, type="aic")
out.aic

# compute p-values and confidence intervals after 5 fixed steps
out.fix = fsinf(fsfit, type="all", k=5)
out.fix
```

Description

This function implements forward selection of linear models almost identically to `step` with `direction = "forward"`. The reason this is a separate function from `fs` is that groups of variables (e.g. dummies encoding levels of a categorical variable) must be handled differently in the selective inference framework.

Usage

```r
groupfs(x, y, index, maxsteps, sigma = NULL, k = 2, intercept = TRUE, center = TRUE, normalize = TRUE, aicstop = 0, verbose = FALSE)
```

Arguments

- `x` Matrix of predictors (n by p).
- `y` Vector of outcomes (length n).
- `index` Group membership indicator of length p. Check that `sort(unique(index)) = 1:G` where G is the number of distinct groups.
- `maxsteps` Maximum number of steps for forward stepwise.
groupfsInf

Estimate of error standard deviation for use in AIC criterion. This determines the relative scale between RSS and the degrees of freedom penalty. Default is NULL corresponding to unknown sigma. When NULL, \texttt{link\{groupfsInf\}} performs truncated F inference instead of truncated \(\chi^2\). See \texttt{extractAIC} for details on the AIC criterion.

Multiplier of model size penalty, the default is \(k = 2\) for AIC. Use \(k = \log(n)\) for BIC, or \(k = 2\log(p)\) for RIC (best for high dimensions, when \(p > n\)). If \(G < p\) then RIC may be too restrictive and it would be better to use \(\log(G) < k < 2\log(p)\).

Should an intercept be included in the model? Default is TRUE. Does not count as a step.

Should the columns of the design matrix be centered? Default is TRUE.

Should the design matrix be normalized? Default is TRUE.

Early stopping if AIC increases. Default is 0 corresponding to no early stopping. Positive integer values specify the number of times the AIC is allowed to increase in a row, e.g. with \(\texttt{aicstop} = 2\) the algorithm will stop if the AIC criterion increases for 2 steps in a row. The default of \texttt{step} corresponds to \(\texttt{aicstop} = 1\).

Print out progress along the way? Default is FALSE.

An object of class "groupfs" containing information about the sequence of models in the forward stepwise algorithm. Call the function \texttt{groupfsInf} on this object to compute selective p-values.

See Also

\texttt{groupfsInf, factorDesign}.

Examples

```r
x = matrix(rnorm(20*40), nrow=20)
index = sort(rep(1:20, 2))
y = rnorm(20) + 2 * x[,1] - x[,4]
fit = groupfs(x, y, index, maxsteps = 5)
pvals = groupfsInf(fit)
```

descriptions

Description

Computes p-values for each group of variables in a model fitted by \texttt{groupfs}. These p-values adjust for selection by truncating the usual \(\chi^2\) statistics to the regions implied by the model selection event. If the sigma to \texttt{groupfs} was NULL then \texttt{groupfsInf} uses truncated \(F\) statistics instead of truncated \(\chi\). The sigma argument to \texttt{groupfsInf} allows users to override and use \(\chi\), but this is not recommended unless \(\sigma\) can be estimated well (i.e. \(n > p\)).
Usage

\texttt{groupfsInf(obj, sigma = NULL, verbose = TRUE)}

Arguments

\begin{itemize}
 \item \texttt{obj} Object returned by \texttt{groupfs} function
 \item \texttt{sigma} Estimate of error standard deviation. Default is NULL and in this case \texttt{groupfsInf} uses the value of sigma specified to \texttt{groupfs}.
 \item \texttt{verbose} Print out progress along the way? Default is TRUE.
\end{itemize}

Value

An object of class "groupfsInf" containing selective p-values for the fitted model \texttt{obj}. For comparison with \texttt{fsInf}, note that the option \texttt{type = "active"} is not available.

vars Labels of the active groups in the order they were included.

\begin{itemize}
 \item \texttt{pv} Selective p-values computed from appropriate truncated distributions.
 \item \texttt{sigma} Estimate of error variance used in computing p-values.
 \item \texttt{TC or TF} Observed value of truncated χ or F.
 \item \texttt{df} Rank of group of variables when it was added to the model.
 \item \texttt{support} List of intervals defining the truncation region of the corresponding statistic.
\end{itemize}

\textit{lar} \hspace{1cm} \textit{Least angle regression}

Description

This function implements least angle regression, for use in the selectiveInference package

Usage

\texttt{lar(x, y, maxsteps=2000, minlam=0, intercept=TRUE, normalize=TRUE, verbose=FALSE)}

Arguments

\begin{itemize}
 \item \texttt{x} Matrix of predictors (n by p)
 \item \texttt{y} Vector of outcomes (length n)
 \item \texttt{maxsteps} Maximum number of steps to take
 \item \texttt{minlam} Minimum value of lambda to consider
 \item \texttt{intercept} Should an intercept be included on the model? Default is TRUE
 \item \texttt{normalize} Should the predictors be normalized? Default is TRUE
 \item \texttt{verbose} Print out progress along the way? Default is FALSE
\end{itemize}
Details
The least angle regression algorithm is described in detail by Efron et al. (2002). This function should match (in terms of its output) that from the \texttt{lars} package, but returns additional information (namely, the polyhedral constraints) needed for the selective inference calculations.

Value
\begin{itemize}
 \item \texttt{lambda} Values of lambda (knots) visited along the path
 \item \texttt{action} Vector of predictors in order of entry
 \item \texttt{sign} Signs of coefficients of predictors, upon entry
 \item \texttt{df} Degrees of freedom of each active model
 \item \texttt{beta} Matrix of regression coefficients for each model along the path, one model per column
 \item \texttt{completepath} Was the complete stepwise path computed?
 \item \texttt{bls} If \texttt{completepath} is TRUE, the full least squares coefficients
 \item \texttt{Gamma} Matrix that captures the polyhedral selection at each step
 \item \texttt{nk} Number of polyhedral constraints at each step in path
 \item \texttt{vreg} Matrix of linear contrasts that gives coefficients of variables to enter along the path
 \item \texttt{mp} Value of M+ (for internal use with the spacing test)
 \item \texttt{x} Matrix of predictors used
 \item \texttt{y} Vector of outcomes used
 \item \texttt{bx} Vector of column means of original x
 \item \texttt{by} Mean of original y
 \item \texttt{sx} Norm of each column of original x
 \item \texttt{intercept} Was an intercept included?
 \item \texttt{normalize} Were the predictors normalized?
 \item \texttt{call} The call to \texttt{lar}
\end{itemize}

Author(s)
Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Max G’Sell, Joshua Loftus, Stephen Reid

References
See also the descriptions in Trevor Hastie, Rob Tibshirani, and Jerome Friedman (2002, 2009). Elements of Statistical Learning.

See Also
\texttt{larInf, predict.lar, coef.lar, plot.lar}
Examples

set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p), n, p)
beta = c(3, 2, rep(0, p-2))
y = x%*%beta + sigma*rnorm(n)

run LAR, plot results
larfit = lar(x, y)
plot(larfit)

compute sequential p-values and confidence intervals
(sigma estimated from full model)
out = larInf(larfit)
out

larInf

Selective inference for least angle regression

Description

Computes p-values and confidence intervals for least angle regression

Usage

larInf(obj, sigma=NULL, alpha=0.1, k=NULL, type=c("active","all","aic"),
 gridrange=c(-100, 100), bits=NULL, mult=2, ntimes=2, verbose=FALSE)

Arguments

obj
 Object returned by lar function (not the lars function!)
sigma
 Estimate of error standard deviation. If NULL (default), this is estimated using
 the mean squared residual of the full least squares fit when n >= 2p, and using
 the standard deviation of y when n < 2p. In the latter case, the user should use
 estimateSigma function for a more accurate estimate
alpha
 Significance level for confidence intervals (target is miscoverage alpha/2 in each
tail)
k
 See "type" argument below. Default is NULL, in which case k is taken to be the
 number of steps computed in the least angle regression path
type
 Type of analysis desired: with "active" (default), p-values and confidence inter-
 vals are computed for each predictor as it is entered into the active step, all the
 way through k steps; with "all", p-values and confidence intervals are computed
 for all variables in the active model after k steps; with "aic", the number of steps
 k is first estimated using a modified AIC criterion, and then the same type of
 analysis as in "all" is carried out for this particular value of k.
Note that the AIC scheme is defined to choose a number of steps \(k \) after which the AIC criterion increases \(n_{\text{times}} \) in a row, where \(n_{\text{times}} \) can be specified by the user (see below). Under this definition, the AIC selection event is characterizable as a polyhedral set, and hence the extra conditioning can be taken into account exactly. Also note that an analogous BIC scheme can be specified through the \texttt{mult} argument (see below).

\textbf{gridrange} Grid range for constructing confidence intervals, on the standardized scale

\textbf{bits} Number of bits to be used for p-value and confidence interval calculations. Default is NULL, in which case standard floating point calculations are performed. When not NULL, multiple precision floating point calculations are performed with the specified number of bits, using the R package \texttt{Rmpfr} (if this package is not installed, then a warning is thrown, and standard floating point calculations are pursued). Note: standard double precision uses 53 bits so, e.g., a choice of 200 bits uses about 4 times double precision. The confidence interval computation is sometimes numerically challenging, and the extra precision can be helpful (though computationally more costly). In particular, extra precision might be tried if the values in the output columns of \texttt{tailarea} differ noticeably from \(\alpha/2 \).

\textbf{mult} Multiplier for the AIC-style penalty. Hence a value of 2 (default) gives AIC, whereas a value of \(\log(n) \) would give BIC

\textbf{ntimes} Number of steps for which AIC-style criterion has to increase before minimizing point is declared

\textbf{verbose} Print out progress along the way? Default is FALSE

\textbf{Details}

This function computes selective p-values and confidence intervals (selection intervals) for least angle regression. The default is to report the results for each predictor after its entry into the model. See the "type" argument for other options. The confidence interval construction involves numerical search and can be fragile: if the observed statistic is too close to either end of the truncation interval (\texttt{vlo} and \texttt{vup}, see references), then one or possibly both endpoints of the interval of desired coverage cannot be computed, and default to +/- Inf. The output \texttt{tailarea} gives the achieved Gaussian tail areas for the reported intervals—these should be close to \(\alpha/2 \), and can be used for error-checking purposes.

\textbf{Value}

\textbf{type} Type of analysis (active, all, or aic)

\textbf{k} Value of \(k \) specified in call

\textbf{khat} When type is "active", this is an estimated stopping point declared by \texttt{forwardStop}; when type is "aic", this is the value chosen by the modified AIC scheme

\textbf{pv} P-values for active variables

\textbf{ci} Confidence intervals

\textbf{tailarea} Realized tail areas (lower and upper) for each confidence interval

\textbf{vlo} Lower truncation limits for statistics
vup: Upper truncation limits for statistics
vmat: Linear contrasts that define the observed statistics
y: Vector of outcomes
pv.spacing: P-values from the spacing test (here M+ is used)
pv.modspac: P-values from the modified form of the spacing test (here M+ is replaced by the next knot)
pv.covtest: P-values from covariance test
vars: Variables in active set
sign: Signs of active coefficients
alpha: Desired coverage (alpha/2 in each tail)
sigma: Value of error standard deviation (sigma) used
call: The call to larInf

Author(s)
Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

See Also
lar

Examples
```r
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)

# run LAR
larfit = lar(x,y)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out.seq = larInf(larfit)
out.seq

# compute p-values and confidence intervals after AIC stopping
out.aic = larInf(larfit,type="aic")
out.aic
```
manyMeans

compute p-values and confidence intervals after 5 fixed steps
out.fix = larInf(larfit,type="all",k=5)
out.fix

Description

Computes p-values and confidence intervals for the largest k among many normal means

Usage

manyMeans(y, alpha=0.1, bh.q=NULL, k=NULL, sigma=1, verbose=FALSE)

Arguments

y Vector of outcomes (length n)
alpha Significance level for confidence intervals (target is miscoverage alpha/2 in each tail)
bh.q q parameter for BH(q) procedure
k Number of means to consider
sigma Estimate of error standard deviation
verbose Print out progress along the way? Default is FALSE

Details

This function compute p-values and confidence intervals for the largest k among many normal means. One can specify a fixed number of means k to consider, or choose the number to consider via the BH rule.

Value

mu.hat Vector of length n containing the estimated signal sizes. If a sample element is not selected, then its signal size estimate is 0
selected.set Indices of the vector y of the sample elements that were selected by the procedure (either BH(q) or top-K). Labelled "Selind" in output table.
pv P-values for selected signals
ci Confidence intervals
method Method used to choose number of means
sigma Value of error standard deviation (sigma) used
bh.q BH q-value used
k Desired number of means
threshold Computed cutoff
call The call to manyMeans
Author(s)
Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

References

Examples
```r
set.seed(12345)
n = 100
mu = c(rep(3, floor(n/5)), rep(0, n-floor(n/5)))
y = mu + rnorm(n)
out = manyMeans(y, bh.q=0.1)
out
```

plot.fs

Plot function for forward stepwise regression

Description
Plot coefficient profiles along the forward stepwise path

Usage
```r
## S3 method for class 'fs'
plot(x, breaks=TRUE, omit.zeros=TRUE, var.labels=TRUE, ...)
```

Arguments
- `x` Object returned by a call to fs function
- `breaks` Should vertical lines be drawn at each break point in the piecewise linear coefficient paths? Default is TRUE
- `omit.zeros` Should segments of the coefficients paths that are equal to zero be omitted (to avoid clutter in the figure)? Default is TRUE
- `var.labels` Should paths be labelled with corresponding variable numbers? Default is TRUE
- `...` Additional arguments for plotting

Author(s)
Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
Examples

```r
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*runif(n)

# run forward stepwise, plot results
fsfit = fs(x,y)
plot(fsfit)
```

plot.lar
Plot function for least angle regression

Description

Plot coefficient profiles along the LAR path

Usage

```r
## S3 method for class 'lar'
plot(x, xvar=c("norm","step","lambda"), breaks=TRUE,
     omit.zeros=TRUE, var.labels=TRUE, ...)
```

Arguments

- `x` Object returned by a call to `lar` function (not the `lars` function!)
- `xvar` Either "norm" or "step" or "lambda", determining what is plotted on the x-axis
- `breaks` Should vertical lines be drawn at each break point in the piecewise linear coefficient paths? Default is TRUE
- `omit.zeros` Should segments of the coefficients paths that are equal to zero be omitted (to avoid clutter in the figure)? Default is TRUE
- `var.labels` Should paths be labelled with corresponding variable numbers? Default is TRUE
- `...` Additional arguments for plotting

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
Examples

```r
set.seed(43)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p), n, p)
beta = c(rep(0, p-2), 3, 2)
y = x %*% beta + sigma * rnorm(n)

# run LAR, plot results
larfit = lar(x, y)
plot(larfit)
```

predict.fs

Prediction and coefficient functions for forward stepwise regression

Description

Make predictions or extract coefficients from a forward stepwise object.

Usage

```r
## S3 method for class 'fs'
predict(object, newx, s, ...)
## S3 method for class 'fs'
coef(object, s, ...)
```

Arguments

- `object` Object returned by a call to `fs` function
- `newx` Matrix of x values at which the predictions are desired. If NULL, the x values from forward stepwise fitting are used
- `s` Step number(s) at which predictions or coefficients are desired
- `...` Additional arguments

Value

Either a vector/matrix of predictions, or a vector/matrix of coefficients.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
Examples

```r
set.seed(33)
n = 200
p = 20
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(rep(10,rep(0,p-10))
y = x %*% beta + sigma * rnorm(n)

# run forward stepwise and predict functions
obj = fs(x,y)
fit = predict(obj,x,s=3)
```

predict.groupfs

Prediction and coefficient functions for `groupfs`. Make predictions or extract coefficients from a `groupfs` forward stepwise object.

Description

Prediction and coefficient functions for `groupfs`.

Make predictions or extract coefficients from a `groupfs` forward stepwise object.

Usage

```r
# S3 method for class 'groupfs'
predict(object, newx)
```

Arguments

- `object` Object returned by a call to `groupfs`.
- `newx` Matrix of x values at which the predictions are desired. If NULL, the x values from `groupfs` fitting are used.

Value

A vector of predictions or a vector of coefficients.
Prediction and coefficient functions for least angle regression

Description

Make predictions or extract coefficients from a least angle regression object

Usage

```r
## S3 method for class 'lar'
predict(object, newx, s, mode=c("step","lambda"), ...)
## S3 method for class 'lar'
coef(object, s, mode=c("step","lambda"), ...)
```

Arguments

- `object`: Object returned by a call to `lar` function (not the `lars` function!)
- `newx`: Matrix of x values at which the predictions are desired. If NULL, the x values from least angle regression fitting are used
- `s`: Step number(s) or lambda value(s) at which predictions or coefficients are desired
- `mode`: Either "step" or "lambda", determining the role of `s` (above)
- `...`: Additional arguments

Value

Either a vector/matrix of predictions, or a vector/matrix of coefficients.

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid

Examples

```r
set.seed(33)
n = 200
p = 20
sigma = 1
x = matrix(rnorm(n*p),n,p)
beta = c(rep(3,10),rep(0,p-10))
y = x%*%beta + sigma*runif(n)

# run lar and predict functions
obj = lar(x,y)
fit = predict(obj,x,s=3)
```
scaleGroups

Center and scale design matrix by groups

Description
For internal use by groupfs.

Usage
scaleGroups(x, index, center = TRUE, normalize = TRUE)

Arguments
x Design matrix.
index Group membership indicator of length p.
center Center groups, default is TRUE.
normalize Scale groups by Frobenius norm, default is TRUE.

Value
x Optionally centered/scaled design matrix.
xm Means of groups in original design matrix.
xs Frobenius norms of groups in original design matrix.

selectiveInference
Tools for selective inference

Description
Functions to perform post-selection inference for forward stepwise regression, least angle regression, the lasso and the many normal means problem. The lasso function also supports logistic regression and the Cox model.

Details

This package provides tools for inference after selection, in forward stepwise regression, least angle regression, the lasso, and the many normal means problem. The functions compute p-values and selection intervals that properly account for the inherent selection carried out by the procedure.
These have exact finite sample type I error and coverage under Gaussian errors. For the logistic and Cox families (fixedLassoInf), the coverage is asymptotically valid.

This R package was developed as part of the selective inference software project in Python and R: https://github.com/selective-inference

Some of the R code in this work is a modification of Python code from this repository. Here is the current selective inference software team:

Yuval Benjamini, Leonard Blier, Will Fithian, Jason Lee, Joshua Loftus, Joshua Loftus, Stephen Reid, Dennis Sun, Yuekai Sun, Jonathan Taylor, Xiaoying Tian, Ryan Tibshirani, Rob Tibshirani

The main functions included in the package are: fs, fsInf, lar, larInf, fixedLassoInf, manyMeans

Author(s)

Ryan Tibshirani, Rob Tibshirani, Jonathan Taylor, Joshua Loftus, Stephen Reid
Maintainer: Rob Tibshirani <tibs@stanford.edu>

References

Examples

```r
set.seed(33)
n = 50
p = 10
sigma = 1
x = matrix(rnorm(n*p), n, p)
beta = c(3,2,rep(0, p-2))
y = x%*%beta + sigma*rnorm(n)

# run forward stepwise
fsfit = fs(x, y)

# compute sequential p-values and confidence intervals
# (sigma estimated from full model)
out.seq = fsInf(fsfit)
out.seq

# compute p-values and confidence intervals after AIC stopping
out.aic = fsInf(fsfit, type="aic")
out.aic
```
compute p-values and confidence intervals after 5 fixed steps
out.fix = fsInf(fsfit,type="all",k=5)
out.fix

NOT RUN---lasso at fixed lambda- Gaussian family
first run glmnet
gfit = glmnet(x,y)

extract coef for a given lambda; note the 1/n factor!
(and we don’t save the intercept term)
lambda = .1
beta = coef(gfit, s=lambda/n, exact=TRUE)[-1]

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta,lambda,sigma=sigma)
out

lasso at fixed lambda- logistic family
set.seed(43)
n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)
#
beta = c(3,2,rep(0,p-2))
y = x%*%beta + sigma*rnorm(n)
y=1*(y>mean(y))
first run glmnet
gfit = glmnet(x,y,standardize=FALSE,family="binomial")

extract coef for a given lambda; note the 1/n factor!
(and here we DO include the intercept term)
lambda = .8
beta = coef(gfit, s=lambda/n, exact=TRUE)

compute fixed lambda p-values and selection intervals
out = fixedLassoInf(x,y,beta,lambda,family="binomial")
out

lasso at fixed lambda- Cox family
set.seed(43)
n = 50
p = 10
sigma = 1

x = matrix(rnorm(n*p),n,p)
x=scale(x,TRUE,TRUE)
#
beta = c(3,2,rep(0,p-2))
tim = as.vector(x%*%beta + sigma*rnorm(n))
```r
# tim = tim - min(tim) + 1
# status = sample(c(0, 1), size = n, replace = T)
# first run glmnet
# gfit = glmnet(x, Surv(tim, status), standardize = FALSE, family = "cox")
# extract coef for a given lambda; note the 1/n factor!
# lambda = 1.5
# beta = as.numeric(coef(gfit, s = lambda/n, exact = TRUE))

# compute fixed lambda p-values and selection intervals
# out = fixedLassoInf(x, tim, beta, lambda, status = status, family = "cox")
# out

## NOT RUN --- many normal means
## set.seed(12345)
## n = 100
## mu = c(rep(3, floor(n/5)), rep(0, n-floor(n/5)))
## y = mu + rnorm(n)
## out = manyMeans(y, bh.q = 0.1)
## out

## NOT RUN --- forward stepwise with groups
## set.seed(1)
## n = 20
## p = 40
## x = matrix(rnorm(n*p), nrow = n)
## index = sort(rep(1:(p/2), 2))
## y = rnorm(n) + 2 * x[, 1] - x[, 4]
## fit = groupfs(x, y, index, maxsteps = 5)
## out = groupfsInf(fit)
## out

## NOT RUN --- estimation of sigma for use in fsInf
## (or larInf or fixedLassoInf)
## set.seed(33)
## n = 50
## p = 10
## sigma = 1
## x = matrix(rnorm(n*p), n, p)
## beta = c(3, 2, rep(0, p-2))
## y = x%*%beta + sigma*rnorm(n)

## run forward stepwise
## fsfit = fs(x, y)

## estimate sigma
## sigmahat = estimateSigma(x, y)$sigmahat

## run sequential inference with estimated sigma
## out = fsInf(fit, sigma = sigmahat)
## out
```
Index

*Topic `textasciitildekwd1`
- `fs`, 10

*Topic `textasciitildekwd2`
- `fs`, 10

*Topic `package`
- `selectiveInference`, 27

- `coef.fs`, 11
- `coef.fs(predict.fs)`, 24
- `coef.lar`, 17
- `coef.lar(predict.lar)`, 26

- `estimateSigma`, 2, 4, 12, 18
- `extractAIC`, 15

- `factorDesign`, 3, 15
- `fixedLassoInf`, 4, 28
- `forwardStop`, 8, 13, 19
- `fs`, 10, 12–14, 28
- `fsInf`, 11, 11, 16, 28

- `groupfs`, 3, 14, 15, 16, 25, 27
- `groupfsInf`, 15, 15

- `lar`, 16, 20, 28
- `larInf`, 17, 18, 28

- `manyMeans`, 21, 28

- `plot.fs`, 11, 22
- `plot.lar`, 17, 23
- `predict.fs`, 11, 24
- `predict.groupfs`, 25
- `predict.lar`, 17, 26

- `scaleGroups`, 27
- `selectiveInference`, 27
- `step`, 14, 15