Package ‘semTools’

May 10, 2022

Encoding UTF-8
Version 0.5-6
Title Useful Tools for Structural Equation Modeling
Description Provides tools for structural equation modeling, many of which extend the 'lavaan' package; for example, to pool results from multiple imputations, probe latent interactions, or test measurement invariance.
Depends R(>= 4.0), lavaan(>= 0.6-11), methods
Imports graphics, pbivnorm, stats, utils
Suggests Amelia, blavaan, emmeans, foreign, MASS, mice, GPArotation, mnormt, parallel, testthat
License GPL (>= 2)
LazyData yes
LazyLoad yes
BugReports https://github.com/simsem/semTools/issues
Date/Publication 2022-05-10 07:00:02 UTC
RoxygenNote 7.1.2
NeedsCompilation no
Author Terrence D. Jorgensen [aut, cre]
 (<https://orcid.org/0000-0001-5111-6773>),
 Sunthud Pornprasertmanit [aut],
 Alexander M. Schoemann [aut] (<https://orcid.org/0000-0002-8479-8798>),
 Yves Rosseel [aut] (<https://orcid.org/0000-0002-4129-4477>),
 Patrick Miller [ctb],
 Corbin Quick [ctb],
 Mauricio Garnier-Villarreal [ctb]
 (<https://orcid.org/0000-0002-2951-6647>),
 James Selig [ctb],
 Aaron Boulton [ctb],
 Kristopher Preacher [ctb],
 Donna Coffman [ctb].

Mijke Rhemtulla [ctb] (<https://orcid.org/0000-0003-2572-2424>),
Alexander Robitzsch [ctb] (<https://orcid.org/0000-0002-8226-3132>),
Craig Enders [ctb],
Ruben Arslan [ctb] (<https://orcid.org/0000-0002-6670-5658>),
Bell Clinton [ctb],
Pavel Panko [ctb],
Edgar Merkle [ctb] (<https://orcid.org/0000-0001-7158-0653>),
Steven Chesnut [ctb],
Jarrett Byrnes [ctb],
Jason D. Rights [ctb],
Ylenio Longo [ctb],
Maxwell Mansolf [ctb] (<https://orcid.org/0000-0001-6861-8657>),
Mattan S. Ben-Shachar [ctb] (<https://orcid.org/0000-0002-4287-4801>),
Mikko Rönkkö [ctb] (<https://orcid.org/0000-0001-7988-7609>),
Andrew R. Johnson [ctb] (<https://orcid.org/0000-0001-7000-8065>)

Maintainer Terrence D. Jorgensen <TJorgensen314@gmail.com>
Repository CRAN

R topics documented:

auxiliary ... 4
AVE ... 6
BootMiss-class .. 8
bsBootMiss ... 9
calculate.D2 ... 12
chisqSmallN ... 13
clipboard ... 15
combinequark ... 17
compareFit ... 18
compRelSEM .. 20
dat2way ... 27
dat3way ... 28
datCat ... 29
discriminantValidity .. 30
EFA-class ... 31
efa.ekc ... 33
efaUnrotate .. 34
exLong ... 36
findRMSEApower .. 37
findRMSEApowernested ... 38
findRMSEAsamplesize ... 39
findRMSEAsamplesizenested .. 40
FitDiff-class ... 42
fmi ... 43
htm ... 46
imposeStart .. 47
indProd ... 50
<table>
<thead>
<tr>
<th>R topics documented</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>kd</td>
<td>53</td>
</tr>
<tr>
<td>kurtosis</td>
<td>54</td>
</tr>
<tr>
<td>lavaan.mi-class</td>
<td>56</td>
</tr>
<tr>
<td>lavaan2emmeans</td>
<td>60</td>
</tr>
<tr>
<td>lavTestLRT.mi</td>
<td>64</td>
</tr>
<tr>
<td>lavTestScore.mi</td>
<td>67</td>
</tr>
<tr>
<td>lavTestWald.mi</td>
<td>70</td>
</tr>
<tr>
<td>loadingFromAlpha</td>
<td>73</td>
</tr>
<tr>
<td>lrv2ord</td>
<td>74</td>
</tr>
<tr>
<td>mardiaKurtosis</td>
<td>76</td>
</tr>
<tr>
<td>mardiaSkew</td>
<td>77</td>
</tr>
<tr>
<td>maximalRelia</td>
<td>78</td>
</tr>
<tr>
<td>measEq.syntax</td>
<td>80</td>
</tr>
<tr>
<td>measEq.syntax-class</td>
<td>89</td>
</tr>
<tr>
<td>miPowerFit</td>
<td>92</td>
</tr>
<tr>
<td>modindices.mi</td>
<td>95</td>
</tr>
<tr>
<td>monteCarloCI</td>
<td>98</td>
</tr>
<tr>
<td>moreFitIndices</td>
<td>101</td>
</tr>
<tr>
<td>mvrnonnorm</td>
<td>105</td>
</tr>
<tr>
<td>net</td>
<td>106</td>
</tr>
<tr>
<td>Net-class</td>
<td>107</td>
</tr>
<tr>
<td>nullRMSEA</td>
<td>108</td>
</tr>
<tr>
<td>orthRotate</td>
<td>110</td>
</tr>
<tr>
<td>parcelAllocation</td>
<td>111</td>
</tr>
<tr>
<td>partialInvariance</td>
<td>115</td>
</tr>
<tr>
<td>PAVranking</td>
<td>120</td>
</tr>
<tr>
<td>permuteMeasEq</td>
<td>124</td>
</tr>
<tr>
<td>permuteMeasEq-class</td>
<td>133</td>
</tr>
<tr>
<td>plausibleValues</td>
<td>135</td>
</tr>
<tr>
<td>plotProbe</td>
<td>139</td>
</tr>
<tr>
<td>plotRMSEAdist</td>
<td>142</td>
</tr>
<tr>
<td>plotRMSEApower</td>
<td>143</td>
</tr>
<tr>
<td>plotRMSEApowernested</td>
<td>145</td>
</tr>
<tr>
<td>poolMAloc</td>
<td>146</td>
</tr>
<tr>
<td>probe2WayMC</td>
<td>151</td>
</tr>
<tr>
<td>probe2WayRC</td>
<td>155</td>
</tr>
<tr>
<td>probe3WayMC</td>
<td>158</td>
</tr>
<tr>
<td>probe3WayRC</td>
<td>161</td>
</tr>
<tr>
<td>quark</td>
<td>165</td>
</tr>
<tr>
<td>residualCovariate</td>
<td>167</td>
</tr>
<tr>
<td>runMI</td>
<td>168</td>
</tr>
<tr>
<td>semTools</td>
<td>172</td>
</tr>
<tr>
<td>simParcel</td>
<td>172</td>
</tr>
<tr>
<td>singleParamTest</td>
<td>173</td>
</tr>
<tr>
<td>skew</td>
<td>175</td>
</tr>
<tr>
<td>splitSample</td>
<td>177</td>
</tr>
<tr>
<td>SSpower</td>
<td>178</td>
</tr>
<tr>
<td>tukeySEM</td>
<td>181</td>
</tr>
</tbody>
</table>
Implement Saturated Correlates with FIML

Description

Automatically add auxiliary variables to a lavaan model when using full information maximum likelihood (FIML) to handle missing data

Usage

auxiliary(model, data, aux, fun, ...)
lavaan.auxiliary(model, data, aux, ...)
cfa.auxiliary(model, data, aux, ...)
sem.auxiliary(model, data, aux, ...)
growth.auxiliary(model, data, aux, ...)

Arguments

model

The analysis model can be specified with 1 of 2 objects:

1. lavaan model.syntax specifying a hypothesized model without mention of auxiliary variables in aux
2. a parameter table, as returned by parTable, specifying the target model without auxiliary variables. This option requires these columns (and silently ignores all others): c("lhs","op","rhs","user","group","free","label","plabel","start")

data

data.frame that includes auxiliary variables as well as any observed variables in the model

aux

character. Names of auxiliary variables to add to model

fun

character. Name of a specific lavaan function used to fit model to data (i.e., "lavaan", "cfa", "sem", or "growth"). Only required for auxiliary.

...

additional arguments to pass to lavaan.

Details

These functions are wrappers around the corresponding lavaan functions. You can use them the same way you use lavaan, but you must pass your full data.frame to the data argument. Because the saturated-correlates approaches (Enders, 2008) treats exogenous variables as random, fixed.x must be set to FALSE. Because FIML requires continuous data (although nonnormality corrections can still be requested), no variables in the model nor auxiliary variables specified in aux can be declared as ordered.
Value

A fitted lavaan object. Additional information is stored as a list in the @external slot:

- baseline.model. A fitted lavaan object. Results of fitting an appropriate independence model for the calculation of incremental fit indices (e.g., CFI, TLI) in which the auxiliary variables remain saturated, so only the target variables are constrained to be orthogonal. See Examples for how to send this baseline model to fitMeasures.
- aux. The character vector of auxiliary variable names.
- baseline.syntax. A character vector generated within the auxiliary function, specifying the baseline.model syntax.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Examples

dat1 <- lavaan::HolzingerSwineford1939
set.seed(12345)
dat1$z <- rnorm(nrow(dat1))
dat1$x5 <- ifelse(dat1$z < quantile(dat1$z, .3), NA, dat1$x5)
dat1$x9 <- ifelse(dat1$z > quantile(dat1$z, .8), NA, dat1$x9)

targetModel <- "
 visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9
"

works just like cfa(), but with an extra "aux" argument
fitaux1 <- cfa.auxiliary(targetModel, data = dat1, aux = "z",
 missing = "fiml", estimator = "mlr")

with multiple auxiliary variables and multiple groups
fitaux2 <- cfa.auxiliary(targetModel, data = dat1, aux = c("z","ageyr","grade"),
 group = "school", group.equal = "loadings")

calculate correct incremental fit indices (e.g., CFI, TLI)
fitMeasures(fitaux2, fit.measures = c("cfi","tli"))
NOTE: lavaan will use the internally stored baseline model, which
is the independence model plus saturated auxiliary parameters
lavInspect(fitaux2@external$baseline.model, "free")
Description

Calculate average variance extracted (AVE) per factor from `lavaan` object

Usage

```r
AVE(object, obs.var = TRUE, omit.imps = c("no.conv", "no.se"),
    omit.factors = character(0), dropSingle = TRUE, return.df = TRUE)
```

Arguments

- **object**: A `lavaan` or `lavaan.mi` object, expected to contain only exogenous common factors (i.e., a CFA model). Cross-loadings are not allowed and will result in NA for any factor with indicator(s) that cross-load.

- **obs.var**: logical indicating whether to compute AVE using observed variances in the denominator. Setting `FALSE` triggers using model-implied variances in the denominator.

- **omit.imps**: character vector specifying criteria for omitting imputations from pooled results. Can include any of `c("no.conv", "no.se", "no.npd")`, the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. NPD solutions are not excluded by default because they are likely to occur due to sampling error, especially in small samples. However, gross model misspecification could also cause NPD solutions, users can compare pooled results with and without this setting as a sensitivity analysis to see whether some imputations warrant further investigation.

- **omit.factors**: character vector naming any common factors modeled in object whose indicators’ AVE is not of interest.

- **dropSingle**: logical indicating whether to exclude factors defined by a single indicator from the returned results. If `TRUE` (default), single indicators will still be included in the total column when `return.total = TRUE`.

- **return.df**: logical indicating whether to return reliability coefficients in a data.frame (one row per group/level), which is possible when every model block includes the same factors (after excluding those in `omit.factors` and applying `dropSingle`).

Details

The average variance extracted (AVE) can be calculated by
\[AVE = \frac{1^\prime \text{diag} (\Lambda \Psi \Lambda^\prime) 1}{1^\prime \text{diag} (\Sigma) 1}, \]

Note that this formula is modified from Fornell & Larcker (1981) in the case that factor variances are not 1. The proposed formula from Fornell & Larcker (1981) assumes that the factor variances are 1. Note that AVE will not be provided for factors consisting of items with dual loadings. AVE is the property of items but not the property of factors. AVE is calculated with polychoric correlations when ordinal indicators are used.

Value

numeric vector of average variance extracted from indicators per factor. For models with multiple "blocks" (any combination of groups and levels), vectors may be returned as columns in a data.frame with additional columns indicating the group/level (see return.df= argument description for caveat).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

See Also

compRelSEM for composite reliability estimates

Examples

data(HolzingerSwineford1939)
HS9 <- HolzingerSwineford1939[, c("x7","x8","x9")]
HSbinary <- as.data.frame(lapply(HS9, cut, 2, labels=FALSE))
names(HSbinary) <- c("y7","y8","y9")
HS <- cbind(HolzingerSwineford1939, HSbinary)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
 speed =~ y7 + y8 + y9 '

fit <- cfa(HS.model, data = HS, ordered = c("y7","y8","y9"), std.lv = TRUE)

works for factors with exclusively continuous OR categorical indicators
AVE(fit) # uses observed (or unconstrained polychoric/polyserial) by default
AVE(fit, obs.var = FALSE)
works for multigroup models and for multilevel models (and both)
data(Demo.twolevel)
assign clusters to arbitrary groups
Demo.twolevel$g <- ifelse(Demo.twolevel$cluster %% 2L, "type1", "type2")
model2 <- ' group: type1
 level: within
 fac =~ y1 + L2*y2 + L3*y3
 level: between
 fac =~ y1 + L2*y2 + L3*y3
group: type2
 level: within
 fac =~ y1 + L2*y2 + L3*y3
 level: between
 fac =~ y1 + L2*y2 + L3*y3
',
fit2 <- sem(model2, data = Demo.twolevel, cluster = "cluster", group = "g")
AVE(fit2)

BootMiss-class

Class For the Results of Bollen-Stine Bootstrap with Incomplete Data

Description

This class contains the results of Bollen-Stine bootstrap with missing data.

Usage

```r
## S4 method for signature 'BootMiss'
show(object)

## S4 method for signature 'BootMiss'
summary(object)

## S4 method for signature 'BootMiss'
hist(x, ..., alpha = 0.05, nd = 2,
    printLegend = TRUE, legendArgs = list(x = "topleft"))
```

Arguments

- `object, x` object of class BootMiss
- `...` Additional arguments to pass to `hist`
- `alpha` alpha level used to draw confidence limits
- `nd` number of digits to display
- `printLegend` logical. If TRUE (default), a legend will be printed with the histogram
- `legendArgs` list of arguments passed to the `legend` function. The default argument is a list placing the legend at the top-left of the figure.
Value

The `hist` method returns a list of length == 2, containing the arguments for the call to `hist` and the arguments to the call for `legend`, respectively.

Slots

time A list containing 2 `difftime` objects (`transform` and `fit`), indicating the time elapsed for data transformation and for fitting the model to bootstrap data sets, respectively.
transData Transformed data
bootDist The vector of χ^2 values from bootstrap data sets fitted by the target model
origChi The χ^2 value from the original data set
df The degree of freedom of the model
bootP The p value comparing the original χ^2 with the bootstrap distribution

Objects from the Class

Objects can be created via the `bsBootMiss` function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

`bsBootMiss`

Examples

```r
# See the example from the bsBootMiss function
```

bsBootMiss

Bollen-Stine Bootstrap with the Existence of Missing Data

Description

Implement the Bollen and Stine’s (1992) Bootstrap when missing observations exist. The implemented method is proposed by Savalei and Yuan (2009). This can be used in two ways. The first and easiest option is to fit the model to incomplete data in `lavaan` using the FIML estimator, then pass that `lavaan` object to `bsBootMiss`.

Usage

```r
bsBootMiss(x, transformation = 2, nBoot = 500, model, rawData, Sigma, Mu, 
group, ChiSquared, EMcov, writeTransData = FALSE, transDataOnly = FALSE, 
writeBootData = FALSE, bootSamplesOnly = FALSE, writeArgs, seed = NULL, 
suppressWarn = TRUE, showProgress = TRUE, ...)
```
Arguments

`x` A target lavaan object used in the Bollen-Stine bootstrap transformation. The transformation methods in Savalei and Yuan (2009). There are three methods in the article, but only the first two are currently implemented here. Use `transformation = 1` when there are few missing data patterns, each of which has a large size, such as in a planned-missing-data design. Use `transformation = 2` when there are more missing data patterns. The currently unavailable `transformation = 3` would be used when several missing data patterns have n = 1.

`nBoot` The number of bootstrap samples.

`model` Optional. The target model if `x` is not provided.

`rawData` Optional. The target raw data set if `x` is not provided.

`Sigma` Optional. The model-implied covariance matrix if `x` is not provided.

`Mu` Optional. The model-implied mean vector if `x` is not provided.

`group` Optional character string specifying the name of the grouping variable in `rawData` if `x` is not provided.

`ChiSquared` Optional. The model’s χ^2 test statistic if `x` is not provided.

`EMcov` Optional, if `x` is not provided. The EM (or Two-Stage ML) estimated covariance matrix used to speed up Transformation 2 algorithm.

`writeTransData` Logical. If `TRUE`, the transformed data set is written to a text file, `transDataOnly` is set to `TRUE`, and the transformed data is returned invisibly.

`transDataOnly` Logical. If `TRUE`, the result will provide the transformed data only.

`writeBootData` Logical. If `TRUE`, the stacked bootstrap data sets are written to a text file, `bootSamplesOnly` is set to `TRUE`, and the list of bootstrap data sets are returned invisibly.

`bootSamplesOnly` Logical. If `TRUE`, the result will provide bootstrap data sets only.

`writeArgs` Optional list. If `writeBootData = TRUE` or `writeBootData = TRUE`, user can pass arguments to the `write.table` function as a list. Some default values are provided: `file = "bootstrappedSamples.dat", row.names = FALSE, and na = ",-999",` but the user can override all of these by providing other values for those arguments in the `writeArgs` list.

`seed` The seed number used in randomly drawing bootstrap samples.

`suppressWarn` Logical. If `TRUE`, warnings from lavaan function will be suppressed when fitting the model to each bootstrap sample.

`showProgress` Logical. Indicating whether to display a progress bar while fitting models to bootstrap samples.

`...` The additional arguments in the lavaan function. See also `lavOptions`.

Details

The second is designed for users of other software packages (e.g., LISREL, EQS, Amos, or Mplus). Users can import their data, χ^2 value, and model-implied moments from another package, and they have the option of saving (or writing to a file) either the transformed data or bootstrapped samples of that data, which can be analyzed in other programs. In order to analyze the bootstrapped samples and return a p value, users of other programs must still specify their model using lavaan syntax.
Value

As a default, this function returns a `BootMiss` object containing the results of the bootstrap samples. Use show, summary, or hist to examine the results. Optionally, the transformed data set is returned if `transDataOnly = TRUE`. Optionally, the bootstrap data sets are returned if `bootSamplesOnly = TRUE`.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Syntax for transformations borrowed from http://www2.psych.ubc.ca/~vsavalei/

References

See Also

`BootMiss`

Examples

```r
## Not run:
dat1 <- HolzingerSwineford1939
dat1$x5 <- ifelse(dat1$x1 <= quantile(dat1$x1, .3), NA, dat1$x5)
dat1$x9 <- ifelse(is.na(dat1$x5), NA, dat1$x9)

targetModel <- 
  "visual =~ x1 + x2 + x3
  textual =~ x4 + x5 + x6
  speed =~ x7 + x8 + x9"

targetFit <- sem(targetModel, dat1, meanstructure = TRUE, std.lv = TRUE,
  missing = "fiml", group = "school")
summary(targetFit, fit = TRUE, standardized = TRUE)

# The number of bootstrap samples should be much higher.
temp <- bsBootMiss(targetFit, transformation = 1, nBoot = 10, seed = 31415)
temp
summary(temp)
hist(temp)
hist(temp, printLegend = FALSE) # suppress the legend
## user can specify alpha level (default: alpha = 0.05), and the number of
## digits to display (default: nd = 2). Pass other arguments to hist(...),
## or a list of arguments to legend() via "legendArgs"
```
`calculate.D2()`

Calculate the "D2" statistic

Description

This is a utility function used to calculate the "D2" statistic for pooling test statistics across multiple imputations. This function is called by several functions used for `lavaan.mi` objects, such as `lavTestLRT.mi`, `lavTestWald.mi`, and `lavTestScore.mi`. But this function can be used for any general scenario because it only requires a vector of \(\chi^2 \) statistics (one from each imputation) and the degrees of freedom for the test statistic. See Li, Meng, Raghunathan, & Rubin (1991) and Enders (2010, chapter 8) for details about how it is calculated.

Usage

`calculate.D2(w, DF = 0L, asymptotic = FALSE)`

Arguments

- `w` numeric vector of Wald \(\chi^2 \) statistics. Can also be Wald \(z \) statistics, which will be internally squared to make \(\chi^2 \) statistics with one \(df \) (must set `DF = 0L`).
- `DF` degrees of freedom (\(df \)) of the \(\chi^2 \) statistics. If `DF = 0L` (default), `w` is assumed to contain \(z \) statistics, which will be internally squared.
- `asymptotic` logical. If `FALSE` (default), the pooled test will be returned as an \(F \)-distributed statistic with numerator (\(df_1 \)) and denominator (\(df_2 \)) degrees of freedom. If `TRUE`, the pooled \(F \) statistic will be multiplied by its \(df_1 \) on the assumption that its \(df_2 \) is sufficiently large enough that the statistic will be asymptotically \(\chi^2 \) distributed.

Value

A numeric vector containing the test statistic, \(df \), its \(p \) value, and 2 missing-data diagnostics: the relative increase in variance (RIV, or average for multiparameter tests: ARIV) and the fraction missing information (FMI = ARIV / (1 + ARIV)).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
References

See Also

`lavTestLRT.mi, lavTestWald.mi, lavTestScore.mi`

Examples

```r
## generate a vector of chi-squared values, just for example
DF <- 3 # degrees of freedom
M <- 20 # number of imputations
CHI <- rchisq(M, DF)

## pool the "results"
calculate.D2(CHI, DF) # by default, an F statistic is returned
calculate.D2(CHI, DF, asymptotic = TRUE) # asymptotically chi-squared

## generate standard-normal values, for an example of Wald z tests
Z <- rnorm(M)
calculate.D2(Z) # default DF = 0 will square Z to make chisq(DF = 1)
## F test is equivalent to a t test with the denominator DF
```

chisqSmallN

Small-N correction for chi2 test statistic

Description

Calculate small-\(N\) corrections for chi2 model-fit test statistic to adjust for small sample size (relative to model size).

Usage

```r
chisqSmallN(fit0, fit1 = NULL, smallN.method = if (is.null(fit1))
  c("swain", "yuan.2015") else "yuan.2005", ..., omit.imps = c("no.conv",
  "no.se"))
```

Arguments

- `fit0, fit1` lavaan object(s) provided after running the `cfa`, `sem`, `growth`, or `lavaan` functions. `lavaan.mi` object(s) also accepted.
smallN.method character indicating the small-N correction method to use. Multiple may be chosen (all of which assume normality), as described in Shi et al. (2018): c("swain","yuan.2015","yuan.2005","bartlett"). Users may also simply select "all".

Additional arguments to the lavTestLRT or lavTestLRT.mi functions. Ignored when is.null(fit1).

omit.imps character vector specifying criteria for omitting imputations from pooled results. Ignored unless fit0 (and optionally fit1) is a lavaan.mi object. See lavTestLRT.mi for a description of options and defaults.

Details

Four finite-sample adjustments to the chi-squared statistic are currently available, all of which are described in Shi et al. (2018). These all assume normally distributed data, and may not work well with severely nonnormal data. Deng et al. (2018, section 4) review proposed small-N adjustments that do not assume normality, which rarely show promise, so they are not implemented here. This function currently will apply small-N adjustments to scaled test statistics with a warning that they do not perform well (Deng et al., 2018).

Value

A list of numeric vectors: one for the originally requested statistic(s), along with one per requested smallN.method. All include the the (un)adjusted test statistic, its df, and the p value for the test under the null hypothesis that the model fits perfectly (or that the 2 models have equivalent fit). The adjusted chi-squared statistic(s) also include(s) the scaling factor for the small-N adjustment.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Examples

```r
HS.model <- ' visual =~ x1 + b1*x2 + x3 textual =~ x4 + b2*x5 + x6 speed =~ x7 + b3*x8 + x9

fit1 <- cfa(HS.model, data = HolzingerSwineford1939[1:50,])
## test a single model (implicitly compared to a saturated model)
chisqSmallN(fit1)
```
fit a more constrained model

```r
fit0 <- cfa(HS.model, data = HolzingerSwineford1939[1:50],
            orthogonal = TRUE)
```

compare 2 models

```r
chisqSmallN(fit1, fit0)
```

clipboard

Copy or save the result of lavaan or FitDiff objects into a clipboard or a file

Description

Copy or save the result of lavaan or FitDiff object into a clipboard or a file. From the clipboard, users may paste the result into the Microsoft Excel or spreadsheet application to create a table of the output.

Usage

```r
clipboard(object, what = "summary", ...)
```

```r
saveFile(object, file, what = "summary", tableFormat = FALSE,
         fit.measures = "default", writeArgs = list(), ...)
```

Arguments

- `object`: The lavaan or FitDiff object
- `what`: The attributes of the lavaan object to be copied in the clipboard. "summary" is to copy the screen provided from the summary function. "mifit" is to copy the result from the `miPowerFit` function. Other attributes listed in the `inspect` method in the lavaan-class could also be used, such as "coef", "se", "fit", "samp", and so on. For the `FitDiff` object, this argument is not active yet.
- ...: Additional argument listed in the `miPowerFit` function (for lavaan object only).
- `file`: A file name used for saving the result
- `tableFormat`: If TRUE, save the result in the table format using tabs for separation. Otherwise, save the result as the output screen printed in the R console.
- `fit.measures`: character vector specifying names of fit measures returned by `fitMeasures` to be copied/saved. Only relevant if object is class `FitDiff`.
- `writeArgs`: list of additional arguments to be passed to `write.table`

Value

The resulting output will be saved into a clipboard or a file. If using the `clipboard` function, users may paste it in the other applications.
Examples

```r
## Not run:
library(lavaan)
HW.model <- ' visual =~ x1 + c1*x2 + x3
textual =~ x4 + c1*x5 + x6
speed =~ x7 + x8 + x9 '
fit <- cfa(HW.model, data=HolzingerSwineford1939, group="school", meanstructure=TRUE)

# Copy the summary of the lavaan object
clipboard(fit)

# Copy the modification indices and the model fit from the miPowerFit function
clipboard(fit, "mifit")

# Copy the parameter estimates
clipboard(fit, "coef")

# Copy the standard errors
clipboard(fit, "se")

# Copy the sample statistics
clipboard(fit, "samp")

# Copy the fit measures
clipboard(fit, "fit")

# Save the summary of the lavaan object
saveFile(fit, "out.txt")

# Save the modification indices and the model fit from the miPowerFit function
saveFile(fit, "out.txt", "mifit")

# Save the parameter estimates
saveFile(fit, "out.txt", "coef")

# Save the standard errors
saveFile(fit, "out.txt", "se")

# Save the sample statistics
saveFile(fit, "out.txt", "samp")

# Save the fit measures
saveFile(fit, "out.txt", "fit")

## End(Not run)
```
combinequark
Combine the results from the quark function

Description

This function builds upon the `quark` function to provide a final dataset comprised of the original dataset provided to `quark` and enough principal components to be able to account for a certain level of variance in the data.

Usage

```r
combinequark(quark, percent)
```

Arguments

- **quark**: Provide the `quark` object that was returned. It should be a list of objects. Make sure to include it in its entirety.
- **percent**: Provide a percentage of variance that you would like to have explained. That many components (columns) will be extracted and kept with the output dataset. Enter this variable as a number WITHOUT a percentage sign.

Value

The output of this function is the original dataset used in `quark` combined with enough principal component scores to be able to account for the amount of variance that was requested.

Author(s)

Steven R. Chesnut (University of Southern Mississippi <Steven.Chesnut@usm.edu>)

See Also

`quark`

Examples

```r
set.seed(123321)
dat <- HolzingerSwineford1939[,7:15]
misspat <- matrix(runif(nrow(dat) * 9) < 0.3, nrow(dat))
dat[misspat] <- NA
dat <- cbind(HolzingerSwineford1939[,1:3], dat)
quark.list <- quark(data = dat, id = c(1, 2))
final.data <- combinequark(quark = quark.list, percent = 80)
```
compareFit

Build an object summarizing fit indices across multiple models

Description

This function will create the template to compare fit indices across multiple fitted lavaan objects. The results can be exported to a clipboard or a file later.

Usage

```r
compareFit(..., nested = TRUE, argsLRT = list(), indices = TRUE,
          moreIndices = FALSE, baseline.model = NULL, nPrior = 1)
```

Arguments

- `...`: fitted lavaan models or list(s) of lavaan objects. lavaan.mi objects are also accepted, but all models must belong to the same class.
- `nested`: logical indicating whether the models in `...` are nested. See `net` for an empirical test of nesting.
- `argsLRT`: list of arguments to pass to `lavTestLRT`, as well as to `lavTestLRT.mi` and `fitMeasures` when comparing lavaan.mi models.
- `indices`: logical indicating whether to return fit indices from the `fitMeasures` function. Selecting particular indices is controlled in the summary method; see `FitDiff`.
- `moreIndices`: logical indicating whether to return fit indices from the `moreFitIndices` function. Selecting particular indices is controlled in the summary method; see `FitDiff`.
- `baseline.model`: optional fitted lavaan model passed to `fitMeasures` to calculate incremental fit indices.
- `nPrior`: passed to `moreFitIndices`, if relevant

Value

A `FitDiff` object that saves model fit comparisons across multiple models. If the models are not nested, only fit indices for each model are returned. If the models are nested, the differences in fit indices are additionally returned, as well as test statistics comparing each sequential pair of models (ordered by their degrees of freedom).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

`FitDiff`, `clipboard`
Examples

```r
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9 '

## non-nested models
fit1 <- cfa(HS.model, data = HolzingerSwineford1939)

m2 <- ' f1 =~ x1 + x2 + x3 + x4
  f2 =~ x5 + x6 + x7 + x8 + x9 '
fit2 <- cfa(m2, data = HolzingerSwineford1939)

(out1 <- compareFit(fit1, fit2, nested = FALSE))
summary(out1)

## nested model comparisons: measurement equivalence/invariance
fit.config <- cfa(HS.model, data = HolzingerSwineford1939, group = "school")
fit.metric <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
 group.equal = "loadings")
fit.scalar <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
 group.equal = c("loadings","intercepts"))
fit.strict <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
 group.equal = c("loadings","intercepts","residuals"))

measEqOut <- compareFit(fit.config, fit.metric, fit.scalar, fit.strict,
 moreIndices = TRUE) # include moreFitIndices()
summary(measEqOut)
summary(measEqOut, fit.measures = "all")
summary(measEqOut, fit.measures = c("aic", "bic", "sic", "ibic"))

## Not run:
## also applies to lavaan.mi objects (fit model to multiple imputations)
set.seed(12345)
HSMiss <- HolzingerSwineford1939[, paste("x", 1:9, sep = ")
HSMiss$x5 <- ifelse(HSMiss$x1 <= quantile(HSMiss$x1, .3), NA, HSMiss$x5)
HSMiss$x9 <- ifelse(is.na(HSMiss$x5), NA, HSMiss$x9)
HSMiss$school <- HolzingerSwineford1939$school

library(Amelia)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school")
imps <- HS.amelia$imputations

## request robust test statistics
mgfit2 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm")
mgfit1 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm",
 group.equal = "loadings")
mgfit0 <- cfa.mi(HS.model, data = imps, group = "school", estimator = "mlm",
 group.equal = c("loadings","intercepts"))
```
request the strictly-positive robust test statistics
out2 <- compareFit(scalar = mgfit0, metric = mgfit1, config = mgfit2,
 argsLRT = list(asymptotic = TRUE,
 method = "satorra.bentler.2010"))
note that moreFitIndices() does not work for lavaan.mi objects, but the
fitMeasures() method for lavaan.mi objects already returns gammaHat(s)
summary(out2, fit.measures = c("ariv", "fmi", "df", "crmr", "srmr",
 "cfi.robust", "tli.robust",
 "adjGammaHat.scaled", "rmsea.ci.lower.robust",
 "rmsea.robust", "rmsea.ci.upper.robust"))

End(Not run)

compRelSEM

Composite Reliability using SEM

Description

Calculate composite reliability from estimated factor-model parameters

Usage

```r
compRelSEM(object, obs.var = TRUE, tau.eq = FALSE, ord.scale = TRUE, config = character(0), shared = character(0), higher = character(0), return.total = FALSE, dropSingle = TRUE, omit.factors = character(0), omit.indicators = character(0), omit.imps = c("no.conv", "no.se"), return.df = TRUE)
```

Arguments

- **object**: A lavaan or lavaan.mi object, expected to contain only exogenous common factors (i.e., a CFA model).
- **obs.var**: logical indicating whether to compute AVE using observed variances in the denominator. Setting FALSE triggers using model-implied variances in the denominator.
- **tau.eq**: logical indicating whether to assume (essential) tau-equivalence, yielding a coefficient analogous to α. Setting FALSE yields an ω-type coefficient.
- **ord.scale**: logical indicating whether to apply Green and Yang’s (2009, formula 21) correction, so that reliability is calculated for the actual ordinal response scale (ignored for factors with continuous indicators). Setting FALSE yields coefficients that are only applicable to the continuous latent-response scale.
- **config**: character vector naming any configural constructs in a multilevel CFA. For these constructs (and optional total composite), Lai’s (2021) coefficients ω^W and ω^{2L} are returned (or corresponding α coefficients when tau.eq=TRUE), rather than Geldhof et al.’s (2014) coefficients for hypothetical composites of latent components (although the same formula is used for ω^W in either case).
shared character vector naming any shared constructs in a multilevel CFA. For these constructs (and optional total composite), Lai’s (2021) coefficient \(\omega^B \) or \(\alpha^B \) is returned, rather than Geldhof et al.’s (2014) between-level coefficient for hypothetical composites of latent cluster means. Lai’s (2021) coefficient quantifies reliability relative to error associated with both indicators (measurement error) and subjects (sampling error), like a generalizability coefficient. Given that subjects can be considered as raters of their cluster’s shared construct, an interrater reliability (IRR) coefficient is also returned, quantifying reliability relative to rater/sampling error alone. To quantify reliability relative to indicator/measurement error alone (i.e., \(\omega^2_L \)), the shared= construct name(s) can additionally be included in config= argument.

higher character vector naming any higher-order constructs in object for which composite reliability should be calculated. Ignored when tau.eq=TRUE because alpha is not based on a CFA model; instead, users must fit a CFA with tau-equivalence constraints. To obtain Lai’s (2021) multilevel composite-reliability indices for a higher-order factor, do not use this argument; instead, specify the higher-order factor(s) using the shared= or config= argument (compRelSEM will automatically check whether it includes latent indicators and apply the appropriate formula).

return.total logical indicating whether to return a final column containing the reliability of a composite of all indicators (not listed in omit.indicators) of first-order factors not listed in omit.factors. Ignored in 1-factor models, and should only be set TRUE if all factors represent scale dimensions that could be meaningfully collapsed to a single composite (scale sum or scale mean). Setting a negative value (e.g., -1) returns only the total-composite reliability (excluding coefficients per factor), except when requesting Lai’s (2021) coefficients for multilevel configural or shared= constructs.

dropSingle logical indicating whether to exclude factors defined by a single indicator from the returned results. If TRUE (default), single indicators will still be included in the total column when return.total = TRUE.

omit.factors character vector naming any common factors modeled in object whose composite reliability is not of interest. For example, higher-order or method factors. Note that reliabilityL2() should be used to calculate composite reliability of a higher-order factor.

omit.indicators character vector naming any observed variables that should be ignored when calculating composite reliability. This can be useful, for example, to estimate reliability when an indicator is removed.

omit.imps character vector specifying criteria for omitting imputations from pooled results. Can include any of c(“no.conv”, “no.se”, “no.npd”), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option (“no.npd”) would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any
"improper solutions" such as Heywood cases. NPD solutions are not excluded by default because they are likely to occur due to sampling error, especially in small samples. However, gross model misspecification could also cause NPD solutions, users can compare pooled results with and without this setting as a sensitivity analysis to see whether some imputations warrant further investigation.

return.df logical indicating whether to return reliability coefficients in a data.frame (one row per group/level), which is possible when every model block includes the same factors (after excluding those in omit.factors and applying dropSingle).

Details

Several coefficients for factor-analysis reliability have been termed "omega", which Cho (2021) argues is a misleading misnomer and argues for using ρ to represent them all, differentiated by descriptive subscripts. In our package, we number ω based on commonly applied calculations.

Bentler (1968) first introduced factor-analysis reliability for a unidimensional factor model with congeneric indicators, labeling the coefficients α. McDonald (1999) later referred to this and other reliability coefficients, first as θ (in 1970), then as ω, which is a source of confusion when reporting coefficients (Cho, 2021). Coefficients based on factor models were later generalized to account for multidimensionality (possibly with cross-loadings) and correlated errors. The general ω formula implemented in this function is:

$$\omega = \left(\sum_{i=1}^{k} \lambda_i \right)^2 \frac{Var(\psi)}{1'\Sigma 1},$$

where Σ can be the model-implied covariance matrix from either the saturated model (i.e., the "observed" covariance matrix, used by default) or from the hypothesized CFA model, controlled by the obs.var argument. A k-dimensional vector 1 is used to sum elements in the matrix. Note that if the model includes any directed effects (latent regression slopes), all coefficients are calculated from total factor variances: lavInspect(object, "cov.lv").

Assuming (essential) tau-equivalence (tau.eq=TRUE) makes ω equivalent to coefficient α from classical test theory (Cronbach, 1951):

$$\alpha = \frac{k}{k-1} \left[1 - \frac{\sum_{i=1}^{k} \sigma_{ii}}{\sum_{i=1}^{k} \sigma_{ii} + 2 \sum_{i<j} \sigma_{ij}} \right],$$

where k is the number of items in a factor’s composite, σ_{ii} signifies item i’s variance, and σ_{ij} signifies the covariance between items i and j. Again, the obs.var argument controls whether α is calculated using the observed or model-implied covariance matrix.

By setting return.total=TRUE, one can estimate reliability for a single composite calculated using all indicators in a multidimensional CFA (Bentler, 1972, 2009). Setting return.total = -1 will return only the total-composite reliability (not per factor).

Higher-Order Factors: The reliability of a composite that represents a higher-order construct requires partitioning the model-implied factor covariance matrix Φ in order to isolate the common-factor variance associated only with the higher-order factor. Using a second-order factor model, the model-implied covariance matrix of observed indicators Σ can be partitioned into 3 sources:
1. the second-order common-factor (co)variance: $\Lambda B\Phi B'\Lambda'$
2. the residual variance of the first-order common factors (i.e., not accounted for by the second-order factor): $\Lambda\Psi_u\Lambda'$
3. the measurement error of observed indicators: Θ

where Λ contains first-order factor loadings, B contains second-order factor loadings, Φ_2 is the model-implied covariance matrix of the second-order factor(s), and Ψ_u is the covariance matrix of first-order factor disturbances. In practice, we can use the full B matrix and full model-implied Φ matrix (i.e., including all latent factors) because the zeros in B will cancel out unwanted components of Φ. Thus, we can calculate the proportion of variance of a composite score calculated from the observed indicators (e.g., a total score or scale mean) that is attributable to the second-order factor (i.e., coefficient ω):

$$\omega_{L1} = \frac{1'\Lambda B\Phi B'\Lambda'1}{1'\Sigma1},$$

where 1 is the k-dimensional vector of 1s and k is the number of observed indicators in the composite. Note that a higher-order factor can also have observed indicators.

Categorical Indicators: When all indicators (per composite) are ordinal, the ord.scale argument controls whether the coefficient is calculated on the latent-response scale (FALSE) or on the observed ordinal scale (TRUE, the default). For ω-type coefficients (tau.eq=FALSE), Green and Yang’s (2009, formula 21) approach is used to transform factor-model results back to the ordinal response scale. When ord.scale=TRUE, coefficient α is calculated using the covariance matrix calculated from the integer-valued numeric weights for ordinal categories, consistent with its definition (Chalmers, 2018) and the alpha function in the psych package; this implies obs.var=TRUE, so obs.var=FALSE will be ignored. When ord.scale=FALSE, the standard α formula is applied to the polychoric correlation matrix (“ordinal α”; Zumbo et al., 2007), estimated from the saturated or hypothesized model (see obs.var), and ω is calculated from CFA results without applying Green and Yang’s (2009) correction (see Zumbo & Kroc’s, 2019, for a rationalization). No method has been proposed for calculating reliability with a mixture of categorical and continuous indicators, so an error is returned if object includes factors with a mixture of indicator types (unless omitted using omit.factors). If categorical indicators load on a different factor(s) than continuous indicators, then reliability will still be calculated separately for those factors, but return.total must be FALSE (unless omit.factors is used to isolate factors with indicators of the same type).

Multilevel Measurement Models: Under the default settings, compRelSEM() will apply the same formula in each “block” (group and/or level of analysis). In the case of multilevel SEMs, this yields “reliability” for latent within- and between-level components, as proposed by Geldhof et al. (2014). This is not recommended because the coefficients do not correspond to actual composites that would be calculated from the observed data. Lai (2021) proposed coefficients for reliability of actual composites, depending on the type of construct, which requires specifying the names of constructs for which reliability is desired (or multiple constructs whose indicators would compose a multidimensional composite). Configural (config=) and/or shared= constructs can be specified; the same construct can be specified in both arguments, so that overall scale-reliability can be estimated for a shared construct by including it in config. Instead of organizing the output by block (the default), specifying config= and/or shared= will prompt organizing the output by $config$ and/or $shared$.

- The overall ($._2L$) scale reliability for configural constructs is returned, along with the reliability of a purely individual-level composite ($._W$, calculated by cluster-mean centering).
• The reliability for a shared construct quantifies generalizability across both indicators and raters (i.e., subjects rating their cluster’s construct). Lüdtke et al. (2011) refer to these as measurement error and sampling error, respectively. An interrater reliability (IRR) coefficient is also returned, quantifying generalizability across rater/sampling-error only. To obtain a scale-reliability coefficient (quantifying a shared construct’s generalizability across indicator/measurement-error only), include the same factor name in config=. Jak et al. (2021) recommended modeling components of the same construct at both levels, but users may also saturate the within-level model (Lai, 2021).

Be careful about including Level-2 variables in the model, especially whether it makes sense to include them in a total composite for a Level-2 construct. dropSingle=TRUE only prevents estimating reliability for a single-indicator construct, not from including such an indicator in a total composite. It is permissible for shared= constructs to have indicators at Level-2 only. If it is necessary to model other Level-2 variables (e.g., to justify the missing-at-random assumption when using missing = “FIML” estimation), they should be placed in the omit.indicators= argument to exclude them from total composites.

Value

A numeric vector of composite reliability coefficients per factor, or a list of vectors per "block" (group and/or level of analysis), optionally returned as a data.frame when possible (see return.df= argument description for caveat). If there are multiple factors, whose multidimensional indicators combine into a single composite, users can request return.total=TRUE to add a column including a reliability coefficient for the total composite, or return.total = -1 to return only the total-composite reliability (ignored when config= or shared= is specified because each factor’s specification must be checked across levels).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Uses hidden functions written by Sunthud Pornprasertmanit (<psunthud@gmail.com>) for the old reliability() function.

References

Bentler, P. M. (1972). A lower-bound method for the dimension-free measurement of internal consistency. Social Science Research, 1(4), 343–357. doi:10.1016/0049089X(72)900828

See Also

maximalRelia for the maximal reliability of weighted composite

Examples

```r
data(HolzingerSwineford1939)
HS9 <- HolzingerSwineford1939[, c("x7","x8","x9")]
HSbinary <- as.data.frame( lapply(HS9, cut, 2, labels=FALSE) )
names(HSbinary) <- c("y7","y8","y9")
HS <- cbind(HolzingerSwineford1939, HSbinary)

HS.model <- ' visual =~ x1 + x2 + x3
              textual =~ x4 + x5 + x6
              speed =~ y7 + y8 + y9 '

fit <- cfa(HS.model, data = HS, ordered = c("y7","y8","y9"), std.lv = TRUE)

## works for factors with exclusively continuous OR categorical indicators
compRelSEM(fit)

## reliability for ALL indicators only available when they are
## all continuous or all categorical
compRelSEM(fit, omit.factors = "speed", return.total = TRUE)

## loop over visual indicators to calculate alpha if one indicator is removed
for (i in paste0("x", 1:3)) {
```
cat("Drop ", i, ", \n", sep = "")
print(compRelSEM(fit, omit.factors = c("textual","speed"),
 omit.indicators = i, tau.eq = TRUE))
}

Reliability of a composite that represents a higher-order factor
mod.hi <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
general =~ visual + textual + speed '
fit.hi <- cfa(mod.hi, data = HolzingerSwineford1939)
compRelSEM(fit.hi, higher = "general")
reliabilities for lower-order composites also returned

works for multigroup models and for multilevel models (and both)
data(Demo.twolevel)
assign clusters to arbitrary groups
Demo.twolevel$g <- ifelse(Demo.twolevel$cluster %% 2L, "type1", "type2")
model2 <- ' group: type1
 level: 1
 f1 =~ y1 + L2*y2 + L3*y3
 f2 =~ y4 + L5*y5 + L6*y6
 level: 2
 f1 =~ y1 + L2*y2 + L3*y3
 f2 =~ y4 + L5*y5 + L6*y6
 group: type2
 level: 1
 f1 =~ y1 + L2*y2 + L3*y3
 f2 =~ y4 + L5*y5 + L6*y6
 level: 2
 f1 =~ y1 + L2*y2 + L3*y3
 f2 =~ y4 + L5*y5 + L6*y6
',
fit2 <- sem(model2, data = Demo.twolevel, cluster = "cluster", group = "g")
compRelSEM(fit2) # Geldhof's indices (hypothetical, for latent components)

Lai's (2021) indices for Level-1 and configural constructs
compRelSEM(fit2, config = c("f1","f2"))
Lai's (2021) indices for shared (Level-2) constructs
(also an interrater reliability coefficient)
compRelSEM(fit2, shared = c("f1","f2"))

Shared construct using saturated within-level model
mod.sat1 <- ' level: 1
 y1 =~ y1 + y2 + y3 + y4 + y5 + y6
 y2 =~ y2 + y3 + y4 + y5 + y6
 y3 =~ y3 + y4 + y5 + y6
 y4 =~ y4 + y5 + y6
}
Simulated Dataset to Demonstrate Two-way Latent Interaction

Description
A simulated data set with 2 independent factors and 1 dependent factor where each factor has three indicators

Usage
dat2way

Format
A data.frame with 500 observations of 9 variables.
x1 The first indicator of the first independent factor
x2 The second indicator of the first independent factor
x3 The third indicator of the first independent factor
x4 The first indicator of the second independent factor
x5 The second indicator of the second independent factor
x6 The third indicator of the second independent factor
dat3way

x7 The first indicator of the dependent factor
x8 The second indicator of the dependent factor
x9 The third indicator of the dependent factor

Source
Data were generated by the \texttt{mvrnorm} function in the \texttt{MASS} package.

Examples
\begin{verbatim}
head(dat2way)
\end{verbatim}

dat3way

\textit{Simulated Dataset to Demonstrate Three-way Latent Interaction}

Description
A simulated data set with 3 independent factors and 1 dependent factor where each factor has three indicators

Usage
dat3way

Format
A \texttt{data.frame} with 500 observations of 12 variables.

x1 The first indicator of the first independent factor
x2 The second indicator of the first independent factor
x3 The third indicator of the first independent factor
x4 The first indicator of the second independent factor
x5 The second indicator of the second independent factor
x6 The third indicator of the second independent factor
x7 The first indicator of the third independent factor
x8 The second indicator of the third independent factor
x9 The third indicator of the third independent factor
x10 The first indicator of the dependent factor
x11 The second indicator of the dependent factor
x12 The third indicator of the dependent factor

Source
Data were generated by the \texttt{mvrnorm} function in the \texttt{MASS} package.

Examples
\begin{verbatim}
head(dat3way)
\end{verbatim}
Description

A simulated data set with 2 factors with 4 indicators each separated into two groups

Usage

datCat

Format

A data.frame with 200 observations of 9 variables.

g Sex of respondents
u1 Indicator 1
u2 Indicator 2
u3 Indicator 3
u4 Indicator 4
u5 Indicator 5
u6 Indicator 6
u7 Indicator 7
u8 Indicator 8

Source

Data were generated using the lavaan package.

Examples

head(datCat)
discriminantValidity
Calculate discriminant validity statistics

Description

Calculate discriminant validity statistics based on a fitted lavaan object.

Usage

```r
discriminantValidity(object, cutoff = 0.9, merge = FALSE, level = 0.95)
```

Arguments

- `object`: The `lavaan` model object returned by the `cfa` function.
- `cutoff`: A cutoff to be used in the constrained models in likelihood ratio tests.
- `merge`: Whether the constrained models should be constructed by merging two factors as one. Implies `cutoff = 1`.
- `level`: The confidence level required.

Details

Evaluated on the measurement scale level, discriminant validity is commonly evaluated by checking if each pair of latent correlations is sufficiently below one (in absolute value) that the latent variables can be thought of representing two distinct constructs.

The `discriminantValidity` function calculates two sets of statistics that are commonly used in discriminant validity evaluation. The first set are factor correlation estimates and their confidence intervals. The second set is a series of nested model tests, where the baseline model is compared against a set of constrained models that are constructed by constraining each factor correlation to the specified cutoff one at a time.

The function assume that the `object` is set of confirmatory factor analysis results where the latent variables are scaled by fixing their variances to 1s. If the model is not a CFA model, the function will calculate the statistics for the correlations among exogenous latent variables, but for the residual variances with endogenous variables. If the latent variables are scaled in some other way (e.g. fixing the first loadings), the function issues a warning and re-estimates the model by fixing latent variances to 1 (and estimating all loadings) so that factor covariances are already estimated as correlations.

The likelihood ratio tests are done by comparing the original baseline model against more constrained alternatives. By default, these alternatives are constructed by fixing each correlation at a time to a cutoff value. The typical purpose of this test is to demonstrate that the estimated factor correlation is well below the cutoff and a significant χ^2 statistic thus indicates support for discriminant validity. In some cases, the original correlation estimate may already be greater than the cutoff, making it redundant to fit a "restricted" model. When this happens, the likelihood ratio test will be replaced by comparing the baseline model against itself. For correlations that are estimated to be negative, a negation of the cutoff is used in the constrained model.
Another alternative is to do a nested model comparison against a model where two factors are merged as one by setting the `merge` argument to `TRUE`. In this comparison, the constrained model is constructed by removing one of the correlated factors from the model and assigning its indicators to the factor that remains in the model.

Value

A `data.frame` of latent variable correlation estimates, their confidence intervals, and a likelihood ratio tests against constrained models. with the following attributes:

- `baseline` The baseline model after possible rescaling.
- `constrained` A list of the fitted constrained models used in the likelihood ratio test.

Author(s)

Mikko Rönkkö (University of Jyväskylä; <mikko.ronkko@jyu.fi>):

References

Examples

```r
library(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
discriminantValidity(fit)
discriminantValidity(fit, merge = TRUE)
```

EFA-class

Class For Rotated Results from EFA

Description

This class contains the results of rotated exploratory factor analysis

Usage

```r
## S4 method for signature 'EFA'
show(object)

## S4 method for signature 'EFA'
summary(object, suppress = 0.1, sort = TRUE)
```
Arguments

- **object**: object of class EFA
- **suppress**: any standardized loadings less than the specified value will not be printed to the screen
- **sort**: logical. If TRUE (default), factor loadings will be sorted by their size in the console output

Slots

- **loading**: Rotated standardized factor loading matrix
- **rotate**: Rotation matrix
- **gradRotate**: gradient of the objective function at the rotated loadings
- **convergence**: Convergence status
- **phi**: Factor correlation matrix. Will be an identity matrix if orthogonal rotation is used.
- **se**: Standard errors of the rotated standardized factor loading matrix
- **method**: Method of rotation
- **call**: The command used to generate this object

Objects from the Class

Objects can be created via the `orthRotate` or `oblqRotate` function.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

See Also

- `efaUnrotate`
- `orthRotate`
- `oblqRotate`

Examples

```r
unrotated <- efaUnrotate(HolzingerSwineford1939, nf = 3, varList = paste0("x",1:9), estimator = "mlr")
summary(unrotated, std = TRUE)
lavInspect(unrotated, "std")

# Rotated by Quartimin
rotated <- oblqRotate(unrotated, method = "quartimin")
summary(rotated)
```
efa.ekc

Empirical Kaiser criterion

Description

Identify the number of factors to extract based on the Empirical Kaiser Criterion (EKC). The analysis can be run on a data.frame or data matrix (data), or on a correlation or covariance matrix (sample.cov) and the sample size (sample.nobs). A data.frame is returned with two columns: the eigenvalues from your data or covariance matrix and the reference eigenvalues. The number of factors suggested by the Empirical Kaiser Criterion (i.e. the sample eigenvalues greater than the reference eigenvalues), and the number of factors suggested by the original Kaiser Criterion (i.e. sample eigenvalues > 1) is printed above the output.

Usage

efa.ekc(data = NULL, sample.cov = NULL, sample.nobs = NULL, missing = "default", ordered = NULL, plot = TRUE)

Arguments

data A data.frame or data matrix containing columns of variables to be factor-analyzed.
sample.cov A covariance or correlation matrix can be used, instead of data, to estimate the eigenvalues.
sample.nobs Number of observations (i.e. sample size) if is.null(data) and sample.cov is used.
missing If "listwise", cases with missing values are removed listwise from the data frame. If "direct" or "ml" or "fiml" and the estimator is maximum likelihood, an EM algorithm is used to estimate the unrestricted covariance matrix (and mean vector). If "pairwise", pairwise deletion is used. If "default", the value is set depending on the estimator and the mimic option (see details in lavCor).
ordered Character vector. Only used if object is a data.frame. Treat these variables as ordered (ordinal) variables. Importantly, all other variables will be treated as numeric (unless is.ordered == TRUE in data). (see also lavCor)
plot logical. Whether to print a scree plot comparing the sample eigenvalues with the reference eigenvalues.

Value

A data.frame showing the sample and reference eigenvalues.

The number of factors suggested by the Empirical Kaiser Criterion (i.e. the sample eigenvalues greater than the reference eigenvalues) is returned as an attribute (see Examples).

The number of factors suggested by the original Kaiser Criterion (i.e. sample eigenvalues > 1) is also printed as a header to the data.frame
Author(s)

Ylenio Longo (University of Nottingham; <yleniolongo@gmail.com>)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Examples

```r
## Simulate data with 3 factors
model <- '
  f1 =~ .3*x1 + .5*x2 + .4*x3
  f2 =~ .3*x4 + .5*x5 + .4*x6
  f3 =~ .3*x7 + .5*x8 + .4*x9
',
dat <- simulateData(model, seed = 123)
## save summary statistics
myCovMat <- cov(dat)
myCorMat <- cor(dat)
N <- nrow(dat)
## Run the EKC function
(out <- efa.ekc(dat))
## To extract the recommended number of factors using the EKC:
attr(out, "nfactors")
## If you do not have raw data, you can use summary statistics
(x1 <- efa.ekc(sample.cov = myCovMat, sample.nobs = N, plot = FALSE))
(x2 <- efa.ekc(sample.cov = myCorMat, sample.nobs = N, plot = FALSE))
```

Description

This function will analyze unrotated exploratory factor analysis model. The unrotated solution can be rotated by the `orthRotate` and `oblqRotate` functions.

Usage

`efaUnrotate(data = NULL, nf, varList = NULL, start = TRUE, aux = NULL, ...)`
efaUnrotate

Arguments

data A target data.frame
nf The desired number of factors
varList Target observed variables. If not specified, all variables in data will be used (or sample.cov if is.null(data); see cfa for argument descriptions).
start Use starting values in the analysis from the factanal function. If FALSE, the starting values from the lavaan package will be used. TRUE is ignored with a warning if the aux argument is used.
aux The list of auxiliary variables. These variables will be included in the model by the saturated-correlates approach to account for missing information.
... Other arguments in the cfa function in the lavaan package, such as ordered, se, estimator, or sample.cov and sample.nobs.

Details

This function will generate a lavaan script for unrotated exploratory factor analysis model such that (1) all factor loadings are estimated, (2) factor variances are fixed to 1, (3) factor covariances are fixed to 0, and (4) the dot products of any pairs of columns in the factor loading matrix are fixed to zero (Johnson & Wichern, 2002). The reason for creating this function to supplement the factanal function is that users can enjoy some advanced features from the lavaan package, such as scaled χ^2, diagonally weighted least squares estimation for ordinal indicators, or full-information maximum likelihood (FIML) to handle incomplete data.

Value

A lavaan output of unrotated exploratory factor analysis solution.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Examples

unrotated <- efaUnrotate(HolzingerSwineford1939, nf = 3,
 varList = paste0("x", 1:9), estimator = "mlr")
summary(unrotated, std = TRUE)
inspect(unrotated, "std")

dat <- data.frame(HolzingerSwineford1939,
 z = rnorm(nrow(HolzingerSwineford1939), 0, 1))
unrotated2 <- efaUnrotate(dat, nf = 2, varList = paste0("x", 1:9), aux = "z")
Simulated Data set to Demonstrate Longitudinal Measurement Invariance

Description

A simulated data set with 1 factors with 3 indicators in three timepoints

Usage

`exLong`

Format

A `data.frame` with 200 observations of 10 variables.

- `sex` Sex of respondents
- `y1t1` Indicator 1 in Time 1
- `y2t1` Indicator 2 in Time 1
- `y3t1` Indicator 3 in Time 1
- `y1t2` Indicator 1 in Time 2
- `y2t2` Indicator 2 in Time 2
- `y3t2` Indicator 3 in Time 2
- `y1t3` Indicator 1 in Time 3
- `y2t3` Indicator 2 in Time 3
- `y3t3` Indicator 3 in Time 3

Source

Data were generated using the `simsem` package.

Examples

`head(exLong)`
findRMSEApower

Find the statistical power based on population RMSEA

Description

Find the proportion of the samples from the sampling distribution of RMSEA in the alternative hypothesis rejected by the cutoff derived from the sampling distribution of RMSEA in the null hypothesis. This function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, & Sugawara, 1996)

Usage

```r
findRMSEApower(rmsea0, rmseaA, df, n, alpha = 0.05, group = 1)
```

Arguments

- `rmsea0`: Null RMSEA
- `rmseaA`: Alternative RMSEA
- `df`: Model degrees of freedom
- `n`: Sample size of a dataset
- `alpha`: Alpha level used in power calculations
- `group`: The number of group that is used to calculate RMSEA.

Details

This function finds the proportion of the sampling distribution derived from the alternative RMSEA that is in the critical region derived from the sampling distribution of the null RMSEA. If `rmseaA` is greater than `rmsea0`, the test of close fit is used and the critical region is in the right hand side of the null sampling distribution. On the other hand, if `rmseaA` is less than `rmsea0`, the test of not-close fit is used and the critical region is in the left hand side of the null sampling distribution (MacCallum, Browne, & Sugawara, 1996).

There is also a Shiny app called "power4SEM" that provides a graphical user interface for this functionality (Jak et al., in press). It can be accessed at https://sjak.shinyapps.io/power4SEM/.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

See Also

- `plotRMSEApower` to plot the statistical power based on population RMSEA given the sample size
- `plotRMSEAdist` to visualize the RMSEA distributions
- `findRMSEAsamplesize` to find the minimum sample size for a given statistical power based on population RMSEA

Examples

```r
findRMSEApower(rmsea0 = .05, rmseaA = .08, df = 20, n = 200)
```

```r
findRMSEApowernested
```

Find power given a sample size in nested model comparison

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is just over the specified power.

Usage

```r
findRMSEApowernested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A, rmsea1B = NULL, dfA, dfB, n, alpha = 0.05, group = 1)
```

Arguments

- `rmsea0A` The H_0 baseline RMSEA
- `rmsea0B` The H_0 alternative RMSEA (trivial misfit)
- `rmsea1A` The H_1 baseline RMSEA
- `rmsea1B` The H_1 alternative RMSEA (target misfit to be rejected)
- `dfA` degree of freedom of the more-restricted model
- `dfB` degree of freedom of the less-restricted model
- `n` Sample size
- `alpha` The alpha level
- `group` The number of group in calculating RMSEA

Author(s)

Bell Clinton
Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)
References

See Also
• plotRMSEApowernested to plot the statistical power for nested model comparison based on population RMSEA given the sample size
• findRMSEAsamplesizenested to find the minimum sample size for a given statistical power in nested model comparison based on population RMSEA

Examples

findRMSEApowernested(rmsea0A = 0.06, rmsea0B = 0.05, rmsea1A = 0.08, rmsea1B = 0.05, dfA = 22, dfB = 20, n = 200, alpha = 0.05, group = 1)

findRMSEAsamplesize
Find the minimum sample size for a given statistical power based on population RMSEA

Description
Find the minimum sample size for a specified statistical power based on population RMSEA. This function can be applied for both test of close fit and test of not-close fit (MacCallum, Browne, & Suguwara, 1996)

Usage

findRMSEAsamplesize(rmsea0, rmseaA, df, power = 0.8, alpha = 0.05, group = 1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmsea0</td>
<td>Null RMSEA</td>
</tr>
<tr>
<td>rmseaA</td>
<td>Alternative RMSEA</td>
</tr>
<tr>
<td>df</td>
<td>Model degrees of freedom</td>
</tr>
<tr>
<td>power</td>
<td>Desired statistical power to reject misspecified model (test of close fit) or retain good model (test of not-close fit)</td>
</tr>
<tr>
<td>alpha</td>
<td>Alpha level used in power calculations</td>
</tr>
<tr>
<td>group</td>
<td>The number of group that is used to calculate RMSEA</td>
</tr>
</tbody>
</table>
findRMSEAsamplesizenested

Details

This function find the minimum sample size for a specified power based on an iterative routine. The sample size keep increasing until the calculated power from findRMSEApower function is just over the specified power. If group is greater than 1, the resulting sample size is the sample size per group.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

See Also

- plotRMSEApower to plot the statistical power based on population RMSEA given the sample size
- plotRMSEAdist to visualize the RMSEA distributions
- findRMSEApower to find the statistical power based on population RMSEA given a sample size

Examples

findRMSEAsamplesizenested(rmsea0 = .05, rmseaA = .08, df = 20, power = 0.8)

Description

Find the sample size that the power in rejection the samples from the alternative pair of RMSEA is just over the specified power.

Usage

findRMSEAsamplesizenested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A, rmsea1B = NULL, dfA, dfB, power = 0.8, alpha = 0.05, group = 1)
findRMSEAsamplesizenested

Arguments

- **rmsea0A**: The H_0 baseline RMSEA
- **rmsea0B**: The H_0 alternative RMSEA (trivial misfit)
- **rmsea1A**: The H_1 baseline RMSEA
- **rmsea1B**: The H_1 alternative RMSEA (target misfit to be rejected)
- **dfA**: Degree of freedom of the more-restricted model.
- **dfB**: Degree of freedom of the less-restricted model.
- **power**: The desired statistical power.
- **alpha**: The alpha level.
- **group**: The number of group in calculating RMSEA.

Author(s)

- Bell Clinton
- Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)
- Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

See Also

- **plotRMSEApowernested** to plot the statistical power for nested model comparison based on population RMSEA given the sample size
- **findRMSEApowernested** to find the power for a given sample size in nested model comparison based on population RMSEA

Examples

```r
findRMSEAsamplesizenested(rmsea0A = 0, rmsea0B = 0, rmsea1A = 0.06, 
   rmsea1B = 0.05, dfA = 22, dfB = 20, power = 0.80, 
   alpha = .05, group = 1)
```
FitDiff-class

Class For Representing A Template of Model Fit Comparisons

Description

This class contains model fit measures and model fit comparisons among multiple models.

Usage

```r
## S4 method for signature 'FitDiff'
show(object)

## S4 method for signature 'FitDiff'
summary(object, fit.measures = "default", nd = 3, tag = "†")
```

Arguments

- `object`: object of class `FitDiff`.
- `fit.measures`: character vector naming fit indices the user can request from `fitMeasures`. If "default", the fit measures will be c("chisq", "df", "pvalue", "cfi", "tli", "rmsea", "srmr", "aic", "bic"). If "all", all available fit measures will be returned.
- `nd`: number of digits printed.
- `tag`: single character used to flag the model preferred by each fit index. To omit tags, set to NULL or NA.

Slots

- `name`: character. The name of each model.
- `model.class`: character. One class to which each model belongs.
- `nested`: data.frame. Model fit comparisons between adjacently nested models that are ordered by their degrees of freedom (df).
- `fit`: data.frame. Fit measures of all models specified in the name slot, ordered by their df.
- `fit.diff`: data.frame. Sequential differences in fit measures in the fit slot.

Objects from the Class

Objects can be created via the `compareFit` function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)
fmi

Fraction of Missing Information.

Description

This function estimates the Fraction of Missing Information (FMI) for summary statistics of each variable, using either an incomplete data set or a list of imputed data sets.

Usage

fmi(data, method = "saturated", group = NULL, ords = NULL, varnames = NULL, exclude = NULL, fewImps = FALSE)
Arguments

- **data**
 Either a single `data.frame` with incomplete observations, or a list of imputed data sets.

- **method**
 character. If "saturated" or "sat" (default), the model used to estimate FMI is a freely estimated covariance matrix and mean vector for numeric variables, and/or polychoric correlations and thresholds for ordered categorical variables, for each group (if applicable). If "null", only means and variances are estimated for numeric variables, and/or thresholds for ordered categorical variables (i.e., covariances and/or polychoric correlations are constrained to zero). See Details for more information.

- **group**
 character. The optional name of a grouping variable, to request FMI in each group.

- **ords**
 character. Optional vector of names of ordered-categorical variables, which are not already stored as class `ordered` in `data`.

- **varnames**
 character. Optional vector of variable names, to calculate FMI for a subset of variables in `data`. By default, all numeric and ordered variables will be included, unless data is a single incomplete `data.frame`, in which case only numeric variables can be used with FIML estimation. Other variable types will be removed.

- **exclude**
 character. Optional vector of variable names to exclude from the analysis.

- **fewImps**
 logical. If `TRUE`, use the estimate of FMI that applies a correction to the estimated between-imputation variance. Recommended when there are few imputations; makes little difference when there are many imputations. Ignored when `data` is not a list of imputed data sets.

Details

The function estimates a saturated model with `lavaan` for a single incomplete data set using FIML, or with `lavaan.mi` for a list of imputed data sets. If `method = "saturated"`, FMI will be estimated for all summary statistics, which could take a lot of time with big data sets. If `method = "null"`, FMI will only be estimated for univariate statistics (e.g., means, variances, thresholds). The saturated model gives more reliable estimates, so it could also help to request a subset of variables from a large data set.

Value

`fmi` returns a list with at least 2 of the following:

- **Covariances**
 A list of symmetric matrices: (1) the estimated/pooled covariance matrix, or a list of group-specific matrices (if applicable) and (2) a matrix of FMI, or a list of group-specific matrices (if applicable). Only available if `method = "saturated"`.

- **Variances**
 The estimated/pooled variance for each numeric variable. Only available if `method = "null"` (otherwise, it is on the diagonal of Covariances).

- **Means**
 The estimated/pooled mean for each numeric variable.

- **Thresholds**
 The estimated/pooled threshold(s) for each ordered-categorical variable.

- **message**
 A message indicating caution when the null model is used.
Author(s)
Mauricio Garnier Villarreal (University of Kansas; <mauricio.garniervillarreal@marquette.edu>)
Terrence Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Examples

```r
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
"ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

## calculate FMI (using FIML, provide partially observed data set)
(out1 <- fmi(HSMiss, exclude = "school"))
(out2 <- fmi(HSMiss, exclude = "school", method = "null"))
(out3 <- fmi(HSMiss, varnames = c("x5","x6","x7","x8","x9")))
(out4 <- fmi(HSMiss, group = "school"))

## Not run:
## ordered-categorical data
data(datCat)
lapply(datCat, class)
## impose missing values
set.seed(123)
for (i in 1:8) datCat[sample(1:nrow(datCat), size = .1*nrow(datCat)), i] <- NA
## impute data m = 3 times
library(Amelia)
set.seed(456)
impout <- amelia(datCat, m = 3, noms = "g", ords = paste0("u", 1:8), p2s = FALSE)
imps <- impout$imputations
## calculate FMI, using list of imputed data sets
fmi(imps, group = "g")

## End(Not run)
```
htmt

Assessing Discriminant Validity using Heterotrait–Monotrait Ratio

Description

This function assesses discriminant validity through the heterotrait-monotrait ratio (HTMT) of the correlations (Henseler, Ringle & Sarstedt, 2015). Specifically, it assesses the arithmetic (Henseler et al., 2015) or geometric (Roemer et al., 2021) mean correlation among indicators across constructs (i.e. heterotrait–heteromethod correlations) relative to the geometric-mean correlation among indicators within the same construct (i.e. monotrait–heteromethod correlations). The resulting HTMT(2) values are interpreted as estimates of inter-construct correlations. Absolute values of the correlations are recommended to calculate the HTMT matrix, and are required to calculate HTMT2. Correlations are estimated using the `lavCor` function.

Usage

```r
htmt(model, data = NULL, sample.cov = NULL, missing = "listwise", ordered = NULL, absolute = TRUE, htmt2 = TRUE)
```

Arguments

- `model`: lavaan `model.syntax` of a confirmatory factor analysis model where at least two factors are required for indicators measuring the same construct.
- `data`: A `data.frame` or `data.matrix`
- `sample.cov`: A covariance or correlation matrix can be used, instead of `data`, to estimate the HTMT values.
- `missing`: If "listwise", cases with missing values are removed listwise from the data frame. If "direct" or "ml" or "fiml" and the estimator is maximum likelihood, an EM algorithm is used to estimate the unrestricted covariance matrix (and mean vector). If "pairwise", pairwise deletion is used. If "default", the value is set depending on the estimator and the mimic option (see details in `lavCor`).
- `ordered`: Character vector. Only used if object is a `data.frame`. Treat these variables as ordered (ordinal) variables. Importantly, all other variables will be treated as numeric (unless `is.ordered` in `data`). (see also `lavCor`)
- `absolute`: logical indicating whether HTMT values should be estimated based on absolute correlations (default is `TRUE`). This is recommended for HTMT but required for HTMT2 (so silently ignored).
- `htmt2`: logical indicating whether to use the geometric mean (default, appropriate for congeneric indicators) or arithmetic mean (which assumes tau-equivalence).

Value

A matrix showing HTMT(2) values (i.e., discriminant validity) between each pair of factors.
Author(s)

Ylenio Longo (University of Nottingham; <yleniolongo@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Examples

```r
HS.model <- 'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'

dat <- HolzingerSwineford1939[, paste0("x", 1:9)]
htmt(HS.model, dat)
```

```r
## save covariance matrix
HS.cov <- cov(HolzingerSwineford1939[, paste0("x", 1:9)])
## HTMT using arithmetic mean
htmt(HS.model, sample.cov = HS.cov, htmt2 = FALSE)
```

imposeStart

Specify starting values from a lavaan output

Description

This function will save the parameter estimates of a lavaan output and impose those parameter estimates as starting values for another analysis model. The free parameters with the same names or the same labels across two models will be imposed the new starting values. This function may help to increase the chance of convergence in a complex model (e.g., multitrait-multimethod model or complex longitudinal invariance model).

Usage

```r
imposeStart(out, expr, silent = TRUE)
```
Arguments

- **out** The lavaan output that users wish to use the parameter estimates as starting values for an analysis model.
- **expr** The original code that users use to run a lavaan model.
- **silent** Logical to print the parameter table with new starting values.

Value

A fitted lavaan model.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

```r
## The following example show that the longitudinal weak invariance model
## using effect coding was not convergent with three time points but convergent
## with two time points. Thus, the parameter estimates from the model with
## two time points are used as starting values of the three time points.
## The model with new starting values is convergent properly.

weak2time <- '  # Loadings
f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
    f1t2 =~ LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2

    # Factor Variances
f1t1 ~~ f1t1
f1t2 ~~ f1t2

    # Factor Covariances
f1t1 ~~ f1t2

    # Error Variances
y1t1 ~~ y1t1
y2t1 ~~ y2t1
y3t1 ~~ y3t1
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2

    # Error Covariances
y1t1 ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2

    # Factor Means
f1t1 ~ NA*1
f1t2 ~ NA*1
```
Measurement Intercepts
y1t1 ~ INT1*1
y2t1 ~ INT2*1
y3t1 ~ INT3*1
y1t2 ~ INT4*1
y2t2 ~ INT5*1
y3t2 ~ INT6*1

Constraints for Effect-coding Identification
LOAD1 == 3 - LOAD2 - LOAD3
INT1 == 0 - INT2 - INT3
INT4 == 0 - INT5 - INT6

model2time <- lavaan(weak2time, data = exLong)

weak3time <- '

Loadings
f1t1 =~ LOAD1*y1t1 + LOAD2*y2t1 + LOAD3*y3t1
f1t2 =~ LOAD1*y1t2 + LOAD2*y2t2 + LOAD3*y3t2
f1t3 =~ LOAD1*y1t3 + LOAD2*y2t3 + LOAD3*y3t3

Factor Variances
f1t1 ~~ f1t1
f1t2 ~~ f1t2
f1t3 ~~ f1t3

Factor Covariances
f1t1 ~~ f1t2 + f1t3
f1t2 ~~ f1t3

Error Variances
y1t1 ~~ y1t1
y2t1 ~~ y2t1
y3t1 ~~ y3t1
y1t2 ~~ y1t2
y2t2 ~~ y2t2
y3t2 ~~ y3t2
y1t3 ~~ y1t3
y2t3 ~~ y2t3
y3t3 ~~ y3t3

Error Covariances
y1t1 ~~ y1t2
y2t1 ~~ y2t2
y3t1 ~~ y3t2
y1t1 ~~ y1t3
y2t1 ~~ y2t3
y3t1 ~~ y3t3
y1t2 ~~ y1t3
y2t2 ~~ y2t3
y3t2 ~~ y3t3
Factor Means
f1t1 ~ NA*1
f1t2 ~ NA*1
f1t3 ~ NA*1

Measurement Intercepts
y1t1 ~ INT1*1
y2t1 ~ INT2*1
y3t1 ~ INT3*1
y1t2 ~ INT4*1
y2t2 ~ INT5*1
y3t2 ~ INT6*1
y1t3 ~ INT7*1
y2t3 ~ INT8*1
y3t3 ~ INT9*1

Constraints for Effect-coding Identification
LOAD1 == 3 - LOAD2 - LOAD3
INT1 == 0 - INT2 - INT3
INT4 == 0 - INT5 - INT6
INT7 == 0 - INT8 - INT9

The following command does not provide convergent result
model3time <- lavaan(weak3time, data = exLong)

Use starting values from the model with two time points
model3time <- imposeStart(model2time, lavaan(weak3time, data = exLong))
summary(model3time)

indProd

*Make products of indicators using no centering, mean centering,
double-mean centering, or residual centering*

Description

The `indProd` function will make products of indicators using no centering, mean centering, double-mean centering, or residual centering. The `orthogonalize` function is the shortcut of the `indProd` function to make the residual-centered indicators products.

Usage

```r
indProd(data, var1, var2, var3 = NULL, match = TRUE, meanC = TRUE,
        residualC = FALSE, doubleMC = TRUE, namesProd = NULL)
```

```r
orthogonalize(data, var1, var2, var3 = NULL, match = TRUE, namesProd = NULL)
```
Arguments

- **data**: The desired data to be transformed.
- **var1**: Names or indices of the variables loaded on the first factor.
- **var2**: Names or indices of the variables loaded on the second factor.
- **var3**: Names or indices of the variables loaded on the third factor (for three-way interaction).
- **match**: Specify `TRUE` to use match-paired approach (Marsh, Wen, & Hau, 2004). If `FALSE`, the resulting products are all possible products.
- **meanC**: Specify `TRUE` for mean centering the main effect indicator before making the products.
- **residualC**: Specify `TRUE` for residual centering the products by the main effect indicators (Little, Bovaird, & Widaman, 2006).
- **doubleMC**: Specify `TRUE` for centering the resulting products (Lin et al., 2010).
- **namesProd**: The names of resulting products.

Value

The original data attached with the products.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>) Alexander Schoemann (East Carolina University; <schoemanna@ecu.edu>)

References

See Also

- `probe2WayMC` For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe3WayMC` For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- `probe2WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
• **probe3WayRC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.

• **plotProbe** Plot the simple intercepts and slopes of the latent interaction.

Examples

```
## Mean centering / two-way interaction / match-paired
dat <- indProd(attitude[, -1], var1 = 1:3, var2 = 4:6)

## Residual centering / two-way interaction / match-paired
dat2 <- indProd(attitude[, -1], var1 = 1:3, var2 = 4:6, match = FALSE,
                meanC = FALSE, residualC = TRUE, doubleMC = FALSE)

## Double-mean centering / two-way interaction / match-paired
dat3 <- indProd(attitude[, -1], var1 = 1:3, var2 = 4:6, match = FALSE,
                meanC = TRUE, residualC = FALSE, doubleMC = TRUE)

## Mean centering / three-way interaction / match-paired
dat4 <- indProd(attitude[, -1], var1 = 1:2, var2 = 3:4, var3 = 5:6)

## Residual centering / three-way interaction / match-paired
dat5 <- orthogonalize(attitude[, -1], var1 = 1:2, var2 = 3:4, var3 = 5:6,
                      match = FALSE)

## Double-mean centering / three-way interaction / match-paired
dat6 <- indProd(attitude[, -1], var1 = 1:2, var2 = 3:4, var3 = 5:6,
                match = FALSE, meanC = TRUE, residualC = TRUE,
                doubleMC = TRUE)
```

To add product-indicators to multiple-imputed data sets

Not run:

```
HSMiss <- HolzingerSwineford1939[, c(paste0("x", 1:9), "ageyr","agemo")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 3, p2s = FALSE)
imps <- HS.amelia$imputations # extract a list of imputations

## apply indProd() to the list of data.frames
imps2 <- lapply(imps, indProd,
                var1 = c("x1","x2","x3"), var2 = c("x4","x5","x6"))

## verify:
lapply(imps2, head)
```

End(Not run)
Generate data via the Kaiser-Dickman (1962) algorithm.

Description

Given a covariance matrix and sample size, generate raw data that correspond to the covariance matrix. Data can be generated to match the covariance matrix exactly, or to be a sample from the population covariance matrix.

Usage

kd(covmat, n, type = c("exact", "sample"))

Arguments

covmat: a symmetric, positive definite covariance matrix
n: the sample size for the data that will be generated
type: type of data generation. exact generates data that exactly correspond to covmat. sample treats covmat as a population covariance matrix, generating a sample of size n.

Details

By default, R’s cov() function divides by n-1. The data generated by this algorithm result in a covariance matrix that matches covmat, but you must divide by n instead of n-1.

Value

kd returns a data matrix of dimension n by nrow(covmat).

Author(s)

Ed Merkle (University of Missouri; <merklee@missouri.edu>)

References

Examples

```r
#### First Example

## Get data
dat <- HolzingerSwineford1939[, 7:15]
hs.n <- nrow(dat)
```
Covariance matrix divided by n

hscov <- ((hs.n-1)/hs.n) * cov(dat)

Generate new, raw data corresponding to hscov
newdat <- kd(hscov, hs.n)

Difference between new covariance matrix and hscov is minimal
newcov <- (hs.n-1)/hs.n * cov(newdat)
summary(as.numeric(hscov - newcov))

Generate sample data, treating hscov as population matrix
newdat2 <- kd(hscov, hs.n, type = "sample")

Another example

Define a covariance matrix

covmat <- matrix(0, 3, 3)
diag(covmat) <- 1.5
covmat[2:3,1] <- c(1.3, 1.7)
covmat[3,2] <- 2.1
covmat <- covmat + t(covmat)

Generate data of size 300 that have this covariance matrix
rawdat <- kd(covmat, 300)

Covariances are exact if we compute sample covariance matrix by
dividing by n (vs by n - 1)
summary(as.numeric((299/300)*cov(rawdat) - covmat))

Generate data of size 300 where covmat is the population covariance matrix
rawdat2 <- kd(covmat, 300)

kurtosis

Finding excessive kurtosis

Description

Finding excessive kurtosis (g_2) of an object

Usage

kurtosis(object, population = FALSE)

Arguments

- **object**: A vector used to find a excessive kurtosis
- **population**: TRUE to compute the parameter formula. FALSE to compute the sample statistic formula.
Details

The excessive kurtosis computed by default is g_2, the fourth standardized moment of the empirical distribution of object. The population parameter excessive kurtosis γ_2 formula is

$$\gamma_2 = \frac{\mu_4}{\mu_2^2} - 3,$$

where μ_i denotes the i order central moment.

The excessive kurtosis formula for sample statistic g_2 is

$$g_2 = \frac{k_4}{k_2^2} - 3,$$

where k_i are the i order k-statistic.

The standard error of the excessive kurtosis is

$$Var(\hat{g}_2) = \frac{24}{N}$$

where N is the sample size.

Value

A value of an excessive kurtosis with a test statistic if the population is specified as FALSE

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

See Also

- skew Find the univariate skewness of a variable
- mardiaSkew Find the Mardia’s multivariate skewness of a set of variables
- mardiaKurtosis Find the Mardia’s multivariate kurtosis of a set of variables

Examples

kurtosis(1:5)
This class extends the lavaanList class, created by fitting a lavaan model to a list of data sets. In this case, the list of data sets are multiple imputations of missing data.

Usage

```r
## S4 method for signature 'lavaan.mi'
show(object)

## S4 method for signature 'lavaan.mi'
summary(object, se = TRUE, ci = FALSE,
       level = 0.95, standardized = FALSE, rsquare = FALSE, fmi = FALSE,
       scale.W = !asymptotic, omit.imps = c("no.conv", "no.se"),
       asymptotic = FALSE, header = TRUE, output = "text",
       fit.measures = FALSE, ...)

## S4 method for signature 'lavaan.mi'
nobs(object, total = TRUE)

## S4 method for signature 'lavaan.mi'
coef(object, type = "free", labels = TRUE, omit.imps = c("no.conv", "no.se"))

## S4 method for signature 'lavaan.mi'
vcov(object, type = c("pooled", "between", "within",
                        "ariv"), scale.W = TRUE, omit.imps = c("no.conv", "no.se"))

## S4 method for signature 'lavaan.mi'
anova(object, ...)

## S4 method for signature 'lavaan.mi'
fitMeasures(object, fit.measures = "all",
            baseline.model = NULL, output = "vector", omit.imps = c("no.conv", "no.se"), ...)

## S4 method for signature 'lavaan.mi'
fitmeasures(object, fit.measures = "all",
            baseline.model = NULL, output = "vector", omit.imps = c("no.conv", "no.se"), ...)

## S4 method for signature 'lavaan.mi'
fitted(object, omit.imps = c("no.conv", "no.se"))
```
fitted.values(object, omit.imps = c("no.conv", "no.se"))

S4 method for signature 'lavaan.mi'
residuals(object, type = c("raw", "cor"), omit.imps = c("no.conv", "no.se"))

S4 method for signature 'lavaan.mi'
resid(object, type = c("raw", "cor"), omit.imps = c("no.conv", "no.se"))

Arguments

object An object of class lavaan.mi

fmi logical indicating whether to include the Fraction Missing Information (FMI) for parameter estimates in the summary output (see Value section).

scale.W logical. If TRUE (default), the vcov method will calculate the pooled covariance matrix by scaling the within-imputation component by the ARIV (see Enders, 2010, p. 235, for definition and formula). Otherwise, the pooled matrix is calculated as the weighted sum of the within-imputation and between-imputation components (see Enders, 2010, ch. 8, for details). This in turn affects how the summary method calculates its pooled standard errors, as well as the Wald test (lavTestWald.mi).

omit.imps character vector specifying criteria for omitting imputations from pooled results. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. NPD solutions are not excluded by default because they are likely to occur due to sampling error, especially in small samples. However, gross model misspecification could also cause NPD solutions, users can compare pooled results with and without this setting as a sensitivity analysis to see whether some imputations warrant further investigation. Specific imputation numbers can also be included in this argument, in case users want to apply their own custom omission criteria (or simulations can use different numbers of imputations without redundantly refitting the model).

asymptotic logical. If FALSE (typically a default, but see Value section for details using various methods), pooled tests (of fit or pooled estimates) will be F or t statistics with associated degrees of freedom (df). If TRUE, the (denominator) df are assumed to be sufficiently large for a t statistic to follow a normal distribution, so it is printed as a z statistic; likewise, F times its numerator df is printed, assumed to follow a χ² distribution.

fit.measures, baseline.model

See fitMeasures. summary(object, fit.measures = TRUE) will print (but not return) a table of fit measures to the console.
total logical (default: TRUE) indicating whether the nobs method should return the total sample size or (if FALSE) a vector of group sample sizes.

type The meaning of this argument varies depending on which method it is used for. Find detailed descriptions in the Value section under coef, vcov, and residuals.

labels logical indicating whether the coef output should include parameter labels. Default is TRUE.

Value

coef signature(object = "lavaan.mi", type = "free", labels = TRUE, omit.imps = c("no.conv","no.se")): See lavaan. Returns the pooled point estimates (i.e., averaged across imputed data sets; see Rubin, 1987).

vcov signature(object = "lavaan.mi", scale.W = TRUE, omit.imps = c("no.conv","no.se"), type = c("pooled","between","within","ariv")): By default, returns the pooled covariance matrix of parameter estimates (type = "pooled"), the within-imputations covariance matrix (type = "within"), the between-imputations covariance matrix (type = "between"), or the average relative increase in variance (type = "ariv") due to missing data.

fitted.values signature(object = "lavaan.mi", omit.imps = c("no.conv","no.se")): See lavaan. Returns model-implied moments, evaluated at the pooled point estimates.

fitted alias for fitted.values

residuals signature(object = "lavaan.mi", type = c("raw","cor"), omit.imps = c("no.conv","no.se")): See lavaan. By default (type = "raw"), returns the difference between the model-implied moments from fitted.values and the pooled observed moments (i.e., averaged across imputed data sets). Standardized residuals are also available, using Bollen’s (type = "cor" or "cor.bollen") or Bentler’s (type = "cor.bentler") formulas.

resid alias for residuals

nobs signature(object = "lavaan.mi", total = TRUE): either the total (default) sample size or a vector of group sample sizes (total = FALSE).

anova signature(object = "lavaan.mi", ...): Returns a test of model fit for a single model (object) or test(s) of the difference(s) in fit between nested models passed via See lavTestLRT.mi and compareFit for details.

fitMeasures signature(object = "lavaan.mi", fit.measures = "all", baseline.model = NULL, output = "vector", omit.imps = c("no.conv","no.se"), ...): See lavaan’s fitMeasures for details. Pass additional arguments to lavTestLRT.mi via

fitmeasures alias for fitMeasures.

show signature(object = "lavaan.mi"): returns a message about convergence rates and estimation problems (if applicable) across imputed data sets.

summary signature(object = "lavaan.mi", se = TRUE, ci = FALSE, level = .95, standardized = FALSE, rsquare = FALSE, fmi = FALSE, scale.W = !asymptotic, omit.imps = c("no.conv","no.se"), asymptotic = FALSE, header = TRUE, output = "text"
fit.measures = FALSE, ...): see parameterEstimates for details. By default, summary returns pooled point and SE estimates, along with t test statistics and their associated df and p values. If ci = TRUE, confidence intervals are returned with the specified confidence level (default 95% CI). If asymptotic = TRUE, z instead of t tests are returned. Standardized solution(s) can also be requested by name ("std.lv" or "std.all") or both are returned with TRUE. R-squared for endogenous variables can be requested, as well as the Fraction Missing Information (FMI) for parameter estimates. By default, the output will appear like lavaan's summary output, but if output == "data.frame", the returned data.frame will resemble the parameterEstimates output. The scale.W argument is passed to vcov (see description above). Setting fit.measures=TRUE will additionally print fit measures to the console, but they will not be returned; additional arguments may be passed via ... to fitMeasures and subsequently to lavTestLRT.mi.

Slots

coeflist list of estimated coefficients in matrix format (one per imputation) as output by lavaInspect(fit, "est")

phiList list of model-implied latent-variable covariance matrices (one per imputation) as output by lavaInspect(fit, "cov.lv")

mList list of modification indices output by modindices

seed integer seed set before running imputations

lavListCall call to lavaanList used to fit the model to the list of imputed data sets in @DataList, stored as a list of arguments

imputeCall call to imputation function (if used), stored as a list of arguments

convergence list of logical vectors indicating whether, for each imputed data set, (1) the model converged on a solution, (2) SEs could be calculated, (3) the (residual) covariance matrix of latent variables (Ψ) is non-positive-definite, and (4) the residual covariance matrix of observed variables (Θ) is non-positive-definite.

lavaanList_slots All remaining slots are from lavaanList, but runMI only populates a subset of the list slots, two of them with custom information:

DataList The list of imputed data sets

SampleStatsList List of output from lavaInspect(fit, "sampstat") applied to each fitted model

ParTableList See lavaanList

vcovList See lavaanList

testList See lavaanList

hList See lavaanList. An additional element is added to the list: $PT is the "saturated" model's parameter table, returned by lav_partable_unrestricted.

baselineList See lavaanList

Objects from the Class

See the runMI function for details. Wrapper functions include lavaan.mi, cfa.mi, sem.mi, and growth.mi.
Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Examples

See ?runMI help page

lavaan2emmeans emmeans Support Functions for lavaan Models

Description

Provide emmeans support for lavaan objects

Usage

recover_data.lavaan(object, lavaan.DV, ...)

emmm_basis.lavaan(object, trms, xlev, grid, lavaan.DV, ...)

Arguments

object An object of class lavaan. See Details.

lavaan.DV character string naming the variable(s) for which expected marginal means / trends should be produced. A vector of names indicates a multivariate outcome, treated by default as repeated measures.

... Further arguments passed to emmeans::recover_data.lm or emmeans::emmm_basis.lm

trms, xlev, grid See emmeans::emmm_basis
Details

Supported DVs: lavaan.DV must be an *endogenous variable*, by appearing on the left-hand side of either a regression operator ("~") or an intercept operator ("~1"), or both.

lavaan.DV can also be a vector of endogenous variable, in which case they will be treated by emmeans as a multivariate outcome (often, this indicates repeated measures) represented by an additional factor named `rep.means` by default. The `rep.means` argument can be used to overwrite this default name.

Unsupported Models: This functionality does not support the following models:

- Multi-level models are not supported.
- Models not fit to a data.frame (i.e., models fit to a covariance matrix).

Dealing with Fixed Parameters: Fixed parameters (set with lavaan’s modifiers) are treated as-is: their values are set by the users, and they have a SE of 0 (as such, they do not co-vary with any other parameter).

Dealing with Multigroup Models: If a multigroup model is supplied, a factor is added to the reference grid, the name matching the `group` argument supplied when fitting the model. *Note that you must set nesting = NULL.*

Dealing with Missing Data: Limited testing suggests that these functions do work when the model was fit to incomplete data.

Dealing with Factors: By default emmeans recognizes binary variables (0,1) as a "factor" with two levels (and not a continuous variable). With some clever contrast definitions it should be possible to get the desired emmeans / contrasts. See example below.

Author(s)

Mattan S. Ben-Shachar (Ben-Gurion University of the Negev; <matanshm@post.bgu.ac.il>)

Examples

```r
## Not run:
library(lavaan)
library(emmeans)

#### Moderation Analysis ####
mean_sd <- function(x) mean(x) + c(-sd(x), 0, sd(x))

model <- \\
# regressions

# define mean parameter label for centered math for use in simple slopes
Sepal.Width ~ Sepal.Width.mean * 1
```
define variance parameter label for centered math for use in simple slopes
Sepal.Width ~~ Sepal.Width.var * Sepal.Width

simple slopes for condition effect
SD.below := b2 + b3 * (Sepal.Width.mean - sqrt(Sepal.Width.var))
mean := b2 + b3 * (Sepal.Width.mean)
SD.above := b2 + b3 * (Sepal.Width.mean + sqrt(Sepal.Width.var))

semFit <- sem(model = model,
 data = iris)

Compare simple slopes
From emtrends'
test(
 emtrends(semFit, ~ Sepal.Width, "Petal.Length",
 lavaan.DV = "Sepal.Length",
 cov.red = mean_sd)
)

From lavaan
parameterEstimates(semFit, output = "pretty")[13:15,]
Identical slopes.
SEs differ due to lavaan estimating uncertainty of the mean / SD
of Sepal.Width, whereas emmeans uses the mean+-SD as is (fixed).

Latent DV

model <- '
LAT1 =~ Sepal.Length + Sepal.Width

LAT1 ~ b1 * Petal.Width + 1 * Petal.Length

Petal.Length ~ Petal.Length.mean * 1

V1 := 1 * Petal.Length.mean + 1 * b1
V2 := 1 * Petal.Length.mean + 2 * b1

semFit <- sem(model = model,
 data = iris, std.lv = TRUE)

Compare emmeans
From emmeans
test(
 emmeans(semFit, ~ Petal.Width,
 lavaan.DV = "LAT1",
 at = list(Petal.Width = 1:2))
)

From lavaan
lavaan2emmeans

parameterEstimates(semFit, output = "pretty")[15:16,]
Identical means.
SEs differ due to lavaan estimating uncertainty of the mean
of Petal.Length, whereas emmeans uses the mean as is.

Multi-Variate DV
 model <- '
 ind60 <- x1 + x2 + x3

metric invariance
dem60 <- y1 + a*y2 + b*y3 + c*y4
dem65 <- y5 + a*y6 + b*y7 + c*y8

scalar invariance
y1 + y5 ~ d*1
y2 + y6 ~ e*1
y3 + y7 ~ f*1
y4 + y8 ~ g*1

regressions (slopes differ: interaction with time)
dem60 ~ b1*ind60
dem65 ~ b2*ind60 + NA*1 + Mean.Diff*1

residual correlations
y1 ~ y5
y2 ~ y4 + y6
y3 ~ y7
y4 ~ y8
y6 ~ y8

conditional mean differences (besides mean(ind60) == 0)
low := (-1*b2 + Mean.Diff) - (-1*b1) # 1 SD below M
high := (b2 + Mean.Diff) - b1 # 1 SD above M

semFit <- sem(model, data = PoliticalDemocracy)

Compare contrasts
From emmeans
emmeans(semFit, pairwise ~ rep.meas|ind60,
 lavaan.DV = c("dem60","dem65"),
 at = list(ind60 = c(-1,1))[[2]]

From lavaan
parameterEstimates(semFit, output = "pretty")[49:50,]

Multi Group
 model <- 'x1 ~ c(int1, int2)*1 + c(b1, b2)*ageyr
diff_11 := (int2 + b2*11) - (int1 + b1*11)
diff_13 := (int2 + b2*13) - (int1 + b1*13)
diff_15 := (int2 + b2*15) - (int1 + b1*15)

semFit <- sem(model, group = "school", data = HolzingerSwineford1939)

Compare contrasts
From emmeans (note `nesting = NULL`
emmeans(semFit, pairwise ~ school | ageyr, lavaan.DV = "x1",
 at = list(ageyr = c(11, 13, 15)), nesting = NULL)[[2]]

From lavaan
parameterEstimates(semFit, output = "pretty")

Dealing with factors

warpbreaks <- cbind(warpbreaks,
 model.matrix(~ wool + tension, data = warpbreaks))

model <- "
Split for convenience
breaks ~ 1
breaks ~ woolB
breaks ~ tensionM + tensionH
breaks ~ woolB:tensionM + woolB:tensionH
"

semFit <- sem(model, warpbreaks)

Compare contrasts
From lm -> emmeans
lmFit <- lm(breaks ~ wool * tension, data = warpbreaks)
lmEM <- emmeans(lmFit, ~ tension + wool)
contrast(lmEM, method = data.frame(L_all = c(-1, .05, 0.5),
 M_H = c(0, 1, -1)), by = "wool")

From lavaan -> emmeans
lavEM <- emmeans(semFit, ~ tensionM + tensionH + woolB,
 lavaan.DV = "breaks")
contrast(lavEM,
 method = list(
 "L_all|A" = c(-1, .05, 0.5, 0), rep(0, 4)),
 "M_H |A" = c(0, 1, -1, 0), rep(0, 4)),
 "L_all|A" = c(rep(0, 4), c(-1, .05, 0.5, 0)),
 "M_H |A" = c(rep(0, 4), c(0, 1, -1, 0))
)

End(Not run)
Description

Likelihood ratio test (LRT) for lavaan models fitted to multiple imputed data sets. Statistics for comparing nested models can be calculated by pooling the likelihood ratios across imputed data sets, as described by Meng & Rubin (1992), or by pooling the LRT statistics from each imputation, as described by Li, Meng, Raghunathan, & Rubin (1991).

Usage

lavTestLRT.mi(object, h1 = NULL, test = c("D3", "D2"),
omit.imps = c("no.conv", "no.se"), asymptotic = FALSE,
pool.robust = FALSE, ...)

Arguments

object, h1 An object of class lavaan.mi. object should be nested within (more constrained than) h1.

test character indicating which pooling method to use. "D3", "mr", or "meng.rubin" (default) requests the method described by Meng & Rubin (1992). "D2", "LMRR", or "Li.et.al" requests the complete-data LRT statistic should be calculated using each imputed data set, which will then be pooled across imputations, as described in Li, Meng, Raghunathan, & Rubin (1991). Find additional details in Enders (2010, chapter 8).

omit.imps character vector specifying criteria for omitting imputations from pooled results. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. Specific imputation numbers can also be included in this argument, in case users want to apply their own custom omission criteria (or simulations can use different numbers of imputations without redundantly refitting the model).

asymptotic logical. If FALSE (default), the pooled test will be returned as an F-distributed statistic with numerator (df1) and denominator (df2) degrees of freedom. If TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that its df2 is sufficiently large enough that the statistic will be asymptotically χ^2 distributed with df1.

pool.robust logical. Ignored unless test = "D2" and a robust test was requested. If pool.robust = TRUE, the robust test statistic is pooled, whereas pool.robust = FALSE will pool the naive test statistic (or difference statistic) and apply the average scale/shift parameter to it (unavailable for mean- and variance-adjusted difference statistics, so pool.robust will be set TRUE).

... Additional arguments passed to lavTestLRT, only if test = "D2" and pool.robust = TRUE
Details

The Meng & Rubin (1992) method, also referred to as the "D3" statistic, is only applicable when using a likelihood-based estimator. Otherwise (e.g., DWLS for categorical outcomes), users are notified that test was set to "D2".

test = "Mplus" implies "D3" and asymptotic = TRUE (see Asparouhov & Muthen, 2010).

Note that unlike lavTestLRT, lavTestLRT can only be used to compare a single pair of models, not a longer list of models. To compare several nested models fitted to multiple imputations, see examples on the compareFit help page.

Value

A vector containing the LRT statistic (either an F or χ^2 statistic, depending on the asymptotic argument), its degrees of freedom (numerator and denominator, if asymptotic = FALSE), its p value, and 2 missing-data diagnostics: the relative increase in variance (RIV, or average for multiparameter tests: ARIV) and the fraction missing information (FMI = ARIV / (1 + ARIV)). Robust statistics will also include the average (across imputations) scaling factor and (if relevant) shift parameter(s), unless pool.robust = TRUE.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

See Also

lavTestLRT, compareFit

Examples

Not run:
impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
 "ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

impute missing data
```r
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

## specify CFA model from lavaan's ?cfa help page
HS.model <- 
  visual  <- x1 + b1*x2 + x3
  textual <- x4 + b2*x5 + x6
  speed   <- x7 + b3*x8 + x9

fit1 <- cfa.mi(HS.model, data = imps, estimator = "mlm")
fit0 <- cfa.mi(HS.model, data = imps, estimator = "mlm", orthogonal = TRUE)

## By default, use D3.
## Must request a chi-squared statistic to be robustified.
lavTestLRT.mi(fit1, h1 = fit0, asymptotic = TRUE)

## Using D2, you can either robustify the pooled naive statistic ...
lavTestLRT.mi(fit1, h1 = fit0, asymptotic = TRUE, test = "D2")
## ... or pool the robust chi-squared statistic
lavTestLRT.mi(fit1, h1 = fit0, asymptotic = TRUE, test = "D2",
              pool.robust = TRUE)

## End(Not run)
```

lavTestScore.mi

Score Test for Multiple Imputations

Description

Score test (or "Lagrange multiplier" test) for lavaan models fitted to multiple imputed data sets. Statistics for releasing one or more fixed or constrained parameters in model can be calculated by pooling the gradient and information matrices pooled across imputed data sets in a method proposed by Mansolf, Jorgensen, & Enders (2020)—analogous to the "D1" Wald test proposed by Li, Meng, Raghunathan, & Rubin’s (1991)—or by pooling the complete-data score-test statistics across imputed data sets (i.e., "D2"; Li et al., 1991).

Usage

```r
lavTestScore.mi(object, add = NULL, release = NULL, test = c("D2", "D1"),
                 scale.W = !asymptotic, omit.imps = c("no.conv", "no.se"),
                 asymptotic = is.null(add), univariate = TRUE, cumulative = FALSE,
                 epc = FALSE, standardized = epc, cov.std = epc, verbose = FALSE,
                 warn = TRUE, information = "expected")
```
Arguments

object

An object of class `lavaan.mi`.

add

Either a character string (typically between single quotes) or a parameter table containing additional (currently fixed-to-zero) parameters for which the score test must be computed.

release

Vector of integers. The indices of the equality constraints that should be released. The indices correspond to the order of the equality constraints as they appear in the parameter table.

test

Character indicating which pooling method to use. "D1" requests Mansolf, Jorgensen, & Enders' (2020) proposed Wald-like test for pooling the gradient and information, which are then used to calculate score-test statistics in the usual manner. "D2" (default because it is less computationall intensive) requests to pool the complete-data score-test statistics from each imputed data set, then pool them across imputations, described by Li et al. (1991) and Enders (2010).

scale.W

Logical. If FALSE, the pooled information matrix is calculated as the weighted sum of the within-imputation and between-imputation components. Otherwise, the pooled information is calculated by scaling the within-imputation component by the average relative increase in variance (ARIV; Enders, 2010, p. 235), which is only consistent when requesting the F test (i.e., asymptotic = FALSE). Ignored (irrelevant) if test = "D2".

omit.imps

Character vector specifying criteria for omitting imputations from pooled results. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. Specific imputation numbers can also be included in this argument, in case users want to apply their own custom omission criteria (or simulations can use different numbers of imputations without redundantly refitting the model).

asymptotic

Logical. If FALSE (default when using add to test adding fixed parameters to the model), the pooled test will be returned as an F-distributed variable with numerator (df1) and denominator (df2) degrees of freedom. If TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that its df2 is sufficiently large enough that the statistic will be asymptotically χ² distributed with df1. When using the release argument, asymptotic will be set to TRUE because (A)RIV can only be calculated for added parameters.

univariate

Logical. If TRUE, compute the univariate score statistics, one for each constraint.

cumulative

Logical. If TRUE, order the univariate score statistics from large to small, and compute a series of multivariate score statistics, each time including an additional constraint in the test.

epc

Logical. If TRUE, and we are releasing existing constraints, compute the expected parameter changes for the existing (free) parameters (and any specified
lavTestScore.mi

with add, if all constraints were released. For EPCs associated with a particular (1-df) constraint, only specify one parameter in add or one constraint in release.

standardized If TRUE, two extra columns (sepc.lv and sepc.all) in the $epc table will contain standardized values for the EPCs. See lavTestScore.

cov.std logical. See standardizedSolution.

verbose logical. Not used for now.

warn logical. If TRUE, print warnings if they occur.

information character indicating the type of information matrix to use (check lavInspect for available options). "expected" information is the default, which provides better control of Type I errors.

Value

A list containing at least one data.frame:

- $test: The total score test, with columns for the score test statistic (X^2), its degrees of freedom (df), its p value under the χ^2 distribution (p.value), and if asymptotic=FALSE, the average relative increase in variance (ARIV) used to calculate the denominator df is also returned as a missing-data diagnostic, along with the fraction missing information (FMI = ARIV / (1 + ARIV)).
- $uni: Optional (if univariate=TRUE). Each 1-df score test, equivalent to modification indices. Also includes EPCs if epc=TRUE, and RIV and FMI if asymptotic=FALSE.
- $cumulative: Optional (if cumulative=TRUE). Cumulative score tests, with ARIV and FMI if asymptotic=FALSE.
- $epc: Optional (if epc=TRUE). Parameter estimates, expected parameter changes, and expected parameter values if ALL the tested constraints were freed.

See lavTestScore for details.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Adapted from lavaan source code, written by Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

test = "D1" method proposed by Maxwell Mansolf (University of California, Los Angeles; <mamansolf@gmail.com>)

References

Examples

```r
## Not run:
## impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ","),
    "ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

## impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

## specify CFA model from lavaan's ?cfa help page
HS.model <-
  . speed =~ c(L1, L1)*x7 + c(L1, L1)*x8 + c(L1, L1)*x9

out <- cfa.mi(HS.model, data = imps, group = "school", std.lv = TRUE)

## Mode 1: Score test for releasing equality constraints

## default test: Li et al.'s (1991) "D2" method
lavTestScore.mi(out, cumulative = TRUE)
## Li et al.'s (1991) "D1" method
lavTestScore.mi(out, test = "D1")

## Mode 2: Score test for adding currently fixed-to-zero parameters
lavTestScore.mi(out, add = "x7 ~~ x8 + x9")

## End(Not run)
```

Wald Test for Multiple Imputations

Description

Wald test for testing a linear hypothesis about the parameters of lavaan models fitted to multiple imputed data sets. Statistics for constraining one or more free parameters in a model can be calculated from the pooled point estimates and asymptotic covariance matrix of model parameters using Rubin’s (1987) rules, or by pooling the Wald test statistics across imputed data sets (Li, Meng, Raghunathan, & Rubin, 1991).
Usage

```r
lavTestWald.mi(object, constraints = NULL, test = c("D1", "D2"),
asymptotic = FALSE, scale.W = !asymptotic, omit.imps = c("no.conv",
"no.se"), verbose = FALSE, warn = TRUE)
```

Arguments

- **object**: An object of class `lavaan.mi`.
- **constraints**: A character string (typically between single quotes) containing one or more equality constraints. See examples for more details.
- **test**: Character indicating which pooling method to use. "D1" or "Rubin" (default) indicates Rubin's (1987) rules will be applied to the point estimates and the asymptotic covariance matrix of model parameters, and those pooled values will be used to calculate the Wald test in the usual manner. "D2", "LMRR", or "Li.et.al" indicate that the complete-data Wald test statistic should be calculated using each imputed data set, which will then be pooled across imputations, as described in Li, Meng, Raghunathan, & Rubin (1991) and Enders (2010, chapter 8).
- **asymptotic**: Logical. If FALSE (default), the pooled test will be returned as an F-distributed statistic with numerator (df1) and denominator (df2) degrees of freedom. If TRUE, the pooled F statistic will be multiplied by its df1 on the assumption that its df2 is sufficiently large enough that the statistic will be asymptotically χ^2 distributed.
- **scale.W**: Logical. If FALSE, the pooled asymptotic covariance matrix of model parameters is calculated as the weighted sum of the within-imputation and between-imputation components. Otherwise, the pooled asymptotic covariance matrix of model parameters is calculated by scaling the within-imputation component by the average relative increase in variance (ARIV; see Enders, 2010, p. 235), which is only consistent when requesting the F test (i.e., asymptotic = FALSE). Ignored (irrelevant) if test = "D2".
- **omit.imps**: Character vector specifying criteria for omitting imputations from pooled results. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. Specific imputation numbers can also be included in this argument, in case users want to apply their own custom omission criteria (or simulations can use different numbers of imputations without redundantly refitting the model).
- **verbose**: Logical. If TRUE, print the restriction matrix and the estimated restricted values.
- **warn**: Logical. If TRUE, print warnings if they occur.

Details

The constraints are specified using the "==" operator. Both the left-hand side and the right-hand side of the equality can contain a linear combination of model parameters, or a constant (like zero). The
model parameters must be specified by their user-specified labels from the \texttt{link[lavaan\{model.syntax\}.}
Names of defined parameters (using the ":=" operator) can be included too.

Value

A vector containing the Wald test statistic (either an F or χ^2 statistic, depending on the asymptotic argument), the degrees of freedom (numerator and denominator, if \texttt{asymptotic = FALSE}), and a \textit{p} value. If \texttt{asymptotic = FALSE}, the relative increase in variance (RIV, or average for multiparameter tests: ARIV) used to calculate the denominator \textit{df} is also returned as a missing-data diagnostic, along with the fraction missing information (FMI = ARIV / (1 + ARIV)).

Author(s)

Terrence D. Jorgensen (University of Amsterdam; \texttt{<TJorgensen314@gmail.com>})

Adapted from \texttt{lavaan} source code, written by Yves Rosseel (Ghent University; \texttt{<Yves.Rosseel@UGent.be>})

References

See Also

\texttt{lavTestWald}

Examples

```r
## Not run:
## impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
                           "ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

## impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

## specify CFA model from lavaan's ?cfa help page
HS.model <- c('visual  =~ x1 + b1*x2 + x3
textual =~ x4 + b2*x5 + x6
speed  =~ x7 + b3*x8 + x9')
```

fit <- cfa.mi(HS.model, data = imps)

Testing whether a single parameter equals zero yields the 'chi-square'
version of the Wald z statistic from the summary() output, or the
'F' version of the t statistic from the summary() output, depending
whether asymptotic = TRUE or FALSE
lavTestWald.mi(fit, constraints = "b1 == 0") # default D1 statistic
lavTestWald.mi(fit, constraints = "b1 == 0", test = "D2") # D2 statistic

The real advantage is simultaneously testing several equality
constraints, or testing more complex constraints:
con <- '\n 2*b1 == b3
 b2 - b3 == 0
',

lavTestWald.mi(fit, constraints = con) # default F statistic
lavTestWald.mi(fit, constraints = con, asymptotic = TRUE) # chi-squared

End(Not run)

loadingFromAlpha Find standardized factor loading from coefficient alpha

Description

Find standardized factor loading from coefficient alpha assuming that all items have equal loadings.

Usage

loadingFromAlpha(alpha, ni)

Arguments

alpha A desired coefficient alpha value.

ni A desired number of items.

Value

result The standardized factor loadings that make desired coefficient alpha with specified number of items.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
Examples

loadingFromAlpha(0.8, 4)

lrv2ord
Calculate Population Moments for Ordinal Data Treated as Numeric

Description

This function calculates ordinal-scale moments implied by LRV-scale moments

Usage

```
lrv2ord(Sigma, Mu, thresholds, cWts)
```

Arguments

- **Sigma**: Population covariance matrix, with variable names saved in the `dimnames` attribute.
- **Mu**: Optional numeric vector of population means. If missing, all means will be set to zero.
- **thresholds**: Either a single numeric vector of population thresholds used to discretize each normally distributed variable, or a named list of each discretized variable’s vector of thresholds. The discretized variables may be a subset of all variables in `Sigma` if the remaining variables are intended to be observed rather than latent normally distributed variables.
- **cWts**: Optional (default when missing is to use 0 for the lowest category, followed by successive integers for each higher category). Either a single numeric vector of category weights (if they are identical across all variables) or a named list of each discretized variable’s vector of category weights.

Details

Binary and ordinal data are frequently accommodated in SEM by incorporating a threshold model that links each observed categorical response variable to a corresponding latent response variable that is typically assumed to be normally distributed (Kamata & Bauer, 2008; Wirth & Edwards, 2007).

Value

A list including the LRV-scale population moments (means, covariance matrix, correlation matrix, and thresholds), the category weights, a data frame of implied univariate moments (means, SDs, skewness, and excess kurtosis (i.e., in excess of 3, which is the kurtosis of the normal distribution) for discretized data treated as numeric, and the implied covariance and correlation matrix of discretized data treated as numeric.
Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
Andrew Johnson (Curtin University; <andrew.johnson@curtin.edu.au>)

References

Examples

```r
## SCENARIO 1: DIRECTLY SPECIFY POPULATION PARAMETERS

## specify population model in LISREL matrices
Nu <- rep(0, 4)
Alpha <- c(1, -0.5)
Lambda <- matrix(c(1, 1, 0, 0, 0, 0, 1, 1), nrow = 4, ncol = 2,
                 dimnames = list(paste0("y", 1:4), paste0("eta", 1:2)))
Psi <- diag(c(1, .75))
Theta <- diag(4)
Beta <- matrix(c(0, .5, 0, 0), nrow = 2, ncol = 2)

## calculate model-implied population means and covariance matrix
## of latent response variables (LRVs)
IB <- solve(diag(2) - Beta) # to save time and space
Mu_LRV <- Nu + Lambda %*% IB %*% Alpha
Sigma_LRV <- Lambda %*% IB %*% Psi %*% t(IB) %*% t(Lambda) + Theta

## Specify (unstandardized) thresholds to discretize normally distributed data
## generated from Mu_LRV and Sigma_LRV, based on marginal probabilities
PiList <- list(y1 = c(.25, .5, .25),
                y2 = c(.17, .33, .33, .17),
                y3 = c(.1, .2, .4, .2, .1),
                y4 = c(.33, .25, .17, .12, .08, .05))
sapply(PiList, sum) # all sum to 100%
CumProbs <- sapply(PiList, cumsum)

## unstandardized thresholds
TauList <- mapply(qnorm, p = lapply(CumProbs, function(x) x[-length(x)]),
                   m = Mu_LRV, sd = sqrt(diag(Sigma_LRV)))
for (i in 1:4) names(TauList[[i]]) <- paste0(names(TauList)[i], |
                       1:length(TauList[[i]])])

## assign numeric weights to each category (optional, see default)
NumCodes <- list(y1 = c(-0.5, 0, 0.5), y2 = 0.3, y3 = 1.5, y4 = 1:6)

## Calculate Population Moments for Numerically Coded Ordinal Variables
```
mardiaKurtosis

Finding Mardia's multivariate kurtosis

Description
Finding Mardia's multivariate kurtosis of multiple variables

Usage
mardiaKurtosis(dat, use = "everything")

Arguments
dat The target matrix or data frame with multiple variables
use Missing data handling method from the cov function.

Details
The Mardia's multivariate kurtosis formula (Mardia, 1970) is

\[b_{2,d} = \frac{1}{n} \sum_{i=1}^{n} \left((X_i - \bar{X})^\prime S^{-1} (X_i - \bar{X}) \right)^2, \]

where \(d \) is the number of variables, \(X \) is the target dataset with multiple variables, \(n \) is the sample size, \(S \) is the sample covariance matrix of the target dataset, and \(\bar{X} \) is the mean vectors of the target dataset binded in \(n \) rows. When the population multivariate kurtosis is normal, the \(b_{2,d} \) is asymptotically distributed as normal distribution with the mean of \(d(d+2) \) and variance of \(8d(d+2)/n \).

Value
A value of a Mardia's multivariate kurtosis with a test statistic

```r
lrv2ord(Sigma = Sigma_LRV, Mu = Mu_LRV, thresholds = TauList, cWts = NumCodes)

## SCENARIO 2: USE ESTIMATED PARAMETERS AS POPULATION

data(datCat) # already stored as c("ordered","factor")
fit <- cfa(quote(f = u1 + u2 + u3 + u4), data = datCat)
lrv2ord(Sigma = fit, thresholds = fit) # use same fit for both
## or use estimated thresholds with specified parameters, but note that
## lrv2ord() will only extract standardized thresholds

dimnames(Sigma_LRV) <- list(paste0("u", 1:4), paste0("u", 1:4))
lrv2ord(Sigma = cov2cor(Sigma_LRV), thresholds = fit)
```
mardiaSkew

Author(s)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

See Also
• skew Find the univariate skewness of a variable
• kurtosis Find the univariate excessive kurtosis of a variable
• mardiaSkew Find the Mardia’s multivariate skewness of a set of variables

Examples
library(lavaan)
mardiaKurtosis(HolzingerSwineford1939[, paste0("x", 1:9)])

mardiaSkew
Finding Mardia’s multivariate skewness

Description
Finding Mardia’s multivariate skewness of multiple variables

Usage
mardiaSkew(dat, use = “everything”)

Arguments
dat The target matrix or data frame with multiple variables
use Missing data handling method from the cov function.

Details
The Mardia’s multivariate skewness formula (Mardia, 1970) is

\[
b_{1,d} = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left[(X_i - \bar{X})' S^{-1} (X_j - \bar{X}) \right]^3 ,
\]

where \(d\) is the number of variables, \(X\) is the target dataset with multiple variables, \(n\) is the sample size, \(S\) is the sample covariance matrix of the target dataset, and \(\bar{X}\) is the mean vectors of the target dataset binded in \(n\) rows. When the population multivariate skewness is normal, the \(\frac{n}{6} b_{1,d}\) is asymptotically distributed as \(\chi^2\) distribution with \(d(d+1)(d+2)/6\) degrees of freedom.
A value of a Mardia’s multivariate skewness with a test statistic

Author(s)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

See Also
- `skew` Find the univariate skewness of a variable
- `kurtosis` Find the univariate excessive kurtosis of a variable
- `mardiaKurtosis` Find the Mardia’s multivariate kurtosis of a set of variables

Examples

```r
library(lavaan)
mardiaSkew(HolzingerSwineford1939[, paste0("x", 1:9)])
```

maximalRelia

Calculate maximal reliability

Description
Calculate maximal reliability of a scale

Usage

```r
maximalRelia(object, omit.imps = c("no.conv", "no.se"))
```

Arguments

`object` A *lavaan* or *lavaan.mi* object, expected to contain only exogenous common factors (i.e., a CFA model).

`omit.imps` character vector specifying criteria for omitting imputations from pooled results. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. NPD solutions are not excluded.
Details

Given that a composite score \((W)\) is a weighted sum of item scores:

\[
W = w'x,
\]

where \(x\) is a \(k \times 1\) vector of the scores of each item, \(w\) is a \(k \times 1\) weight vector of each item, and \(k\) represents the number of items. Then, maximal reliability is obtained by finding \(w\) such that reliability attains its maximum (Li, 1997; Raykov, 2012). Note that the reliability can be obtained by

\[
\rho = \frac{w'S_T w}{w'S_X w}
\]

where \(S_T\) is the covariance matrix explained by true scores and \(S_X\) is the observed covariance matrix. Numerical method is used to find \(w\) in this function.

For continuous items, \(S_T\) can be calculated by

\[
S_T = \Lambda \Psi \Lambda',
\]

where \(\Lambda\) is the factor loading matrix and \(\Psi\) is the covariance matrix among factors. \(S_X\) is directly obtained by covariance among items.

For categorical items, Green and Yang’s (2009) method is used for calculating \(S_T\) and \(S_X\). The element \(i\) and \(j\) of \(S_T\) can be calculated by

\[
[S_T]_{ij} = \sum_{c_i=1}^{C_i-1} \sum_{c_j=1}^{C_j-1} \Phi_2 \left(\tau_{x_{c_i}}, \tau_{x_{c_j}}, [\Lambda \Psi \Lambda']_{ij} \right) - \sum_{c_i=1}^{C_i-1} \Phi_1 (\tau_{x_{c_i}}) \sum_{c_j=1}^{C_j-1} \Phi_1 (\tau_{x_{c_j}}),
\]

where \(C_i\) and \(C_j\) represents the number of thresholds in Items \(i\) and \(j\), \(\tau_{x_{c_i}}\) represents the threshold \(c_i\) of Item \(i\), \(\tau_{x_{c_j}}\) represents the threshold \(c_j\) of Item \(j\), \(\Phi_1 (\tau_{x_{c_i}})\) is the cumulative probability of \(\tau_{x_{c_i}}\) given a univariate standard normal cumulative distribution and \(\Phi_2 \left(\tau_{x_{c_i}}, \tau_{x_{c_j}}, \rho \right)\) is the joint cumulative probability of \(\tau_{x_{c_i}}\) and \(\tau_{x_{c_j}}\) given a bivariate standard normal cumulative distribution with a correlation of \(\rho\).

Each element of \(S_X\) can be calculated by

\[
[S_X]_{ij} = \sum_{c_i=1}^{C_i-1} \sum_{c_j=1}^{C_j-1} \Phi_2 \left(\tau_{V_{c_i}}, \tau_{V_{c_j}}, \rho_{ij}^* \right) - \sum_{c_i=1}^{C_i-1} \Phi_1 (\tau_{V_{c_i}}) \sum_{c_j=1}^{C_j-1} \Phi_1 (\tau_{V_{c_j}}),
\]

where \(\rho_{ij}^*\) is a polychoric correlation between Items \(i\) and \(j\).
Value

Maximal reliability values of each group. The maximal-reliability weights are also provided. Users may extracted the weighted by the attr function (see example below).

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References

See Also

reliability for reliability of an unweighted composite score

Examples

```r
total <- 'f =~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 '
fit <- cfa(total, data = HolzingerSwineford1939)
maximalRelia(fit)

# Extract the weight
mr <- maximalRelia(fit)
attr(mr, "weight")
```

Description

Automatically generates lavaan model syntax to specify a confirmatory factor analysis (CFA) model with equality constraints imposed on user-specified measurement (or structural) parameters. Optionally returns the fitted model (if data are provided) representing some chosen level of measurement equivalence/invariance across groups and/or repeated measures.

Usage

```r
measEq.syntax(configural.model, ..., ID.fac = "std.lv",
               ID.cat = "Wu.Estabrook.2016", ID.thr = c(1L, 2L),
               group = NULL, group.equal = ",", group.partial = ",",
               longFacNames = list(), longIndNames = list(),
               long.equal = ",", long.partial = ",",
               auto = "all", warn = TRUE, debug = FALSE, return.fit = FALSE)
```
Arguments

configural.model

A model with no measurement-invariance constraints (i.e., representing only configural invariance), unless required for model identification. configural.model can be either:

- lavaan model syntax or a parameter table (as returned by parTable) specifying the configural model. Using this option, the user can also provide either raw data or summary statistics via sample.cov and (optionally) sample.mean. See argument descriptions in lavaan. In order to include thresholds in the generated syntax, either users must provide raw data, or the configural.model syntax must specify all thresholds (see first example). If raw data are not provided, the number of blocks (groups, levels, or combination) must be indicated using an arbitrary sample.nobs argument (e.g., 3 groups could be specified using sample.nobs=rep(1, 3)).
- a fitted lavaan model (e.g., as returned by cfa) estimating the configural model

Note that the specified or fitted model must not contain any latent structural parameters (i.e., it must be a CFA model), unless they are higher-order constructs with latent indicators (i.e., a second-order CFA).

... Additional arguments (e.g., data, ordered, or parameterization) passed to the lavaan function. See also lavOptions.

ID.fac character. The method for identifying common-factor variances and (if meanstructure = TRUE) means. Three methods are available, which go by different names in the literature:

- Standardize the common factor (mean = 0, SD = 1) by specifying any of: "std.lv", "unit.variance", "UV", "fixed.factor", "fixed-factor"
- Apply effects-code constraints to loadings and intercepts by specifying any of: "FX", "EC", "effects", "effects.coding", "effects-coding", "effects.code", "effects-code"

See Kloessner & Klopp (2019) for details about all three methods.

ID.cat character. The method for identifying (residual) variances and intercepts of latent item-responses underlying any ordered indicators. Four methods are available:

- To use the default settings of Mplus and lavaan, specify any of: "default", "Mplus", "Muthen". Details provided in Millsap & Tein (2004).
- To use the constraints recommended by Millsap & Tein (2004; see also Liu et al., 2017, for the longitudinal case) specify any of: "millsap", "millsap.2004", "millsap.tein.2004". For consistency, specify ID.fac = "marker" and parameterization = "theta".
To use the default settings of LISREL, specify "LISREL" or "Joreskog". Details provided in Millsap & Tein (2004). For consistency, specify parameterization = "theta".

See Details and References for more information.

ID.thr
integer. Only relevant when ID.cat = "Millsap.Tein.2004". Used to indicate which thresholds should be constrained for identification. The first integer indicates the threshold used for all indicators, the second integer indicates the additional threshold constrained for a reference indicator (ignored if binary).

group
optional character indicating the name of a grouping variable. See cfa.

group.equal
optional character vector indicating type(s) of parameter to equate across groups. Ignored if is.null(group). See lavOptions.

group.partial
optional character vector or a parameter table indicating exceptions to group.equal (see lavOptions). Any variables not appearing in the configural.model will be ignored, and any parameter constraints needed for identification (e.g., two thresholds per indicator when ID.cat = "Millsap") will be removed.

longFacNames
optional named list of character vectors, each indicating multiple factors in the model that are actually the same construct measured repeatedly. See Details and Examples.

longIndNames
optional named list of character vectors, each indicating multiple indicators in the model that are actually the same indicator measured repeatedly. See Details and Examples.

long.equal
optional character vector indicating type(s) of parameter to equate across repeated measures. Ignored if no factors are indicated as repeatedly measured in longFacNames.

long.partial
optional character vector or a parameter table indicating exceptions to long.equal. Any longitudinal variable names not appearing in names(longFacNames) or names(longIndNames) will be ignored, and any parameter constraints needed for identification will be removed.

auto
Used to automatically included autocorrelated measurement errors among repeatedly measured indicators in longIndNames. Specify a single integer to set the maximum order (e.g., auto = 1L indicates that an indicator's unique factors should only be correlated between adjacently measured occasions). auto = TRUE or "all" will specify residual covariances among all possible lags per repeatedly measured indicator in longIndNames.

warn, debug
logical. Passed to lavaan and lavParseModelString. See lavOptions.

return.fit
logical indicating whether the generated syntax should be fitted to the provided data (or summary statistics, if provided via sample.cov). If configural.model is a fitted lavaan model, the generated syntax will be fitted using the update method (see lavaan), and ... will be passed to lavaan. If neither data nor a fitted lavaan model were provided, this must be FALSE. If TRUE, the generated measEq.syntax object will be included in the lavaan object's @external slot, accessible by fit@external$measEq.syntax.
Details

This function is a pedagogical and analytical tool to generate model syntax representing some level of measurement equivalence/invariance across any combination of multiple groups and/or repeated measures. Support is provided for confirmatory factor analysis (CFA) models with simple or complex structure (i.e., cross-loadings and correlated residuals are allowed). For any complexities that exceed the limits of automation, this function is intended to still be useful by providing a means to generate syntax that users can easily edit to accommodate their unique situations.

Limited support is provided for bifactor models and higher-order constructs. Because bifactor models have cross-loadings by definition, the option ID.fac = "effects.code" is unavailable. ID.fac = "UV" is recommended for bifactor models, but ID.fac = "UL" is available on the condition that each factor has a unique first indicator in the configural.model. In order to maintain generality, higher-order factors may include a mix of manifest and latent indicators, but they must therefore require ID.fac = "UL" to avoid complications with differentiating lower-order vs. higher-order (or mixed-level) factors. The keyword "loadings" in group.equal or long.equal constrains factor loadings of all manifest indicators (including loadings on higher-order factors that also have latent indicators), whereas the keyword "regressions" constrains factor loadings of latent indicators. Users can edit the model syntax manually to adjust constraints as necessary, or clever use of the group.partial or long.partial arguments could make it possible for users to still automated their model syntax. The keyword "intercepts" constrains the intercepts of all manifest indicators, and the keyword "means" constrains intercepts and means of all latent common factors, regardless of whether they are latent indicators of higher-order factors. To test equivalence of lower-order and higher-order intercepts/means in separate steps, the user can either manually edit their generated syntax or conscientiously exploit the group.partial or long.partial arguments as necessary.

ID.fac: If the configural.model fixes any (e.g., the first) factor loadings, the generated syntax object will retain those fixed values. This allows the user to retain additional constraints that might be necessary (e.g., if there are only 1 or 2 indicators). Some methods must be used in conjunction with other settings:

- ID.cat = "Millsap" requires ID.fac = "UL" and parameterization = "theta".
- ID.cat = "LISREL" requires parameterization = "theta".
- ID.fac = "effects.code" is unavailable when there are any cross-loadings.

ID.cat: Wu & Estabrook (2016) recommended constraining thresholds to equality first, and doing so should allow releasing any identification constraints no longer needed. For each ordered indicator, constraining one threshold to equality will allow the item’s intercepts to be estimated in all but the first group or repeated measure. Constraining a second threshold (if applicable) will allow the item’s (residual) variance to be estimated in all but the first group or repeated measure. For binary data, there is no independent test of threshold, intercept, or residual-variance equality. Equivalence of thresholds must also be assumed for three-category indicators. These guidelines provide the least restrictive assumptions and tests, and are therefore the default.

The default setting in Mplus is similar to Wu & Estabrook (2016), except that intercepts are always constrained to zero (so they are assumed to be invariant without testing them). Millsap & Tein (2004) recommended parameterization = "theta" and identified an item’s residual variance in all but the first group (or occasion; Liu et al., 2017) by constraining its intercept to zero and one of its thresholds to equality. A second threshold for the reference indicator (so ID.fac = "UL") is used to identify the common-factor means in all but the first group/occasion. The LISREL software fixes the first threshold to zero and (if applicable) the second threshold to 1, and assumes any remaining
thresholds to be equal across groups / repeated measures; thus, the intercepts are always identified, and residual variances (parameterization = "theta") are identified except for binary data, when they are all fixed to one.

Repeated Measures: If each repeatedly measured factor is measured by the same indicators (specified in the same order in the configural.model) on each occasion, without any cross-loadings, the user can let longIndNames be automatically generated. Generic names for the repeatedly measured indicators are created using the name of the repeatedly measured factors (i.e., names(longFacNames)) and the number of indicators. So the repeatedly measured first indicator ("ind") of a longitudinal construct called "factor" would be generated as ".factor_ind.1".

The same types of parameter can be specified for long, equal as for group.equal (see lavOptions for a list), except for "residual.covariances" or "lv.covariances". Instead, users can constrain autocovariances using keywords "resid.autocov" or "lv.autocov". Note that group.equal = "lv.covariances" or group.equal = "residual.covariances" will constrain any autocovariances across groups, along with any other covariances the user specified in the configural.model. Note also that autocovariances cannot be specified as exceptions in long.partial, so anything more complex than the auto argument automatically provides should instead be manually specified in the configural.model.

When users set orthogonal=TRUE in the configural.model (e.g., in bifactor models of repeatedly measured constructs), autocovariances of each repeatedly measured factor will still be freely estimated in the generated syntax.

Missing Data: If users wish to utilize the auxiliary function to automatically include auxiliary variables in conjunction with missing = "FIML", they should first generate the hypothesized-model syntax, then submit that syntax as the model to auxiliary(). If users utilized runMI to fit their configural.model to multiply imputed data, that model can also be passed to the configural.model argument, and if return.fit = TRUE, the generated model will be fitted to the multiple imputations.

Value

By default, an object of class measEq.syntax. If return.fit = TRUE, a fitted lavaan model, with the measEq.syntax object stored in the @external slot, accessible by fit@external$measEq.syntax.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

See Also

`compareFit`

Examples

```r
mod.cat <- '\nFU1 =~ u1 + u2 + u3 + u4
FU2 =~ u5 + u6 + u7 + u8 ' # the 2 factors are actually the same factor (FU) measured twice
longFacNames <- list(FU = c("FU1","FU2"))

## CONFIGURAL model: no constraints across groups or repeated measures
syntax.config <- measEq.syntax(configural.model = mod.cat,
# NOTE: data provides info about numbers of
data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames)

## THRESHOLD invariance:
## only necessary to specify thresholds if you have no data
mod.th <- '\n  u1 | t1 + t2 + t3 + t4
  u2 | t1 + t2 + t3 + t4
  u3 | t1 + t2 + t3 + t4
  u4 | t1 + t2 + t3 + t4
  u5 | t1 + t2 + t3 + t4
  u6 | t1 + t2 + t3 + t4
  u7 | t1 + t2 + t3 + t4
  u8 | t1 + t2 + t3 + t4

syntax.thresh <- measEq.syntax(configural.model = c(mod.cat, mod.th),
# NOTE: data not provided, so syntax must
# include thresholds, and number of
# groups == 2 is indicated by:
sample.nobs = c(1, 1),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", group.equal = "thresholds",
longFacNames = longFacNames,
long.equal = "thresholds")

## notice that constraining 4 thresholds allows intercepts and residual
## variances to be freely estimated in all but the first group & occasion
\[ \text{cat(as.character(syntax.thresh))} \]

## print a summary of model features
\[ \text{summary(syntax.thresh)} \]

## Fit a model to the data either in a subsequent step (recommended):
\[ \text{mod.config} \leftarrow \text{as.character(syntax.config)} \]
\[ \text{fit.config} \leftarrow \text{cfa(mod.config, data = datCat, group = "g", ordered = paste0("u", 1:8), parameterization = "theta")} \]

## or in a single step (not generally recommended):
\[ \text{fit.thresh} \leftarrow \text{measEq.syntax(configural.model = mod.cat, data = datCat, ordered = paste0("u", 1:8), parameterization = "theta", ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016", group = "g", group.equal = "thresholds", longFacNames = longFacNames, long.equal = "thresholds", return.fit = TRUE)} \]

## compare their fit to test threshold invariance
\[ \text{anova(fit.config, fit.thresh)} \]

---

## RECOMMENDED PRACTICE: fit one invariance model at a time

---

## - A downside of setting return.fit=TRUE is that if the model has trouble converging, you don't have the opportunity to investigate the syntax, or even to know whether an error resulted from the syntax-generator or from lavaan itself.

## - A downside of automatically fitting an entire set of invariance models (like the old measurementInvariance() function did) is that you might end up testing models that shouldn't even be fitted because less restrictive models already fail (e.g., don't test full scalar invariance if metric invariance fails! Establish partial metric invariance first, then test equivalent of intercepts ONLY among the indicators that have invariate loadings.)

## The recommended sequence is to (1) generate and save each syntax object, (2) print it to the screen to verify you are fitting the model you expect to (and potentially learn which identification constraints should be released when equality constraints are imposed), and (3) fit that model to the data, as you would if you had written the syntax yourself.

## Continuing from the examples above, after establishing invariance of thresholds, we proceed to test equivalence of loadings and intercepts (metric and scalar invariance, respectively) simultaneously across groups and repeated measures.

## Not run:

## metric invariance
\[ \text{syntax.metric} \leftarrow \text{measEq.syntax(configural.model = mod.cat, data = datCat, ordered = paste0("u", 1:8), parameterization = "theta", ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016", group = "g", group.equal = "thresholds", longFacNames = longFacNames, long.equal = "thresholds", return.fit = TRUE)} \]
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames,
group.equal = c("thresholds","loadings"),
long.equal = c("thresholds","loadings"))

summary(syntax.metric) # summarize model features
mod.metric <- as.character(syntax.metric) # save as text
cat(mod.metric) # print/view lavaan syntax
## fit model to data
fit.metric <- cfa(mod.metric, data = datCat, group = "g",
ordered = paste0("u", 1:8), parameterization = "theta")
## test equivalence of loadings, given equivalence of thresholds
anova(fit.thresh, fit.metric)

## scalar invariance
syntax.scalar <- measEq.syntax(configural.model = mod.cat, data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv", ID.cat = "Wu.Estabrook.2016",
group = "g", longFacNames = longFacNames,
group.equal = c("thresholds","loadings",
             "intercepts"),
long.equal = c("thresholds","loadings",
              "intercepts"))

summary(syntax.scalar) # summarize model features
mod.scalar <- as.character(syntax.scalar) # save as text
cat(mod.scalar) # print/view lavaan syntax
## fit model to data
fit.scalar <- cfa(mod.scalar, data = datCat, group = "g",
ordered = paste0("u", 1:8), parameterization = "theta")
## test equivalence of intercepts, given equal thresholds & loadings
anova(fit.metric, fit.scalar)

## For a single table with all results, you can pass the models to
## summarize to the compareFit() function
compareFit(fit.config, fit.thresh, fit.metric, fit.scalar)

# NOT RECOMMENDED: fit several invariance models at once

# NOT RECOMMENDED: fit several invariance models at once

test.seq <- c("thresholds","loadings","intercepts","means","residuals")
meq.list <- list()
for (i in 0:length(test.seq)) {
  if (i == 0L) {
    meq.label <- "configural"
    group.equal <- ""
    long.equal <- ""
  } else {
    meq.label <- test.seq[i]
group.equal <- test.seq[1:i]
long.equal <- test.seq[1:i]
}
meq.list[[meq.label]] <- measEq.syntax(configural.model = mod.cat,
data = datCat,
ordered = paste0("u", 1:8),
parameterization = "theta",
ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016",
group = "g",
group.equal = group.equal,
longFacNames = longFacNames,
long.equal = long.equal,
return.fit = TRUE)
}

compareFit(meq.list)

## -----------------
## Binary indicators
## -----------------
## borrow example data from Mplus user guide
myData <- read.table("http://www.statmodel.com/usersguide/chap5/ex5.16.dat")
names(myData) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")
bin.mod <- '
FU1 =~ u1 + u2 + u3
FU2 =~ u4 + u5 + u6
## Must SIMULTANEOUSLY constrain thresholds, loadings, and intercepts
test.seq <- list(strong = c("thresholds","loadings","intercepts"),
means = "means",
strict = "residuals")
meq.list <- list()
for (i in 0:length(test.seq)) {
if (i == 0L) {
meq.label <- "configural"
group.equal <- ""
long.equal <- ""
} else {
meq.label <- names(test.seq)[i]
group.equal <- unlist(test.seq[1:i])
# long.equal <- unlist(test.seq[1:i])
}
meq.list[[meq.label]] <- measEq.syntax(configural.model = bin.mod,
data = myData,
ordered = paste0("u", 1:6),
parameterization = "theta",
ID.fac = "std.lv",
ID.cat = "Wu.Estabrook.2016",
group = "g",
group.equal = group.equal,
#longFacNames = longFacNames,
#long.equal = long.equal,
return.fit = TRUE)
}

compareFit(meq.list)

## ---------------------
## Multilevel Invariance
## ---------------------

## To test invariance across levels in a MLSEM, specify syntax as though
## you are fitting to 2 groups instead of 2 levels.

mlsem <- 'f1 =~ y1 + y2 + y3
     f2 =~ y4 + y5 + y6 '

## metric invariance
syntax.metric <- measEq.syntax(configural.model = mlsem, meanstructure = TRUE,
                                ID.fac = "std.lv", sample.nobs = c(1, 1),
                                group = "cluster", group.equal = "loadings")

## by definition, Level-1 means must be zero, so fix them
syntax.metric <- update(syntax.metric,
                         change.syntax = paste0("y", 1:6, " ~ c(0, NA)*1")))

## save as a character string
mod.metric <- as.character(syntax.metric, groups.as.blocks = TRUE)

## convert from multigroup to multilevel
mod.metric <- gsub(pattern = "group:", replacement = "level:",
                   x = mod.metric, fixed = TRUE)

## fit model to data
fit.metric <- lavaan(mod.metric, data = Demo.twolevel, cluster = "cluster")
summary(fit.metric)

## End(Not run)
## S4 method for signature 'measEq.syntax'
show(object)

## S4 method for signature 'measEq.syntax'
summary(object, verbose = TRUE)

## S4 method for signature 'measEq syntax'
update(object, ..., evaluate = TRUE, change.syntax = NULL)

### Arguments

- **x, object**
  - An object of class `measEq.syntax`.

- **package**
  - Character indicating the package for which the model syntax should be generated. Currently, only "lavaan" and "mplus" are supported.

- **params**
  - Character vector indicating which type(s) of parameter to print syntax for. Must match a type that can be passed to `group.equal` or `long.equal`, but "residual.covariances" and "lv.covariances" will be silently ignored. Instead, requesting "residuals" or "lv.variances" will return covariances along with variances. By default (NULL), all types are printed.

- **single**
  - Logical indicating whether to concatenate lavaan `model.syntax` into a single character string. Setting FALSE will return a vector of strings, which may be convenient (or even necessary to prevent an error) in models with long variable names, many variables, or many groups.

- **groups.as.blocks**
  - Logical indicating whether to write lavaan `model.syntax` using vectors of labels and values for multiple groups (the default: FALSE), or whether to write a separate "block" of syntax per group. The block structure could allow users to apply the generated multigroup syntax (after some editing) to test invariance across levels in a multilevel SEM (see final example on `measEq.syntax` help page).

- **verbose**
  - Logical indicating whether to print a summary to the screen (default). If FALSE, only a pattern matrix is returned.

- **...**
  - Additional arguments to the call, or arguments with changed values.

- **evaluate**
  - If TRUE, evaluate the new call; otherwise, return the new call.

- **change.syntax**
  - Lavaan `model.syntax` specifying labels or fixed/free values of parameters in object. These provide some flexibility to customize existing parameters without having to copy/paste the output of `as.character(object)` into an R script. For example, `group.partial` will free a parameter across all groups, but `update` allows users to free the parameter in just one group while maintaining equality constraints among other groups.

### Value

- **summary**
  - Signature(object = "measEq syntax", verbose = TRUE): A character matrix indicating the pattern of numeric, ordered, or latent indicators loading on common factors. By default (verbose = TRUE), summary also prints descriptive
Details about the model, including the numbers of indicators and factors, and which parameters are constrained to equality.

**show**

`signature(object = "measEq.syntax")`: Prints a message about how to use the object for model fitting. Invisibly returns the object.

**update**

`signature(object = "measEq.syntax", ..., evaluate = TRUE, change.syntax = NULL)`: Creates a new object with updated arguments in ..., or updated parameter labels or fixed/free specifications in object.

**as.character**

`signature(x = "measEq.syntax", package = "lavaan")`: Converts the measEq.syntax object to model syntax that can be copy/pasted or written to a syntax file to be edited before analysis, or simply passed to `lavaan` to fit the model to data. Generated `Mplus` syntax could also be utilized using the `MplusAutomation` package.

**Slots**

- **package** character indicating the software package used to represent the model. Currently, only "lavaan" is available, which uses the LISREL representation (see `lavOptions`). In the future, "OpenMx" may become available, using RAM representation.

- **model.type** character. Currently, only "cfa" is available. Future versions may allow for MIMIC / RFA models, where invariance can be tested across levels of exogenous variables explicitly included as predictors of indicators, controlling for their effects on (or correlation with) the common factors.

- **call** The function call as returned by `match.call()`, with some arguments updated if necessary for logical consistency.

- **meanstructure** logical indicating whether a mean structure is included in the model.

- **numeric** character vector naming numeric manifest indicators.

- **ordered** character vector naming ordered indicators.

- **parameterization** character. See `lavOptions`.

- **specify** list of parameter matrices, similar in form to the output of `lavInspect(fit, "free")`. These matrices are logical, indicating whether each parameter should be specified in the model syntax.

- **values** list of parameter matrices, similar in form to the output of `lavInspect(fit, "free")`. These matrices are numeric, indicating whether each parameter should be freely estimated (indicated by NA) or fixed to a particular value.

- **labels** list of parameter matrices, similar in form to the output of `lavInspect(fit, "free")`. These matrices contain character labels used to constrain parameters to equality.

- **constraints** character vector containing additional equality constraints used to identify the model when `ID.fac = "fx"`.

- **ngroups** integer indicating the number of groups.

**Author(s)**

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
miPowerFit  

**Examples**

```r
See ?measEq.syntax help page for examples using lavaan
```

---

### miPowerFit

*Modification indices and their power approach for model fit evaluation*

#### Description

The model fit evaluation approach using modification indices and expected parameter changes.

#### Usage

```r
miPowerFit(lavaanObj, stdLoad = 0.4, cor = 0.1, stdBeta = 0.1,
 intercept = 0.2, stdDelta = NULL, delta = NULL, cilevel = 0.9, ...)
```

#### Arguments

- **lavaanObj**: The lavaan model object used to evaluate model fit
- **stdLoad**: The amount of standardized factor loading that one would like to be detected (rejected). The default value is 0.4, which is suggested by Saris and colleagues (2009, p. 571).
- **cor**: The amount of factor or error correlations that one would like to be detected (rejected). The default value is 0.1, which is suggested by Saris and colleagues (2009, p. 571).
- **stdBeta**: The amount of standardized regression coefficients that one would like to be detected (rejected). The default value is 0.1, which is suggested by Saris and colleagues (2009, p. 571).
- **intercept**: The amount of standardized intercept (similar to Cohen’s $d$ that one would like to be detected (rejected). The default value is 0.2, which is equivalent to a low effect size proposed by Cohen (1988, 1992).
- **stdDelta**: The vector of the standardized parameters that one would like to be detected (rejected). If this argument is specified, the value here will overwrite the other arguments above. The order of the vector must be the same as the row order from modification indices from the lavaan object. If a single value is specified, the value will be applied to all parameters.
- **delta**: The vector of the unstandardized parameters that one would like to be detected (rejected). If this argument is specified, the value here will overwrite the other arguments above. The order of the vector must be the same as the row order from modification indices from the lavaan object. If a single value is specified, the value will be applied to all parameters.
- **cilevel**: The confidence level of the confidence interval of expected parameter changes. The confidence intervals are used in the equivalence testing.
- **...**: arguments passed to `modificationIndices`, except for `delta`, which is already an argument (which can be substituted for `stdDelta` or specific sets of parameters using `stdLoad`, `cor`, `stdBeta`, and `intercept`).
Details

To decide whether a parameter should be freed, one can inspect its modification index (MI) and expected parameter change (EPC). Those values can be used to evaluate model fit by 2 methods.

Method 1: Saris, Satorra, and van der Veld (2009, pp. 570–573) used power (probability of detecting a significant MI) and EPC to decide whether to free a parametr. First, one should evaluate whether a parameter’s MI is significant. Second, one should evaluate whether the power to detect a target EPC is high enough. The combination of criteria leads to the so-called "JRule" first implemented with LISREL (van der Veld et al., 2008):

- If the MI is not significant and the power is low, the test is inconclusive.
- If the MI is not significant and the power is high, there is no misspecification.
- If the MI is significant and the power is low, the fixed parameter is misspecified.
- If the MI is significant and the power is high, the EPC is investigated. If the EPC is large (greater than the target EPC), the parameter is misspecified. If the EPC is low (lower than the target EPC), the parameter is not misspecified.

Method 2: The confidence interval (CI) of an EPC is calculated. These CIs are compared with the range of trivial misspecification, which could be \((-\delta, \delta)\) or \((0, \delta)\) for nonnegative parameters.

- If a CI overlaps with the range of trivial misspecification, the test is inconclusive.
- If a CI completely exceeds the range of trivial misspecification, the fixed parameters are severely misspecified.
- If a CI is completely within the range of trivial misspecification, the fixed parameters are trivially misspecified.

Value

A data frame with these variables:

1. lhs: The left-hand side variable, with respect to the operator in the lavaan model syntax
2. op: The lavaan syntax operator: "~~" represents covariance, "=~" represents factor loading, "~" represents regression, and "~1" represents intercept.
3. rhs: The right-hand side variable
4. group: The level of the group variable for the parameter in question
5. mi: The modification index of the fixed parameter
6. epc: The EPC if the parameter is freely estimated
7. target.epc: The target EPC that represents the minimum size of misspecification that one would like to be detected by the test with a high power
8. std.epc: The standardized EPC if the parameter is freely estimated
9. std.target.epc: The standardized target expected parameter change
10. significant.mi: Represents whether the modification index value is significant
11. high.power: Represents whether the power is enough to detect the target expected parameter change
12. **decision.pow**: The decision whether the parameter is misspecified or not based on Saris et al’s method: "M" represents the parameter is misspecified, "NM" represents the parameter is not misspecified, "EPC:M" represents the parameter is misspecified decided by checking the expected parameter change value, "EPC:NM" represents the parameter is not misspecified decided by checking the expected parameter change value, and "I" represents the decision is inconclusive.

13. **se.epc**: The standard errors of the expected parameter changes.

14. **lower.epc**: The lower bound of the confidence interval of expected parameter changes.

15. **upper.epc**: The upper bound of the confidence interval of expected parameter changes.

16. **lower.std.epc**: Lower confidence limit of standardized EPCs

17. **upper.std.epc**: Upper confidence limit of standardized EPCs

18. **decision.ci**: Decision whether the parameter is misspecified based on the CI method: "M" represents the parameter is misspecified, "NM" represents the parameter is not misspecified, and "I" represents the decision is inconclusive.

The row numbers matches with the results obtained from the `inspect(object, "mi")` function.

**Author(s)**

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

**References**


**See Also**

`moreFitIndices` For the additional fit indices information

**Examples**

```r
library(lavaan)

HS.model <- ' visual =~ x1 + x2 + x3 '
fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "sex", group.equal = c("loadings","intercepts"))
miPowerFit(fit, free.remove = FALSE, op = "=") # loadings
miPowerFit(fit, free.remove = FALSE, op = "~") # intercepts
```
modindices.mi

modindices.mi <- function(object, test = c("D2", "D1"), omit.imps = c("no.conv", "no.se"), standardized = TRUE, cov.std = TRUE, information = "expected", power = FALSE, delta = 0.1, alpha = 0.05, high.power = 0.75, sort. = FALSE, minimum.value = 0, maximum.number = nrow(LIST), na.remove = TRUE, op = NULL) {
  # latent variable definitions
  ind60 =~ x1 + x2 + x3
  dem60 =~ y1 + a*y2 + b*y3 + c*y4
  dem65 =~ y5 + a*y6 + b*y7 + c*y8

  # regressions
  dem60 ~ ind60
  dem65 ~ ind60 + dem60

  # residual correlations
  y1 ~~ y5
  y2 ~~ y4 + y6
  y3 ~~ y7
  y4 ~~ y8
  y6 ~~ y8

  fit2 <- sem(model, data = PoliticalDemocracy, meanstructure = TRUE)
  miPowerFit(fit2, stdLoad = 0.3, cor = 0.2, stdBeta = 0.2, intercet = 0.5)
}

modindices.mi

Modification Indices for Multiple Imputations

Description

Modification indices (1-df Lagrange multiplier tests) from a latent variable model fitted to multiple imputed data sets. Statistics for releasing one or more fixed or constrained parameters in model can be calculated by pooling the gradient and information matrices across imputed data sets in a method proposed by Mansolf, Jorgensen, & Enders (2020)—analogous to the "D1" Wald test proposed by Li, Meng, Raghunathan, & Rubin (1991)—or by pooling the complete-data score-test statistics across imputed data sets (i.e., "D2"; Li et al., 1991).

Usage

modindices.mi(object, test = c("D2", "D1"), omit.imps = c("no.conv", "no.se"), standardized = TRUE, cov.std = TRUE, information = "expected", power = FALSE, delta = 0.1, alpha = 0.05, high.power = 0.75, sort. = FALSE, minimum.value = 0, maximum.number = nrow(LIST), na.remove = TRUE, op = NULL)

modificationIndices.mi(object, test = c("D2", "D1"), omit.imps = c("no.conv", "no.se"), standardized = TRUE, cov.std = TRUE, information = "expected", power = FALSE, delta = 0.1, alpha = 0.05, high.power = 0.75, sort. = FALSE, minimum.value = 0, maximum.number = nrow(LIST), na.remove = TRUE, op = NULL)
**Arguments**

- **object**
  An object of class `lavaan.mi`

- **test**
  character indicating which pooling method to use. "D1" requests Mansolf, Jorgensen, & Enders’ (2020) proposed Wald-like test for pooling the gradient and information, which are then used to calculate score-test statistics in the usual manner. "D2" (default because it is less computationally intensive) requests to pool the complete-data score-test statistics from each imputed data set, then pool them across imputations, described by Li et al. (1991) and Enders (2010).

- **omit.imps**
  character vector specifying criteria for omitting imputations from pooled results. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. Specific imputation numbers can also be included in this argument, in case users want to apply their own custom omission criteria (or simulations can use different numbers of imputations without redundantly refitting the model).

- **standardized**
  logical. If TRUE, two extra columns ($sepc.lv$ and $sepc.all$) will contain standardized values for the EPCs. In the first column ($sepc.lv$), standardization is based on the variances of the (continuous) latent variables. In the second column ($sepc.all$), standardization is based on both the variances of both (continuous) observed and latent variables. (Residual) covariances are standardized using (residual) variances.

- **cov.std**
  logical. TRUE if test == "D2". If TRUE (default), the (residual) observed covariances are scaled by the square-root of the diagonal elements of the $Theta$ matrix, and the (residual) latent covariances are scaled by the square-root of the diagonal elements of the $Psi$ matrix. If FALSE, the (residual) observed covariances are scaled by the square-root of the diagonal elements of the model-implied covariance matrix of observed variables ($Sigma$), and the (residual) latent covariances are scaled by the square-root of the diagonal elements of the model-implied covariance matrix of the latent variables.

- **information**
  character indicating the type of information matrix to use (check `lavInspect` for available options). "expected" information is the default, which provides better control of Type I errors.

- **power**
  logical. If TRUE, the (post-hoc) power is computed for each modification index, using the values of `delta` and `alpha`.

- **delta**
  The value of the effect size, as used in the post-hoc power computation, currently using the unstandardized metric of the $sepc$ column.

- **alpha**
  The significance level used for deciding if the modification index is statistically significant or not.

- **high.power**
  If the computed power is higher than this cutoff value, the power is considered 'high'. If not, the power is considered 'low'. This affects the values in the $decision$ column in the output.

- **sort.**
  logical. If TRUE, sort the output using the values of the modification index values. Higher values appear first.
modindices.mi

minimum.value numeric. Filter output and only show rows with a modification index value equal or higher than this minimum value.

maximum.number integer. Filter output and only show the first maximum number rows. Most useful when combined with the sort option.

na.remove logical. If TRUE (default), filter output by removing all rows with NA values for the modification indices.

op character string. Filter the output by selecting only those rows with operator op.

Value

A data.frame containing modification indices and (S)EPCs.

Note

When test = "D2", each (S)EPC will be pooled by taking its average across imputations. When test = "D1", EPCs will be calculated in the standard way using the pooled gradient and information, and SEPCs will be calculated by standardizing the EPCs using model-implied (residual) variances.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

Adapted from lavaan source code, written by Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

test = "D1" method proposed by Maxwell Mansolf (University of California, Los Angeles; <mamansolf@gmail.com>)

References


Examples

## Not run:
## impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
     "ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

## impute missing data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations

## specify CFA model from lavaan's ?cfa help page
HS.model <-
  visual <- x1 + x2 + x3
  textual <- x4 + x5 + x6
  speed <- x7 + x8 + x9

out <- cfa.mi(HS.model, data = imps)
modindices.mi(out) # default: Li et al.'s (1991) "D2" method
modindices.mi(out, test = "D1") # Li et al.'s (1991) "D1" method

## End(Not run)

---

monteCarloCI

Monte Carlo Confidence Intervals to Test Functions of Parameter Estimates

Description

Robust confidence intervals for functions of parameter estimates, based on empirical sampling distributions of estimated model parameters.

Usage

monteCarloCI(object = NULL, expr, coefs, ACM, nRep = 20000, standardized = FALSE, fast = TRUE, level = 0.95, na.rm = TRUE, append.samples = FALSE, plot = FALSE, ask = getOption("device.ask.default"), ...)

Arguments

object

A object of class lavaan in which functions of parameters have already been defined using the := operator in lavaan's model.syntax. When NULL, users must specify expr, coefs, and ACM.

expr

Optional character vector specifying functions of model parameters (e.g., an indirect effect). Ideally, the vector should have names, which is necessary if any user-defined parameters refer to other user-defined parameters defined earlier in the vector (order matters!). All parameters appearing in the vector must be provided in coefs, or defined (as functions of coefs) earlier in expr. If length(expr) > 1L, nRep samples will be drawn simultaneously from a single multivariate distribution; thus, ACM must include all parameters in coefs.
**coefs** numeric vector of parameter estimates used in expr. Ignored when object is used.

**ACM** Symmetric matrix representing the asymptotic sampling covariance matrix (ACOV) of the parameter estimates in coefs. Ignored when object is used. Information on how to obtain the ACOV in popular SEM software is described in **Details**.

**nRep** integer. The number of samples to draw, to obtain an empirical sampling distribution of model parameters. Many thousand are recommended to minimize Monte Carlo error of the estimated CIs.

**standardized** logical indicating whether to obtain CIs for the fully standardized ("std.all") estimates, using their asymptotic sampling covariance matrix. Only valid when object is of class lavaan, not lavaan.mi.

**fast** logical indicating whether to use a fast algorithm that assumes all functions of parameters (in object or expr) use standard operations. Set to FALSE if using (e.g.) `c()` to concatenate parameters in the definition, which would have unintended consequences when vectorizing functions in expr across sampled parameters.

**level** numeric confidence level, between 0–1

**na.rm** logical passed to `quantile`

**append.samples** logical indicating whether to return the simulated empirical sampling distribution of parameters in coefs and functions in expr in a list with the results. This could be useful to calculate more precise highest-density intervals (see examples).

**plot** logical indicating whether to plot the empirical sampling distribution of each function in expr

**ask** whether to prompt user before printing each plot

... arguments passed to `hist` when plot = TRUE.

**Details**

This function implements the Monte Carlo method of obtaining an empirical sampling distribution of estimated model parameters, as described by MacKinnon et al. (2004) for testing indirect effects in mediation models. The easiest way to use the function is to fit a SEM to data with lavaan, using the `:=` operator in the **model.syntax** to specify user-defined parameters. All information is then available in the resulting lavaan object. Alternatively (especially when using external SEM software to fit the model), the expression(s) can be explicitly passed to the function, along with the vector of estimated model parameters and their associated asymptotic sampling covariance matrix (ACOV). For further information on the Monte Carlo method, see MacKinnon et al. (2004) and Preacher & Selig (2012).

The asymptotic covariance matrix can be obtained easily from many popular SEM software packages.

- **LISREL:** Including the EC option on the OU line will print the ACM to a separate file. The file contains the lower triangular elements of the ACM in free format and scientific notation
- **Mplus** Include the command TECH3; in the OUTPUT section. The ACM will be printed in the output.
- **lavaan:** Use the `vcov` method on the fitted lavaan object to return the ACM.
Value

A lavaan.data.frame (to use lavaan’s print method) with point estimates and confidence limits of each requested function of parameters in expr is returned. If append.samples = TRUE, output will be a list with the same $Results along with a second data.frame with the $Samples (in rows) of each parameter (in columns), and an additional column for each requested function of those parameters.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References


Examples

```r
From the mediation tutorial:
http://lavaan.ugent.be/tutorial/mediation.html

set.seed(1234)
X <- rnorm(100)
M <- 0.5*X + rnorm(100)
Y <- 0.7*M + rnorm(100)
dat <- data.frame(X = X, Y = Y, M = M)
mod <- 'Y ~ c*X
direct effect
Y ~ b*M
indirect effect (a*b)
ind := a*b
total effect
total := ind + c
',
fit <- sem(mod, data = dat)
summary(fit, ci = TRUE) # print delta-method CIs

Automatically extract information from lavaan object
```

```r
```
**MoreFitIndices**

Calculate more fit indices

**Description**

Calculate more fit indices that are not already provided in lavaan.

**Usage**

```r
moreFitIndices(object, fit.measures = "all", nPrior = 1)
```

**Arguments**

- **object**: The lavaan model object provided after running the `cfa`, `sem`, `growth`, or `lavaan` functions.
- **fit.measures**: Additional fit measures to be calculated. All additional fit measures are calculated by default.
- **nPrior**: The sample size on which prior is based. This argument is used to compute `bic.priorN`.
Details

See \texttt{nullRMSEA} for the further details of the computation of RMSEA of the null model.

Gamma-Hat (\texttt{gammaHat}; West, Taylor, & Wu, 2012) is a global goodness-of-fit index which can be computed (assuming equal number of indicators across groups) by

$$
\hat{\Gamma} = \frac{p}{p + 2 \times \frac{\chi^2_k \times (p + 1)}{N}}
$$

where \( p \) is the number of variables in the model, \( \chi^2_k \) is the \( \chi^2 \) test statistic value of the target model, \( df_k \) is the degree of freedom when fitting the target model, and \( N \) is the sample size (or sample size minus the number of groups if \texttt{mimic} is set to "EQS").

Adjusted Gamma-Hat (\texttt{adjGammaHat}; West, Taylor, & Wu, 2012) is a global fit index which can be computed by

$$
\hat{\Gamma}_{adj} = \left(1 - \frac{K \times p \times (p + 1)}{2 \times df_k}
ight) \times \left(1 - \hat{\Gamma}\right),
$$

where \( K \) is the number of groups (please refer to Dudgeon, 2004, for the multiple-group adjustment for \texttt{adjGammaHat}).

The remaining indices are information criteria calculated using the object’s \( -2 \times \log\text{-likelihood} \), abbreviated \( -2LL \).

Corrected Akaike Information Criterion (\texttt{aic.smallN}; Burnham & Anderson, 2003) is a corrected version of AIC for small sample size, often abbreviated \( \text{AICc} \):

$$
\text{AIC}_{\text{small-N}} = AIC + \frac{2q(q + 1)}{N - q - 1},
$$

where \( AIC \) is the original AIC: \( -2LL + 2q \) (where \( q \) = the number of estimated parameters in the target model). Note that \( \text{AICc} \) is a small-sample correction derived for univariate regression models, so it is probably not appropriate for comparing SEMs.

Corrected Bayesian Information Criterion (\texttt{bic.priorN}; Kuha, 2004) is similar to BIC but explicitly specifying the sample size on which the prior is based (\( N_{prior} \)) using the \texttt{nPrior} argument.

$$
\text{BIC}_{\text{prior-N}} = -2LL + q \log\left(1 + \frac{N}{N_{prior}}\right).
$$

Bollen et al. (2014) discussed additional BICs that incorporate more terms from a Taylor series expansion, which the standard BIC drops. The "Scaled Unit-Information Prior" BIC is calculated depending on whether the product of the vector of estimated model parameters (\( \hat{\theta} \)) and the observed information matrix (FIM) exceeds the number of estimated model parameters (Case 1) or not (Case 2), which is checked internally:

$$
\text{SPBIC}_\text{Case 1} = -2LL + q\left(1 - \frac{q}{\hat{\theta} \ FIM\hat{\theta}}\right), \text{or}
$$

$$
\text{SPBIC}_\text{Case 2} = -2LL + \hat{\theta}' \ FIM\hat{\theta}.
$$
Bollen et al. (2014) credit the HBIC to Haughton (1988):

$$\text{HBIC}_{\text{Case 1}} = -2LL - q \log 2 \times \pi,$$

and proposes the information-matrix-based BIC by adding another term:

$$\text{IBIC}_{\text{Case 1}} = -2LL - q \log 2 \times \pi - \log \det \text{ACOV},$$

Stochastic information criterion (SIC; see Preacher, 2006, for details) is similar to IBIC but does not subtract the term $q \log 2 \times \pi$ that is also in HBIC. SIC and IBIC account for model complexity in a model’s functional form, not merely the number of free parameters. The SIC can be computed by

$$\text{SIC} = -2LL + \log \det \text{FIM}^{-1} = -2LL - \log \det \text{ACOV},$$

where the inverse of FIM is the asymptotic sampling covariance matrix (ACOV).

Hannan–Quinn Information Criterion (HQC; Hannan & Quinn, 1979) is used for model selection, similar to AIC or BIC.

$$\text{HQC} = -2LL + 2k \log (\log N),$$

Note that if Satorra–Bentler’s or Yuan–Bentler’s method is used, the fit indices using the scaled $\chi^2$ values are also provided.

**Value**

A numeric lavaan.vector including any of the following requested via `fit.measures=`

1. `gammaHat`: Gamma-Hat
2. `adjGammaHat`: Adjusted Gamma-Hat
3. `baseline.rmsea`: RMSEA of the default baseline (i.e., independence) model
4. `gammaHat.scaled`: Gamma-Hat using scaled $\chi^2$
5. `adjGammaHat.scaled`: Adjusted Gamma-Hat using scaled $\chi^2$
6. `baseline.rmsea.scaled`: RMSEA of the default baseline (i.e., independence) model using scaled $\chi^2$
7. `aic.smallN`: Corrected (for small sample size) AIC
8. `bic.priorN`: BIC with specified prior sample size
9. `spbic`: Scaled Unit-Information Prior BIC (SPBIC)
10. `hbic`: Haughton’s BIC (HBIC)
11. `ibic`: Information-matrix-based BIC (IBIC)
12. `sic`: Stochastic Information Criterion (SIC)
13. `hqc`: Hannan-Quinn Information Criterion (HQC)
Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
Aaron Boulton (University of Delaware)
Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)
Yves Rosseel (Ghent University; <Yves.Rosseel@UGent.be>)

References


See Also

• miPowerFit For the modification indices and their power approach for model fit evaluation
• nullRMSEA For RMSEA of the default independence model

Examples

```R
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
moreFitIndices(fit)

fit2 <- cfa(HS.model, data = HolzingerSwineford1939, estimator = "mlr")
moreFitIndices(fit2)
```
Generate Non-normal Data using Vale and Maurelli (1983) method

Description

Generate Non-normal Data using Vale and Maurelli (1983) method. The function is designed to be as similar as the popular `mvrnorm` function in the MASS package. The codes are copied from `mvrnorm` function in the MASS package for argument checking and lavaan package for data generation using Vale and Maurelli (1983) method.

Usage

`mvrnonnorm(n, mu, Sigma, skewness = NULL, kurtosis = NULL, empirical = FALSE)`

Arguments

- `n` Sample size
- `mu` A mean vector. If elements are named, those will be used as variable names in the returned data matrix.
- `Sigma` A positive-definite symmetric matrix specifying the covariance matrix of the variables. If rows or columns are named (and `mu` is unnamed), those will be used as variable names in the returned data matrix.
- `skewness` A vector of skewness of the variables
- `kurtosis` A vector of excessive kurtosis of the variables
- `empirical` If TRUE, `mu` and `Sigma` specify the empirical rather than population mean and covariance matrix

Value

A data matrix

Author(s)

The original function is the `simulateData` function written by Yves Rosseel in the `lavaan` package. The function is adjusted for a convenient usage by Sunthud Pornprasertmanit (<psunthud@gmail.com>). Terrence D. Jorgensen added the feature to retain variable names from `mu` or `Sigma`.

References

net

Nesting and Equivalence Testing

Description
This test examines whether pairs of SEMs are nested or equivalent.

Usage
net(..., crit = 1e-04)

Arguments
- ...: The lavaan objects used for test of nesting and equivalence
- crit: The upper-bound criterion for testing the equivalence of models. Models are considered nested (or equivalent) if the difference between their $\chi^2$ fit statistics is less than this criterion.

Details
The concept of nesting/equivalence should be the same regardless of estimation method. However, the particular method of testing nesting/equivalence (as described in Bentler & Satorra, 2010) employed by the net function analyzes summary statistics (model-implied means and covariance matrices, not raw data). In the case of robust methods like MLR, the raw data is only utilized for the robust adjustment to SE and chi-sq, and the net function only checks the unadjusted chi-sq for the purposes of testing nesting/equivalence. This method also applies to models for categorical data, following the procedure described by Asparouhov & Muthen (2019).

Value
The Net object representing the outputs for nesting and equivalent testing, including a logical matrix of test results and a vector of degrees of freedom for each model.

Author(s)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
References


Examples

```r
Not run:
m1 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'

m2 <- ' f1 =~ x1 + x2 + x3 + x4
 f2 =~ x5 + x6 + x7 + x8 + x9'

m3 <- ' visual =~ x1 + x2 + x3
textual =~ eq*x4 + eq*x5 + eq*x6
speed =~ x7 + x8 + x9'

fit1 <- cfa(m1, data = HolzingerSwineford1939)
fit1a <- cfa(m1, data = HolzingerSwineford1939, std.lv = TRUE) # Equivalent to fit1
fit2 <- cfa(m2, data = HolzingerSwineford1939) # Not equivalent to or nested in fit1
fit3 <- cfa(m3, data = HolzingerSwineford1939) # Nested in fit1 and fit1a

tests <- net(fit1, fit1a, fit2, fit3)
tests
summary(tests)

End(Not run)
```

---

**Net-class**

*Class For the Result of Nesting and Equivalence Testing*

**Description**

This class contains the results of nesting and equivalence testing among multiple models

**Usage**

```r
S4 method for signature 'Net'
show(object)

S4 method for signature 'Net'
summary(object)
```
nullRMSEA

Arguments

object An object of class Net.

Value

show signature(object = "Net"): prints the logical matrix of test results. NA indicates a model did not converge.

summary signature(object = "Net"): prints a narrative description of results. The original object is invisibly returned.

Slots

test Logical matrix indicating nesting/equivalence among models
df The degrees of freedom of tested models

Objects from the Class

Objects can be created via the net function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

net

Examples

# See the example in the net function.

nullRMSEA Calculate the RMSEA of the null model

Description

Calculate the RMSEA of the null (baseline) model

Usage

nullRMSEA(object, scaled = FALSE, silent = FALSE)
**Arguments**

- **object**: The lavaan model object provided after running the `cfa`, `sem`, `growth`, or `lavaan` functions.
- **scaled**: If `TRUE`, the scaled (or robust, if available) RMSEA is returned. Ignored if a robust test statistic was not requested.
- **silent**: If `TRUE`, do not print anything on the screen.

**Details**

RMSEA of the null model is calculated similar to the formula provided in the `lavaan` package. The standard formula of RMSEA is

\[
RMSEA = \sqrt{\frac{\chi^2}{N \times df}} - \frac{1}{N} \times \sqrt{G}
\]

where \(\chi^2\) is the chi-square test statistic value of the target model, \(N\) is the total sample size, \(df\) is the degree of freedom of the hypothesized model, \(G\) is the number of groups. Kenny proposed in his website that

"A reasonable rule of thumb is to examine the RMSEA for the null model and make sure that is no smaller than 0.158. An RMSEA for the model of 0.05 and a TLI of .90, implies that the RMSEA of the null model is 0.158. If the RMSEA for the null model is less than 0.158, an incremental measure of fit may not be that informative."

See also [http://davidakenny.net/cm/fit.htm](http://davidakenny.net/cm/fit.htm)

**Value**

A value of RMSEA of the null model (a numeric vector) returned invisibly.

**Author(s)**

Ruben Arslan (Humboldt-University of Berlin, <rubenarslan@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <tjorgensen314@gmail.com>)

**References**


**See Also**

- `miPowerFit` For the modification indices and their power approach for model fit evaluation
- `moreFitIndices` For other fit indices
Examples

```r
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit <- cfa(HS.model, data = HolzingerSwineford1939)
nullRMSEA(fit)
```

---

**orthRotate**

Implement orthogonal or oblique rotation

---

**Description**

These functions will implement orthogonal or oblique rotation on standardized factor loadings from a lavaan output.

**Usage**

```r
orthRotate(object, method = "varimax", ...)
oblqRotate(object, method = "quartimin", ...)
funRotate(object, fun, ...)
```

**Arguments**

- `object`: A lavaan output
- `method`: The method of rotations, such as "varimax", "quartimax", "geomin", "oblimin", or any gradient projection algorithms listed in the GPA function in the GPArotation package.
- `...`: Additional arguments for the `GPForth` function (for `orthRotate`), the `GPFoblq` function (for `oblqRotate`), or the function that users provide in the `fun` argument.
- `fun`: The name of the function that users wish to rotate the standardized solution. The functions must take the first argument as the standardized loading matrix and return the GPArotation object. Check this page for available functions: [rotations](#).

**Details**

These functions will rotate the unrotated standardized factor loadings by orthogonal rotation using the `GPForth` function or oblique rotation using the `GPFoblq` function the GPArotation package. The resulting rotation matrix will be used to calculate standard errors of the rotated standardized factor loading by delta method by numerically computing the Jacobian matrix by the `lav_func_jacobian_simple` function.
Value

An `linkS4class{EFA}` object that saves the rotated EFA solution

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

```r
Not run:
unrotated <- efaUnrotate(HolzingerSwineford1939, nf = 3, varList = paste0("x", 1:9), estimator = "mlr")

Orthogonal varimax
out.varimax <- orthRotate(unrotated, method = "varimax")
summary(out.varimax, sort = FALSE, suppress = 0.3)

Orthogonal Quartimin
orthRotate(unrotated, method = "quartimin")

Oblique Quartimin
oblqRotate(unrotated, method = "quartimin")

Geomin
oblqRotate(unrotated, method = "geomin")

Target rotation
library(GPArotation)
target <- matrix(0, 9, 3)
target[1:3, 1] <- NA
target[4:6, 2] <- NA
target[7:9, 3] <- NA
colnames(target) <- c("factor1", "factor2", "factor3")
This function works with GPArotation version 2012.3-1
funRotate(unrotated, fun = "targetQ", Target = target)

End(Not run)
```

Description

This function generates a given number of randomly generated item-to-parcel allocations, fits a model to each allocation, and provides averaged results over all allocations.
Usage

```r
parcelAllocation(model, data, parcel.names, item.syntax, nAlloc = 100,
fun = "sem", alpha = 0.05, fit.measures = c("chisq", "df", "cfi",
"tli", "rmsea", "srmr"), ..., show.progress = FALSE, iseed = 12345,
do.fit = TRUE, return.fit = FALSE, warn = FALSE)
```

Arguments

- **model** (`lavaan`) model syntax specifying the model fit to (at least some) parceled data. Note that there can be a mixture of items and parcels (even within the same factor), in case certain items should never be parceled. Can be a character string or parameter table. Also see `lavaanify` for more details.
- **data** A `data.frame` containing all observed variables appearing in the `model`, as well as those in the `item.syntax` used to create parcels. If the data have missing values, multiple imputation before parceling is recommended: submit a stacked data set (with a variable for the imputation number, so they can be separated later) and set `do.fit = FALSE` to return the list of `data.frame`s (one per allocation), each of which is a stacked, imputed data set with parcels.
- **parcel.names** character vector containing names of all parcels appearing as indicators in `model`.
- **item.syntax** `lavaan` model syntax specifying the model that would be fit to all of the un-parceled items, including items that should be randomly allocated to parcels appearing in `model`.
- **nAlloc** The number of random items-to-parcels allocations to generate.
- **fun** character string indicating the name of the `lavaan` function used to fit model to data. Can only take the values "lavaan", "sem", "cfa", or "growth".
- **alpha** Alpha level used as criterion for significance.
- **fit.measures** character vector containing names of fit measures to request from each fitted `lavaan` model. See the output of `fitMeasures` for a list of available measures.
- **...** Additional arguments to be passed to `lavaanList`. See also `lavOptions`.
- **show.progress** If `TRUE`, show a `txtProgressBar` indicating how fast the model-fitting iterates over allocations.
- **iseed** (Optional) Random seed used for parceling items. When the same random seed is specified and the program is re-run, the same allocations will be generated. Using the same `iseed` argument will ensure the any model is fit to the same parcel allocations. *Note:* When using `parallel` options, you must first type `RNGkind("L'Ecuyer-CMRG")` into the R Console, so that the seed will be controlled across cores.
- **do.fit** If `TRUE` (default), the model is fitted to each parceled data set, and the summary of results is returned (see the Value section below). If `FALSE`, the items are randomly parceled, but the model is not fit; instead, the list of `data.frame`s is returned (so assign it to an object).
- **return.fit** If `TRUE`, a `lavaanList` object is returned with the list of results across allocations.
- **warn** Whether to print warnings when fitting `model` to each allocation.
Details

This function implements the random item-to-parcel allocation procedure described in Sterba (2011) and Sterba and MacCallum (2010). The function takes a single data set with item-level data, randomly assigns items to parcels, fits a structural equation model to the parcelled data (using lavaanList), and repeats this process for a user-specified number of random allocations. Results from all fitted models are summarized in the output. For further details on the benefits of randomly allocating items to parcels, see Sterba (2011) and Sterba and MccCallum (2010).

Value

Estimates
A data.frame containing results related to parameter estimates with columns corresponding to their names; average and standard deviation across allocations; minimum, maximum, and range across allocations; and the proportion of allocations in which each parameter estimate was significant.

SE
A data.frame containing results similar to Estimates, but related to the standard errors of parameter estimates.

Fit
A data.frame containing results related to model fit, with columns corresponding to fit index names; their average and standard deviation across allocations; the minimum, maximum, and range across allocations; and (if the test statistic or RMSEA is included in fit.measures) the proportion of allocations in which each test of (exact or close) fit was significant.

Model
A lavaanList object containing results of the model fitted to each parcel allocation. Only returned if return.fit = TRUE.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References


See Also

`PAVranking` for comparing 2 models, `poolMAlloc` for choosing the number of allocations
Examples

## Fit 2-factor CFA to simulated data. Each factor has 9 indicators.

## Specify the item-level model (if NO parcels were created)
item.syntax <- c(paste0("f1 =~ f1item", 1:9),
                 paste0("f2 =~ f2item", 1:9))
cat(item.syntax, sep = "\n")
## Below, we reduce the size of this same model by
## applying different parceling schemes

## 3-indicator parcels
mod.parcels <- '
f1 =~ par1 + par2 + par3
f2 =~ par4 + par5 + par6
'
# names of parcels
(parcel.names <- paste0("par", 1:6))

# Not run:
# override default random-number generator to use parallel options
RNGkind("L'Ecuyer-CMRG")

parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,
                 parcel.names = parcel.names, item.syntax = item.syntax,
                 std.lv = TRUE, # any addition lavaan arguments
                 parallel = "snow") # parallel options

## POOL RESULTS by treating parcel allocations as multiple imputations
## Details provided in Sterba & Rights (2016); see ?poolMAlloc.

## save list of data sets instead of fitting model yet
dataList <- parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,
                             parcel.names = parcel.names, item.syntax = item.syntax,
                             std.lv = TRUE, # any addition lavaan arguments
                             parallel = "snow") # parallel options

## now fit the model to each data set
fit.parcels <- cfa.mi(mod.parcels, data = dataList, std.lv = TRUE)
summary(fit.parcels) # uses Rubin's rules
anova(fit.parcels) # pooled test statistic
class?lavaan.mi # find more methods for pooling results

## End(Not run)

## multigroup example
simParcel$group <- 0:1 # arbitrary groups for example
mod.mg <- '
f1 =~ par1 + c(L2, L2)*par2 + par3
f2 <- par4 + par5 + par6
## names of parcels
(parcel.names <- paste0("par", 1:6))

parcelAllocation(mod.mg, data = simParcel, parcel.names, item.syntax, 
    std.lv = TRUE, group = "group", group.equal = "loadings", 
    nAlloc = 20, show.progress = TRUE)

## parcels for first factor, items for second factor
mod.items <- f1 =~ par1 + par2 + par3
f2 =~ f2item2 + f2item7 + f2item8
## names of parcels
(parcel.names <- paste0("par", 1:3))

parcelAllocation(mod.items, data = simParcel, parcel.names, item.syntax, 
    nAlloc = 20, std.lv = TRUE)

## mixture of 1- and 3-indicator parcels for second factor
mod.mix <- f1 =~ par1 + par2 + par3
f2 =~ f2item2 + f2item7 + f2item8 + par4 + par5 + par6
## names of parcels
(parcel.names <- paste0("par", 1:6))

parcelAllocation(mod.mix, data = simParcel, parcel.names, item.syntax, 
    nAlloc = 20, std.lv = TRUE)

---

partialInvariance

Partial Measurement Invariance Testing Across Groups

**Description**

This test will provide partial invariance testing by (a) freeing a parameter one-by-one from nested model and compare with the original nested model or (b) fixing (or constraining) a parameter one-by-one from the parent model and compare with the original parent model. This function only works with congeneric models. The `partialInvariance` is used for continuous variable. The `partialInvarianceCat` is used for categorical variables.

**Usage**

```r
partialInvariance(fit, type, free = NULL, fix = NULL, refgroup = 1,
```
partialInvariance

```r
poolvar = TRUE, p.adjust = "none", fbound = 2, return.fit = FALSE,
method = "satorra.bentler.2001")
```

partialInvarianceCat(fit, type, free = NULL, fix = NULL, refgroup = 1,
poolvar = TRUE, p.adjust = "none", return.fit = FALSE,
method = "satorra.bentler.2001")

Arguments

- **fit**
  
  A list of models for invariance testing. Each model should be assigned by appropriate names (see details). The result from `measurementInvariance` or `measurementInvarianceCat` could be used in this argument directly.

- **type**
  
  The types of invariance testing: "metric", "scalar", "strict", or "means"

- **free**
  
  A vector of variable names that are free across groups in advance. If partial mean invariance is tested, this argument represents a vector of factor names that are free across groups.

- **fix**
  
  A vector of variable names that are constrained to be equal across groups in advance. If partial mean invariance is tested, this argument represents a vector of factor names that are fixed across groups.

- **refgroup**
  
  The reference group used to make the effect size comparison with the other groups.

- **poolvar**
  
  If TRUE, the variances are pooled across group for standardization. Otherwise, the variances of the reference group are used for standardization.

- **p.adjust**
  
  The method used to adjust p values. See `p.adjust` for the options for adjusting p values. The default is to not use any corrections.

- **fbound**
  
  The z-scores of factor that is used to calculate the effect size of the loading difference proposed by Millsap and Olivera-Aguilar (2012).

- **return.fit**
  
  Return the submodels fitted by this function.

- **method**
  
  The method used to calculate likelihood ratio test. See `lavTestLRT` for available options.

Details

There are four types of partial invariance testing:

- **Partial weak invariance.** The model named ’fit.configural’ from the list of models is compared with the model named ’fit.loadings’. Each loading will be freed or fixed from the metric and configural invariance models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the names of "fit.configural" and "fit.loadings". Users may use "metric", "weak", "loading", or "loadings" in the type argument. Note that, for testing invariance on marker variables, other variables will be assigned as marker variables automatically.

- **Partial strong invariance.** The model named ’fit.loadings’ from the list of models is compared with the model named either ’fit.intercepts’ or ’fit.thresholds’. Each intercept will be freed or fixed from the scalar and metric invariance models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the
names of "fit.loadings" and either "fit.intercepts" or "fit.thresholds". Users may use "scalar", "strong", "intercept", "intercepts", "threshold", or "thresholds" in the type argument. Note that, for testing invariance on marker variables, other variables will be assigned as marker variables automatically. Note that if all variables are dichotomous, scalar invariance testing is not available.

- Partial strict invariance. The model named either 'fit.intercepts' or 'fit.thresholds' (or 'fit.loadings') from the list of models is compared with the model named 'fit.residuals'. Each residual variance will be freed or fixed from the strict and scalar (or metric) invariance models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the names of "fit.residuals" and either "fit.intercepts", "fit.thresholds", or "fit.loadings". Users may use "strict", "residual", "residuals", "error", or "errors" in the type argument.

- Partial mean invariance. The model named either 'fit.intercepts' or 'fit.thresholds' (or 'fit.residuals' or 'fit.loadings') from the list of models is compared with the model named 'fit.means'. Each factor mean will be freed or fixed from the means and scalar (or strict or metric) invariance models respectively. The modified models are compared with the original model. Note that the objects in the list of models must have the names of "fit.means" and either "fit.residuals", "fit.intercepts", "fit.thresholds", or "fit.loadings". Users may use "means" or "mean" in the type argument.

Two types of comparisons are used in this function:

1. **free**: The nested model is used as a template. Then, one parameter indicating the differences between two models is free. The new model is compared with the nested model. This process is repeated for all differences between two models. The likelihood-ratio test and the difference in CFI are provided.

2. **fix**: The parent model is used as a template. Then, one parameter indicating the differences between two models is fixed or constrained to be equal to other parameters. The new model is then compared with the parent model. This process is repeated for all differences between two models. The likelihood-ratio test and the difference in CFI are provided.

3. **wald**: This method is similar to the **fix** method. However, instead of building a new model and compare them with likelihood-ratio test, multivariate wald test is used to compare equality between parameter estimates. See lavTestWald for further details. Note that if any rows of the contrast cannot be summed to 0, the Wald test is not provided, such as comparing two means where one of the means is fixed as 0. This test statistic is not as accurate as likelihood-ratio test provided in **fix**. I provide it here in case that likelihood-ratio test fails to converge.

Note that this function does not adjust for the inflated Type I error rate from multiple tests. The degree of freedom of all tests would be the number of groups minus 1.

The details of standardized estimates and the effect size used for each parameters are provided in the vignettes by running vignette("partialInvariance").

**Value**

A list of results are provided. The list will consists of at least two elements:

1. **estimates**: The results of parameter estimates including pooled estimates (poolest), the estimates for each group, standardized estimates for each group (std), the difference in standardized values, and the effect size statistic (q for factor loading difference and h for error variance
difference). See the details of this effect size statistic by running vignette("partialInvariance"). In the partialInvariance function, the additional effect statistics proposed by Millsap and Olivera-Aguilar (2012) are provided. For factor loading statistics, the additional outputs are the observed mean difference (diff_mean), the mean difference if factor scores are low (low_fscore), and the mean difference if factor scores are high (high_fscore). The low factor score is calculated by (a) finding the factor scores that its z score equals -bound (the default is -2) from all groups and (b) picking the minimum value among the factor scores. The high factor score is calculated by (a) finding the factor scores that its z score equals bound (default = 2) from all groups and (b) picking the maximum value among the factor scores. For measurement intercepts, the additional outputs are the observed means difference (diff_mean) and the proportion of the differences in the intercepts over the observed means differences (propdiff). For error variances, the additional outputs are the proportion of the difference in error variances over the difference in observed variances (propdiff).

2. results: Statistical tests as well as the change in CFI are provided. $\chi^2$ and p value are provided for all methods.

3. models: The submodels used in the free and fix methods, as well as the nested and parent models. The nested and parent models will be changed from the original models if free or fit arguments are specified.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References


See Also

measurementInvariance for measurement invariance for continuous variables; measurementInvarianceCat for measurement invariance for categorical variables; lavTestWald for multivariate Wald test

Examples

```r
Conduct weak invariance testing manually by using fixed-factor
method of scale identification

library(lavaan)

conf <- "
f1 =~ NA*x1 + x2 + x3
f2 =~ NA*x4 + x5 + x6
f1 ~~ c(1, 1)*f1
f2 ~~ c(1, 1)*f2
"

weak <- "
```

```R
```
f1 = NA*x1 + x2 + x3
f2 = NA*x4 + x5 + x6
f1 = c(1, NA)*f1
f2 = c(1, NA)*f2

configural <- cfa(conf, data = HolzingerSwineford1939, std.lv = TRUE, group="school")
weak <- cfa(weak, data = HolzingerSwineford1939, group="school", group.equal="loadings")
models <- list(fit.configural = configural, fit.loadings = weak)
partialInvariance(models, "metric")

## Not run:
partialInvariance(models, "metric", free = "x5") # "x5" is free across groups in advance
partialInvariance(models, "metric", fix = "x4") # "x4" is fixed across groups in advance

## Use the result from the measurementInvariance function
HW.model <- ' visual =~ x1 + x2 + x3  
textual =~ x4 + x5 + x6  
speed =~ x7 + x8 + x9 '
models2 <- measurementInvariance(model = HW.model, data=HolzingerSwineford1939,  
                group="school")
partialInvariance(models2, "scalar")

## Conduct weak invariance testing manually by using fixed-factor
## method of scale identification for dichotomous variables

f <- rnorm(1000, 0, 1)
ul <- 0.9*f + rnorm(1000, 1, sqrt(0.19))
u2 <- 0.8*f + rnorm(1000, 1, sqrt(0.36))
u3 <- 0.6*f + rnorm(1000, 1, sqrt(0.64))
u4 <- 0.7*f + rnorm(1000, 1, sqrt(0.51))
ul <- as.numeric(cut(u1, breaks = c(-Inf, 0, Inf)))
u2 <- as.numeric(cut(u2, breaks = c(-Inf, 0.5, Inf)))
u3 <- as.numeric(cut(u3, breaks = c(-Inf, 0, Inf)))
u4 <- as.numeric(cut(u4, breaks = c(-Inf, -0.5, Inf)))
g <- rep(c(1, 2), 500)
dat2 <- data.frame(u1, u2, u3, u4, g)

configural2 <- "
f1 = NA*u1 + u2 + u3 + u4  
ul | c(t11, t11)*t1  
u2 | c(t21, t21)*t1  
u3 | c(t31, t31)*t1  
u4 | c(t41, t41)*t1  
f1 =~ c(1, 1)*f1  
f1 ~ c(0, NA)*u1  
u1 =~ c(1, 1)*u1  
u2 =~ c(1, NA)*u2  
u3 =~ c(1, NA)*u3  
u4 =~ c(1, NA)*u4  
"
outConfigural2 <- cfa(configural2, data = dat2, group = "g", parameterization = "theta", estimator = "wlsmv", ordered = c("u1", "u2", "u3", "u4"))

weak2 <- 
  f1 =~ NA*u1 + c(f11, f11)*u1 + c(f21, f21)*u2 + c(f31, f31)*u3 + c(f41, f41)*u4
  u1 | c(t11, t11)*t1
  u2 | c(t21, t21)*t1
  u3 | c(t31, t31)*t1
  u4 | c(t41, t41)*t1
  f1 ~~ c(1, NA)*f1
  f1 ~ c(0, NA)*1
  u1 ~~ c(1, NA)*u1
  u2 ~~ c(1, NA)*u2
  u3 ~~ c(1, NA)*u3
  u4 ~~ c(1, NA)*u4

outWeak2 <- cfa(weak2, data = dat2, group = "g", parameterization = "theta", estimator = "wlsmv", ordered = c("u1", "u2", "u3", "u4"))

modelsCat <- list(fit.configural = outConfigural2, fit.loadings = outWeak2)

partialInvarianceCat(modelsCat, type = "metric")

partialInvarianceCat(modelsCat, type = "metric", free = "u2")
partialInvarianceCat(modelsCat, type = "metric", fix = "u3")

## Use the result from the measurementInvarianceCat function

model <- ' f1 =- u1 + u2 + u3 + u4
          f2 =- u5 + u6 + u7 + u8'

modelsCat2 <- measurementInvarianceCat(model = model, data = datCat, group = "g", parameterization = "theta", estimator = "wlsmv", strict = TRUE)

partialInvarianceCat(modelsCat2, type = "scalar")

## End(Not run)

---

### PAVranking

**Parcel-Allocation Variability in Model Ranking**

### Description

This function quantifies and assesses the consequences of parcel-allocation variability for model ranking of structural equation models (SEMs) that differ in their structural specification but share the same parcel-level measurement specification (see Sterba & Rights, 2016). This function calls `parcelAllocation`—which can be used with only one SEM in isolation—to fit two (assumed)
PAVranking

nested models to each of a specified number of random item-to-parcel allocations. Output includes summary information about the distribution of model selection results (including plots) and the distribution of results for each model individually, across allocations within-sample. Note that this function can be used when selecting among more than two competing structural models as well (see instructions below involving the seed argument).

Usage

PAVranking(model0, model1, data, parcel.names, item.syntax, nAlloc = 100, fun = "sem", alpha = 0.05, bic.crit = 10, fit.measures = c("chisq", "df", "cfi", "tli", "rmsea", "srmr", "logl", "aic", "bic", "bic2"), ..., show.progress = FALSE, iseed = 12345, warn = FALSE)

Arguments

model0, model1 lavaan model syntax specifying nested models (model0 within model1) to be fitted to the same parcelled data. Note that there can be a mixture of items and parcels (even within the same factor), in case certain items should never be parcelled. Can be a character string or parameter table. Also see lavaanify for more details.

data A data.frame containing all observed variables appearing in the model, as well as those in the item.syntax used to create parcels. If the data have missing values, multiple imputation before parceling is recommended: submit a stacked data set (with a variable for the imputation number, so they can be separated later) and set do.fit = FALSE to return the list of data.frames (one per allocation), each of which is a stacked, imputed data set with parcels.

parcel.names character vector containing names of all parcels appearing as indicators in model.

item.syntax lavaan model syntax specifying the model that would be fit to all of the un-parcelled items, including items that should be randomly allocated to parcels appearing in model.

nAlloc The number of random items-to-parcels allocations to generate.

fun character string indicating the name of the lavaan function used to fit model to data. Can only take the values "lavaan", "sem", "cfa", or "growth".

alpha Alpha level used as criterion for significance.

bic.crit Criterion for assessing evidence in favor of one model over another. See Rafferty (1995) for guidelines (default is "very strong evidence" in favor of the model with lower BIC).

fit.measures character vector containing names of fit measures to request from each fitted lavaan model. See the output of fitMeasures for a list of available measures.

... Additional arguments to be passed to lavaanList. See also lavOptions

show.progress If TRUE, show a txtProgressBar indicating how fast each model-fitting iterates over allocations.

iseed (Optional) Random seed used for parceling items. When the same random seed is specified and the program is re-run, the same allocations will be generated. The seed argument can be used to assess parcel-allocation variability.
in model ranking when considering more than two models. For each pair of models under comparison, the program should be rerun using the same random seed. Doing so ensures that multiple model comparisons will employ the same set of parcel datasets. *Note:* When using parallel options, you must first type `RNGkind("L'Ecuyer-CMRG")` into the R Console, so that the seed will be controlled across cores.

**warn** Whether to print warnings when fitting models to each allocation

### Details

This is based on a SAS macro *ParcelAlloc* (Sterba & MacCallum, 2010). The `PAVranking` function produces results discussed in Sterba and Rights (2016) relevant to the assessment of parcel-allocation variability in model selection and model ranking. Specifically, the `PAVranking` function first calls `parcelAllocation` to generate a given number (`nAlloc`) of item-to-parcel allocations, fitting both specified models to each allocation, and providing summary of `PAV` for each model. Additionally, `PAVranking` provides the following new summaries:

- `PAV` in model selection index values and model ranking between Models `model0` and `model1`
- The proportion of allocations that converged and the proportion of proper solutions (results are summarized for allocations with both converged and proper allocations only).

For further details on the benefits of the random allocation of items to parcels, see Sterba (2011) and Sterba and MacCallum (2010).

To test whether nested models have equivalent fit, results can be pooled across allocations using the same methods available for pooling results across multiple imputations of missing data (see *Examples*).

*Note:* This function requires the `lavaan` package. Missing data must be coded as `NA`. If the function returns "Error in plot.new() : figure margins too large", the user may need to increase size of the plot window (e.g., in RStudio) and rerun the function.

### Value

- `model0.results` Results returned by `parcelAllocation` for `model0` (see the Value section).
- `model1.results` Results returned by `parcelAllocation` for `model1` (see the Value section).
- `model0.v.model1` A list of model-comparison results, including the following:
  - `LRT_Summary`: The average likelihood ratio test across allocations, as well as the `SD`, minimum, maximum, range, and the proportion of allocations for which the test was significant.
  - `Fit_Index_Differences`: Differences in fit indices, organized by what proportion favored each model and among those, what the average difference was.
  - `Favored_by_BIC`: The proportion of allocations in which each model met the criterion (`bic.crit`) for a substantial difference in fit.
  - `Convergence_Summary`: The proportion of allocations in which each model (and both models) converged on a solution.

Histograms are also printed to the current plot-output device.
Author(s)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References


See Also
parcelAllocation for fitting a single model, poolMAlloc for choosing the number of allocations

Examples

```r
Specify the item-level model (if NO parcels were created)
This must apply to BOTH competing models

item.syntax <- c(paste0("f1 =~ f1item", 1:9),
 paste0("f2 =~ f2item", 1:9))
cat(item.syntax, sep = "\n")

Below, we reduce the size of this same model by
applying different parceling schemes

Specify a 2-factor CFA with correlated factors, using 3-indicator parcels
mod1 <- 'f1 =~ par1 + par2 + par3
def2 =~ par4 + par5 + par6
'

Specify a more restricted model with orthogonal factors
mod0 <- '
f1 =~ par1 + par2 + par3
def2 =~ par4 + par5 + par6
f1 ~~ 0*f2
'

names of parcels (must apply to BOTH models)
(parcel.names <- paste0("par", 1:6))

Not run:
```
## override default random-number generator to use parallel options
RNGkind("L'Ecuyer-CMRG")

```
PAVranking(model0 = mod0, model1 = mod1, data = simParcel, nAlloc = 100,
 parcel.names = parcel.names, item.syntax = item.syntax,
 std.lv = TRUE, # any addition lavaan arguments
 parallel = "snow") # parallel options
```

## POOL RESULTS by treating parcel allocations as multiple imputations.  
## Details provided in Sterba & Rights (2016); see ?poolMA.
```
dataList <- parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100,
 parcel.names = parcel.names,
 item.syntax = item.syntax,
 do.fit = FALSE)
```
```
now fit each model to each data set
fit0 <- cfa.mi(mod0, data = dataList, std.lv = TRUE)
fit1 <- cfa.mi(mod1, data = dataList, std.lv = TRUE)
anova(fit0, fit1) # pooled test statistic comparing models
class?lavaan.mi # find more methods for pooling results
```

## End(Not run)

### permuteMeasEq

#### Permutation Randomization Tests of Measurement Equivalence and Differential Item Functioning (DIF)

**Description**

The function `permuteMeasEq` provides tests of hypotheses involving measurement equivalence, in one of two frameworks: multigroup CFA or MIMIC models.

**Usage**

```
permuteMeasEq(nPermute, modelType = c("mgcfa", "mimic"), con, uncon = NULL,
 null = NULL, param = NULL, freeParam = NULL, covariates = NULL,
 AFI = NULL, moreAFIs = NULL, maxSparse = 10, maxNonconv = 10,
 showProgress = TRUE, warn = -1, datafun, extra,
 parallelType = c("none", "multicore", "snow"), ncpus = NULL, cl = NULL,
 iseed = 12345)
```

**Arguments**

- `nPermune`  
  An integer indicating the number of random permutations used to form empirical distributions under the null hypothesis.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>modelType</code></td>
<td>A character string indicating type of model employed: multiple-group CFA (&quot;mgcfa&quot;) or MIMIC (&quot;mimic&quot;).</td>
</tr>
<tr>
<td><code>con</code></td>
<td>The constrained lavaan object, in which the parameters specified in <code>param</code> are constrained to equality across all groups when <code>modelType = &quot;mgcfa&quot;</code>, or which regression paths are fixed to zero when <code>modelType = &quot;mimic&quot;</code>. In the case of testing <em>configural</em> invariance when <code>modelType = &quot;mgcfa&quot;</code>, <code>con</code> is the configural model (implicitly, the unconstrained model is the saturated model, so use the defaults <code>uncon = NULL</code> and <code>param = NULL</code>). When <code>modelType = &quot;mimic&quot;</code>, <code>con</code> is the MIMIC model in which the covariate predicts the latent construct(s) but no indicators (unless they have already been identified as DIF items).</td>
</tr>
<tr>
<td><code>uncon</code></td>
<td>Optional. The unconstrained lavaan object, in which the parameters specified in <code>param</code> are freely estimated in all groups. When <code>modelType = &quot;mgcfa&quot;</code>, only in the case of testing <em>configural</em> invariance should <code>uncon = NULL</code>. When <code>modelType = &quot;mimic&quot;</code>, any non-NULL <code>uncon</code> is silently set to NULL.</td>
</tr>
<tr>
<td><code>null</code></td>
<td>Optional. A lavaan object, in which an alternative null model is fit (besides the default independence model specified by lavaan) for the calculation of incremental fit indices. See Widamin &amp; Thompson (2003) for details. If NULL, lavaan’s default independence model is used.</td>
</tr>
<tr>
<td><code>param</code></td>
<td>An optional character vector or list of character vectors indicating which parameters the user would test for DIF following a rejection of the omnibus null hypothesis tested using (more)AFIs. Note that <code>param</code> does not guarantee certain parameters are constrained in <code>con</code>; that is for the user to specify when fitting the model. If users have any &quot;anchor items&quot; that they would never intend to free across groups (or levels of a covariate), these should be excluded from <code>param</code>; exceptions to a type of parameter can be specified in <code>freeParam</code>. When <code>modelType = &quot;mgcfa&quot;</code>, <code>param</code> indicates which parameters of interest are constrained across groups in <code>con</code> and are unconstrained in <code>uncon</code>. Parameter names must match those returned by <code>names(coef(con))</code>, but omitting any group-specific suffixes (e.g., &quot;f1<del>1&quot; rather than &quot;f1</del>1.g2&quot;) or user-specified labels (that is, the parameter names must follow the rules of lavaan’s <em>model.syntax</em>). Alternatively (or additionally), to test all constraints of a certain type (or multiple types) of parameter in <code>con</code>, <code>param</code> may take any combination of the following values: &quot;loadings&quot;, &quot;intercepts&quot;, &quot;thresholds&quot;, &quot;residuals&quot;, &quot;residual.covariances&quot;, &quot;means&quot;, &quot;lv.variances&quot;, and/or &quot;lv.covariances&quot;. When <code>modelType = &quot;mimic&quot;</code>, <code>param</code> must be a vector of individual parameters or a list of character strings to be passed one-at-a-time to <code>lavTestScore(object = con, add = param[i])</code>, indicating which (sets of) regression paths fixed to zero in <code>con</code> that the user would consider freeing (i.e., exclude anchor items). If <code>modelType = &quot;mimic&quot;</code> and <code>param</code> is a list of character strings, the multivariate test statistic will be saved for each list element instead of 1-df modification indices for each individual parameter, and <code>names(param)</code> will name the rows of the MI.obs slot (see <em>permuteMeasEq</em>). Set <code>param = NULL</code> (default) to avoid collecting modification indices for any follow-up tests.</td>
</tr>
<tr>
<td><code>freeParam</code></td>
<td>An optional character vector, silently ignored when <code>modelType = &quot;mimic&quot;</code>. If <code>param</code> includes a type of parameter (e.g., &quot;loadings&quot;), <code>freeParam</code> indicates exceptions (i.e., anchor items) that the user would not intend to free across groups and should therefore be ignored when calculating p values adjusted for</td>
</tr>
</tbody>
</table>
the number of follow-up tests. Parameter types that are already unconstrained across groups in the fitted con model (i.e., a partial invariance model) will automatically be ignored, so they do not need to be specified in freeParam. Parameter names must match those returned by names(coef(con)), but omitting any group-specific suffixes (e.g., "f1~1" rather than "f1~1.g2") or user-specified labels (that is, the parameter names must follow the rules of lavaan model.syntax).

covariates
An optional character vector, only applicable when modelType = "mimic". The observed data are partitioned into columns indicated by covariates, and the rows are permuted simultaneously for the entire set before being merged with the remaining data. Thus, the covariance structure is preserved among the covariates, which is necessary when (e.g.) multiple dummy codes are used to represent a discrete covariate or when covariates interact. If covariates = NULL when modelType = "mimic", the value of covariates is inferred by searching param for predictors (i.e., variables appearing after the "~" operator).

AFIs A character vector indicating which alternative fit indices (or chi-squared itself) are to be used to test the multiparameter omnibus null hypothesis that the constraints specified in con hold in the population. Any fit measures returned by fitMeasures may be specified (including constants like "df", which would be nonsensical). If both AFIs and moreAFIs are NULL, only "chisq" will be returned.

moreAFIs Optional. A character vector indicating which (if any) alternative fit indices returned by moreFitIndices are to be used to test the multiparameter omnibus null hypothesis that the constraints specified in con hold in the population.

maxSparse Only applicable when modelType = "mgcfa" and at least one indicator is ordered. An integer indicating the maximum number of consecutive times that randomly permuted group assignment can yield a sample in which at least one category (of an ordered indicator) is unobserved in at least one group, such that the same set of parameters cannot be estimated in each group. If such a sample occurs, group assignment is randomly permuted again, repeatedly until a sample is obtained with all categories observed in all groups. If maxSparse is exceeded, NA will be returned for that iteration of the permutation distribution.

maxNonconv An integer indicating the maximum number of consecutive times that a random permutation can yield a sample for which the model does not converge on a solution. If such a sample occurs, permutation is attempted repeatedly until a sample is obtained for which the model does converge. If maxNonconv is exceeded, NA will be returned for that iteration of the permutation distribution, and a warning will be printed when using show or summary.

showProgress Logical. Indicating whether to display a progress bar while permuting. Silently set to FALSE when using parallel options.

warn Sets the handling of warning messages when fitting model(s) to permuted data sets. See options.

datafun An optional function that can be applied to the data (extracted from con) after each permutation, but before fitting the model(s) to each permutation. The datafun function must have an argument named data that accepts a data.frame, and it must return a data.frame containing the same column names. The column order may differ, the values of those columns may differ (so be careful!),
and any additional columns will be ignored when fitting the model, but an error will result if any column names required by the model syntax do not appear in the transformed data set. Although available for any modelType, datafun may be useful when using the MIMIC method to test for nonuniform DIF (metric/weak invariance) by using product indicators for a latent factor representing the interaction between a factor and one of the covariates, in which case the product indicators would need to be recalculated after each permutation of the covariates. To access other R objects used within permuteMeasEq, the arguments to datafun may also contain any subset of the following: "con", "uncon", "null", "param", "freeParam", "covariates", "AFIs", "moreAFIs", "maxSparse", "maxNonconv", and/or "iseed". The values for those arguments will be the same as the values supplied to permuteMeasEq.

extra
An optional function that can be applied to any (or all) of the fitted lavaan objects (con, uncon, and/or null). This function will also be applied after fitting the model(s) to each permuted data set. To access the R objects used within permuteMeasEq, the arguments to extra must be any subset of the following: "con", "uncon", "null", "param", "freeParam", "covariates", "AFIs", "moreAFIs", "maxSparse", "maxNonconv", and/or "iseed". The values for those arguments will be the same as the values supplied to permuteMeasEq. The extra function must return a named numeric vector or a named list of scalars (i.e., a list of numeric vectors of length == 1). Any unnamed elements (e.g., "" or NULL) of the returned object will result in an error.

parallelType
The type of parallel operation to be used (if any). The default is "none". Forking is not possible on Windows, so if "multicore" is requested on a Windows machine, the request will be changed to "snow" with a message.

ncpus
Integer: number of processes to be used in parallel operation. If NULL (the default) and parallelType c("multicore", "snow"), the default is one less than the maximum number of processors detected by detectCores. This default is also silently set if the user specifies more than the number of processors detected.

c1
An optional parallel or snow cluster for use when parallelType = "snow". If NULL, a "PSOCK" cluster on the local machine is created for the duration of the permuteMeasEq call. If a valid makeCluster object is supplied, parallelType is silently set to "snow", and ncpus is silently set to length(c1).

iseed
Integer: Only used to set the states of the RNG when using parallel options, in which case RNGkind is set to "L'Ecuyer-CMRG" with a message. See clusterSetRNGStream and Section 6 of vignette("parallel", "parallel") for more details. If user supplies an invalid value, iseed is silently set to the default (12345). To set the state of the RNG when not using parallel options, call set.seed before calling permuteMeasEq.

Details
The function permuteMeasEq provides tests of hypotheses involving measurement equivalence, in one of two frameworks:

1. For multiple-group CFA models, provide a pair of nested lavaan objects, the less constrained of which (uncon) freely estimates a set of measurement parameters (e.g., factor loadings, intercepts, or thresholds; specified in param) in all groups, and the more constrained of which
permuteMeasEq

(con) constrains those measurement parameters to equality across groups. Group assignment is repeatedly permuted and the models are fit to each permutation, in order to produce an empirical distribution under the null hypothesis of no group differences, both for (a) changes in user-specified fit measures (see AFIs and moreAFIs) and for (b) the maximum modification index among the user-specific equality constraints. Configural invariance can also be tested by providing that fitted lavaan object to con and leaving uncon = NULL, in which case param must be NULL as well.

2. In MIMIC models, one or a set of continuous and/or discrete covariates can be permuted, and a constrained model is fit to each permutation in order to provide a distribution of any fit measures (namely, the maximum modification index among fixed parameters in param) under the null hypothesis of measurement equivalence across levels of those covariates.

In either framework, modification indices for equality constraints or fixed parameters specified in param are calculated from the constrained model (con) using the function lavTestScore.

For multiple-group CFA models, the multiparameter omnibus null hypothesis of measurement equivalence/invariance is that there are no group differences in any measurement parameters (of a particular type). This can be tested using the anova method on nested lavaan objects, as seen in the output of measurementInvariance, or by inspecting the change in alternative fit indices (AFIs) such as the CFI. The permutation randomization method employed by permuteMeasEq generates an empirical distribution of any AFIs under the null hypothesis, so the user is not restricted to using fixed cutoffs proposed by Cheung & Rensvold (2002), Chen (2007), or Meade, Johnson, & Braddy (2008).

If the multiparameter omnibus null hypothesis is rejected, partial invariance can still be established by freeing invalid equality constraints, as long as equality constraints are valid for at least two indicators per factor. Modification indices can be calculated from the constrained model (con), but multiple testing leads to inflation of Type I error rates. The permutation randomization method employed by permuteMeasEq creates a distribution of the maximum modification index if the null hypothesis is true, which allows the user to control the familywise Type I error rate in a manner similar to Tukey’s q (studentized range) distribution for the Honestly Significant Difference (HSD) post hoc test.

For MIMIC models, DIF can be tested by comparing modification indices of regression paths to the permutation distribution of the maximum modification index, which controls the familywise Type I error rate. The MIMIC approach could also be applied with multiple-group models, but the grouping variable would not be permuted; rather, the covariates would be permuted separately within each group to preserve between-group differences. So whether parameters are constrained or unconstrained across groups, the MIMIC approach is only for testing null hypotheses about the effects of covariates on indicators, controlling for common factors.

In either framework, lavaan’s group.label argument is used to preserve the order of groups seen in con when permuting the data.

Value

The permuteMeasEq object representing the results of testing measurement equivalence (the multiparameter omnibus test) and DIF (modification indices), as well as diagnostics and any extra output.
Author(s)
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)

References

Papers about permutation tests of measurement equivalence:

Additional reading:

See Also
TukeyHSD, lavTestScore, measurementInvariance, measurementInvarianceCat

Examples

## Not run:

# Multiple-Group CFA ##

# create 3-group data in lavaan example(cfa) data
HS <- lavaan::HolzingerSwineford1939
HS$ageGroup <- ifelse(HS$ageyr < 13, "preteen",
  ifelse(HS$ageyr > 13, "teen", "thirteen"))

# specify and fit an appropriate null model for incremental fit indices
mod.null <- c(paste0("x", 1:9, " ~ c(T", 1:9, ", T", 1:9, ", T", 1:9, ", T", 1:9, ")x1"),
```r
paste0("x", 1:9, " -- c(L", 1:9, ", L", 1:9, ", L", 1:9, ")\times", 1:9))
fit.null <- cfa(mod.null, data = HS, group = "ageGroup")

fit target model with varying levels of measurement equivalence
mod.config <- 'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

fit.config <- cfa(mod.config, data = HS, std.lv = TRUE, group = "ageGroup")
fit.metric <- cfa(mod.config, data = HS, std.lv = TRUE, group = "ageGroup",
 group.equal = "loadings")
fit.scalar <- cfa(mod.config, data = HS, std.lv = TRUE, group = "ageGroup",
 group.equal = c("loadings","intercepts"))

##
Permutation Method
##

fit indices of interest for multiparameter omnibus test
myAFIs <- c("chisq","cfi","rmsea","mfi","aic")
moreAFIs <- c("gammaHat","adjGammaHat")

Use only 20 permutations for a demo. In practice,
use > 1000 to reduce sampling variability of estimated p values

test configural invariance
set.seed(12345)
out.config <- permuteMeasEq(nPermute = 20, con = fit.config)
out.config

test metric equivalence
set.seed(12345) # same permutations
out.metric <- permuteMeasEq(nPermute = 20, uncon = fit.config, con = fit.metric,
 param = "loadings", AFIs = myAFIs,
 moreAFIs = moreAFIs, null = fit.null)
summary(out.metric, nd = 4)

test scalar equivalence
set.seed(12345) # same permutations
out.scalar <- permuteMeasEq(nPermute = 20, uncon = fit.metric, con = fit.scalar,
 param = "intercepts", AFIs = myAFIs,
 moreAFIs = moreAFIs, null = fit.null)
summary(out.scalar)

Not much to see without significant DIF.
Try using an absurdly high alpha level for illustration.
outsum <- summary(out.scalar, alpha = .50)

notice that the returned object is the table of DIF tests
outsum

visualize permutation distribution
hist(out.config, AFI = "chisq")
```

hist(out.metric, AFI = "chisq", nd = 2, alpha = .01, 
legendArgs = list(x = "topright"))
hist(out.scalar, AFI = "cfi", printLegend = FALSE)

############################################################ Extra Output

## function to calculate expected change of Group-2 and -3 latent means if
## each intercept constraint were released
extra <- function(con) {
  output <- list()
  output["x1.vis2"] <- lavTestScore(con, release = 19:20, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[70]
  output["x1.vis3"] <- lavTestScore(con, release = 19:20, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[106]
  output["x2.vis2"] <- lavTestScore(con, release = 21:22, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[70]
  output["x2.vis3"] <- lavTestScore(con, release = 21:22, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[106]
  output["x3.vis2"] <- lavTestScore(con, release = 23:24, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[70]
  output["x3.vis3"] <- lavTestScore(con, release = 23:24, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[106]
  output["x4.txt2"] <- lavTestScore(con, release = 25:26, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[71]
  output["x4.txt3"] <- lavTestScore(con, release = 25:26, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[107]
  output["x5.txt2"] <- lavTestScore(con, release = 27:28, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[71]
  output["x5.txt3"] <- lavTestScore(con, release = 27:28, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[107]
  output["x6.txt2"] <- lavTestScore(con, release = 29:30, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[71]
  output["x6.txt3"] <- lavTestScore(con, release = 29:30, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[107]
  output["x7.spd2"] <- lavTestScore(con, release = 31:32, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[72]
  output["x7.spd3"] <- lavTestScore(con, release = 31:32, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[108]
  output["x8.spd2"] <- lavTestScore(con, release = 33:34, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[72]
  output["x8.spd3"] <- lavTestScore(con, release = 33:34, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[108]
  output["x9.spd2"] <-lavTestScore(con, release = 35:36, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[72]
  output["x9.spd3"] <- lavTestScore(con, release = 35:36, univariate = FALSE, 
                                    epc = TRUE, warn = FALSE)$epc$epc[108]
  output
}

## observed EPC
extra(fit.scalar)
## permutation results, including extra output

```r
set.seed(12345) # same permutations
out.scalar <- permuteMeasEq(nPermute = 20, uncon = fit.metric, con = fit.scalar,
 param = "intercepts", AFIs = myAFIs,
 moreAFIs = moreAFIs, null = fit.null, extra = extra)
summarize extra output
summary(out.scalar, extra = TRUE)
```

## MIMIC ##

### Specify Restricted Factor Analysis (RFA) model, equivalent to MIMIC, but
### the factor covaries with the covariate instead of being regressed on it.
### The covariate defines a single-indicator construct, and the
### double-mean-centered products of the indicators define a latent
### interaction between the factor and the covariate.
```r
mod.mimic <-
visual =~ x1 + x2 + x3
age =~ ageyr
age.by.vis =~ x1.ageyr + x2.ageyr + x3.ageyr
x1 ~~ x1.ageyr
x2 ~~ x2.ageyr
x3 ~~ x3.ageyr
```

```r
HS.orth <- indProd(var1 = paste0("x", 1:3), var2 = "ageyr", match = FALSE,
data = HS[, c("ageyr", paste0("x", 1:3))])
fit.mimic <- cfa(mod.mimic, data = HS.orth, meanstructure = TRUE)
summary(fit.mimic, stand = TRUE)
```

### Whereas MIMIC models specify direct effects of the covariate on an indicator,
### DIF can be tested in RFA models by specifying free loadings of an indicator
### on the covariate's construct (uniform DIF, scalar invariance) and the
### interaction construct (nonuniform DIF, metric invariance).
```r
param <- as.list(paste0("age + age.by.vis =~ x", 1:3))
names(param) <- paste0("x", 1:3)
param <- as.list(paste0("x", 1:3, " ~ age + age.by.vis")) # equivalent
```

### test both parameters simultaneously for each indicator
```r
do.call(rbind, lapply(param, function(x) lavTestScore(fit.mimic, add = x)$test))
```

### or test each parameter individually
```r
lavTestScore(fit.mimic, add = as.character(param))
```

### Permutation Method

### function to recalculate interaction terms after permuting the covariate
datafun <- function(data) {
  d <- data[, c(paste0("x", 1:3), "ageyr")]
  indProd(var1 = paste0("x", 1:3), var2 = "ageyr", match = FALSE, data = d)
permuteMeasEq-class

Class for the Results of Permutation Randomization Tests of Measurement Equivalence and DIF

Description

This class contains the results of tests of Measurement Equivalence and Differential Item Functioning (DIF).

Usage

```r
S4 method for signature 'permuteMeasEq'
show(object)

S4 method for signature 'permuteMeasEq'
summary(object, alpha = 0.05, nd = 3, extra = FALSE)

S4 method for signature 'permuteMeasEq'
hist(x, ..., AFI, alpha = 0.05, nd = 3, extra = FALSE)
```

Arguments

- **object, x** object of class permuteMeasEq
- **alpha** alpha level used to draw confidence limits in hist and flag significant statistics in summary output
- **nd** number of digits to display
- **extra** logical indicating whether the summary output should return permutation-based p values for each statistic returned by the extra function. If FALSE (default), summary will return permutation-based p values for each modification index.
- **...** Additional arguments to pass to `hist`
- **AFI** character indicating the fit measure whose permutation distribution should be plotted
- **printLegend** logical. If TRUE (default), a legend will be printed with the histogram
- **legendArgs** list of arguments passed to the `legend` function. The default argument is a list placing the legend at the top-left of the figure.
Value

- The show method prints a summary of the multiparameter omnibus test results, using the user-specified AFIs. The parametric $(\Delta)\chi^2$ test is also displayed.
- The summary method prints the same information from the show method, but when extra = FALSE (the default) it also provides a table summarizing any requested follow-up tests of DIF using modification indices in slot MI.obs. The user can also specify an alpha level for flagging modification indices as significant, as well as nd (the number of digits displayed). For each modification index, the $p$ value is displayed using a central $\chi^2$ distribution with the $df$ shown in that column. Additionally, a $p$ value is displayed using the permutation distribution of the maximum index, which controls the familywise Type I error rate in a manner similar to Tukey’s studentized range test. If any indices are flagged as significant using the tukey.p.value, then a message is displayed for each flagged index. The invisibly returned data.frame is the displayed table of modification indices, unless permuteMeasEq was called with param = NULL, in which case the invisibly returned object is object. If extra = TRUE, the permutation-based $p$ values for each statistic returned by the extra function are displayed and returned in a data.frame instead of the modification indices requested in the param argument.
- The hist method returns a list of length == 2, containing the arguments for the call to hist and the arguments to the call for legend, respectively. This list may facilitate creating a customized histogram of AFI.dist, MI.dist, or extra.dist

Slots

PT A data.frame returned by a call to parTable on the constrained model
modelType A character indicating the specified modelType in the call to permuteMeasEq
ANOVA A numeric vector indicating the results of the observed $(\Delta)\chi^2$ test, based on the central $\chi^2$ distribution
AFI.obs A vector of observed (changes in) user-selected fit measures
AFI.dist The permutation distribution(s) of user-selected fit measures. A data.frame with n.Permutations rows and one column for each AFI.obs.
AFI.pval A vector of $p$ values (one for each element in slot AFI.obs) calculated using slot AFI.dist, indicating the probability of observing a change at least as extreme as AFI.obs if the null hypothesis were true
MI.obs A data.frame of observed Lagrange Multipliers (modification indices) associated with the equality constraints or fixed parameters specified in the param argument. This is a subset of the output returned by a call to lavTestScore on the constrained model.
MI.dist The permutation distribution of the maximum modification index (among those seen in slot MI.obs$X2) at each permutation of group assignment or of covariates
extra.obs If permuteMeasEq was called with an extra function, the output when applied to the original data is concatenated into this vector
extra.dist A data.frame, each column of which contains the permutation distribution of the corresponding statistic in slot extra.obs
n.Permutations An integer indicating the number of permutations requested by the user
n.Converged An integer indicating the number of permutation iterations which yielded a converged solution
plausibleValues

n.nonConverged An integer vector of length n.Permutations indicating how many times group assignment was randomly permuted (at each iteration) before converging on a solution.

n.Sparse Only relevant with ordered indicators when modelType == "mgcfa". An integer vector of length n.Permutations indicating how many times group assignment was randomly permuted (at each iteration) before obtaining a sample with all categories observed in all groups.

oldSeed An integer vector storing the value of .Random.seed before running permuteMeasEq. Only relevant when using a parallel/multicore option and the original RNGkind() !="L'Ecuyer-CMRG". This enables users to restore their previous .Random.seed state, if desired, by running: .Random.seed[-1] <- permutedResults@oldSeed[-1]

Objects from the Class

Objects can be created via the permuteMeasEq function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

See Also

permuteMeasEq

Examples

# See the example from the permuteMeasEq function

plausibleValues

Plausible-Values Imputation of Factor Scores Estimated from a lavaan Model

Description

Draw plausible values of factor scores estimated from a fitted lavaan model, then treat them as multiple imputations of missing data using runMI.

Usage

plausibleValues(object, nDraws = 20L, seed = 12345, omit.imps = c("no.conv", "no.se"), ...)

Arguments

- **object**: A fitted model of class `lavaan`, `blavaan`, or `lavaan.mi`.
- **nDraws**: integer specifying the number of draws, analogous to the number of imputed data sets. If `object` is of class `lavaan.mi`, this will be the number of draws taken per imputation. If `object` is of class `blavaan`, `nDraws` cannot exceed `blavInspect(object, "niter") * blavInspect(bfitc, "n.chains")` (number of MCMC samples from the posterior). The drawn samples will be evenly spaced (after permutation for `target="stan"`), using `ceiling` to resolve decimals.
- **seed**: integer passed to `set.seed()`.
- **omit.imps**: character vector specifying criteria for omitting imputations when `object` is of class `lavaan.mi`. Can include any of c("no.conv", "no.se", "no.npd").
- **...**: Optional arguments to pass to `lavPredict`. `assemble` will be ignored because multiple groups are always assembled into a single data.frame per draw. `type` will be ignored because it is set internally to type="lv".

Details

Because latent variables are unobserved, they can be considered as missing data, which can be imputed using Monte Carlo methods. This may be of interest to researchers with sample sizes too small to fit their complex structural models. Fitting a factor model as a first step, `lavPredict` provides factor-score estimates, which can be treated as observed values in a path analysis (Step 2). However, the resulting standard errors and test statistics could not be trusted because the Step-2 analysis would not take into account the uncertainty about the estimated factor scores. Using the asymptotic sampling covariance matrix of the factor scores provided by `lavPredict`, `plausibleValues` draws a set of `nDraws` imputations from the sampling distribution of each factor score, returning a list of data sets that can be treated like multiple imputations of incomplete data. If the data were already imputed to handle missing data, `plausibleValues` also accepts an object of class `lavaan.mi`, and will draw `nDraws` plausible values from each imputation. Step 2 would then take into account uncertainty about both missing values and factor scores. Bayesian methods can also be used to generate factor scores, as available with the `blavaan` package, in which case plausible values are simply saved parameters from the posterior distribution. See Asparouhov and Muthen (2010) for further technical details and references.

Each returned data.frame includes a `case.idx` column that indicates the corresponding rows in the data set to which the model was originally fitted (unless the user requests only Level-2 variables). This can be used to merge the plausible values with the original observed data, but users should note that including any new variables in a Step-2 model might not accurately account for their relationship(s) with factor scores because they were not accounted for in the Step-1 model from which factor scores were estimated.

If `object` is a multilevel `lavaan` model, users can request plausible values for latent variables at particular levels of analysis by setting the `lavPredict` argument `level=1` or `level=2`. If the `level` argument is not passed via ..., then both levels are returned in a single merged data set per draw. For multilevel models, each returned data.frame also includes a column indicating to which cluster each row belongs (unless the user requests only Level-2 variables).
Value

A list of length nDraws, each of which is a data.frame containing plausible values, which can be treated as a list of imputed data sets to be passed to runMI (see Examples). If object is of class lavaan.mi, the list will be of length nDraws*m, where m is the number of imputations.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References


See Also

runMI, lavaan.mi

Examples

```r
example from ?cfa and ?lavPredict help pages
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit1 <- cfa(HS.model, data = HolzingerSwineford1939)
fs1 <- plausibleValues(fit1, nDraws = 3,
lavPredict() can add only the modeled data
append.data = TRUE)
lapply(fs1, head)

To merge factor scores to original data.frame (not just modeled data)
fs1 <- plausibleValues(fit1, nDraws = 3)
idx <- lavInspect(fit1, "case.idx") # row index for each case
if (is.list(idx)) idx <- do.call(c, idx) # for multigroup models
data(HolzingerSwineford1939) # copy data to workspace
HolzingerSwineford1939$case.idx <- idx # add row index as variable
loop over draws to merge original data with factor scores
for (i in seq_along(fs1)) {
 fs1[[i]] <- merge(fs1[[i]], HolzingerSwineford1939, by = "case.idx")
}
lapply(fs1, head)

multiple-group analysis, in 2 steps
step1 <- cfa(HS.model, data = HolzingerSwineford1939, group = "school",
group.equal = c("loadings","intercepts"))
PV.list <- plausibleValues(step1)
subsequent path analysis
```
path.model <- 'visual ~ c(t1, t2)*textual + c(s1, s2)*speed '
## Not run:
step2 <- sem.mi(path.model, data = PV.list, group = "school")
## test equivalence of both slopes across groups
lavTestWald.mi(step2, constraints = 't1 == t2 ; s1 == s2')
## End(Not run)

## multilevel example from ?Demo.twolevel help page
model <- '
level: 1
  fw =~ y1 + y2 + y3
  fw ~ x1 + x2 + x3
level: 2
  fb =~ y1 + y2 + y3
  fb ~ w1 + w2 ,
msem <- sem(model, data = Demo.twolevel, cluster = "cluster")
mlPVs <- plausibleValues(msem, nDraws = 3) # both levels by default
lapply(mlPVs, head, n = 10)
## only Level 1
mlPV1 <- plausibleValues(msem, nDraws = 3, level = 1)
lapply(mlPV1, head)
## only Level 2
mlPV2 <- plausibleValues(msem, nDraws = 3, level = 2)
lapply(mlPV2, head)

## example with 10 multiple imputations of missing data:
## Not run:
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
    "ageyr", "agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)
## impute data
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 10, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations
## specify CFA model from lavaan's ?cfa help page
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 ,
out2 <- cfa.mi(HS.model, data = imps)
PVs <- plausibleValues(out2, nDraws = nPVs)
idx <- out2@Data$case.idx # can't use lavInspect() on lavaan.mi
## empty list to hold expanded imputations
impPVs <- list()
nPVs <- 5
nImps <- 10
for (m in 1:nImps) {
  imps[[m]]$"case.idx" <- idx
  for (i in 1:nPVs) {
    impPVs[[nPVs*(m - 1) + i ]] <- merge(imps[[m]],
      PVs[[nPVs*(m - 1) + i ]],
      by = "case.idx")
  }
}
lapply(impPVs, head)

## End(Not run)

---

**plotProbe**  
*Plot a latent interaction*

**Description**

This function will plot the line graphs representing the simple effect of the independent variable given the values of the moderator. For multigroup models, it will only generate a plot for 1 group, as specified in the function used to obtain the first argument.

**Usage**

```r
plotProbe(object, xlim, xlab = "Independent Variable",
 ylab = "Dependent Variable", legend = TRUE, legendArgs = list(), ...)
```

**Arguments**

- `xlim`: The vector of two numbers: the minimum and maximum values of the independent variable.
- `xlab`: The label of the x-axis.
- `ylab`: The label of the y-axis.
- `legend`: logical. If TRUE (default), a legend is printed.
- `legendArgs`: list of arguments passed to `legend` function if legend=TRUE.
- `...`: Any addition argument for the `plot` function.

**Value**

None. This function will plot the simple main effect only.
Author(s)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

See Also
- `indProd` For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- `probe2WayMC` For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering
- `probe3WayMC` For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering
- `probe2WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `probe3WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.

Examples

```r
library(lavaan)

dat2wayMC <- indProd(dat2way, 1:3, 4:6)

model1 <- "
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f12 =~ x1.x4 + x2.x5 + x3.x6
f3 =~ x7 + x8 + x9
f3 ~ f1 + f2 + f12
f12 ~~ 0*f1
f12 ~~ 0*f2
x1 ~ 0*x1
x4 ~ 0*x1
x1.x4 ~ 0*x1
x7 ~ 0*x1
f1 ~ NA*x1
f2 ~ NA*x1
f12 ~ NA*x1
f3 ~ NA*x1
"

fitMC2way <- sem(model1, data = dat2wayMC, meanstructure = TRUE)
result2wayMC <- probe2WayMC(fitMC2way, nameX = c("f1", "f2", "f12"),
```
dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- "
f1 = x1 + x2 + x3
f2 = x4 + x5 + x6
f3 = x7 + x8 + x9
f12 = x1.x4 + x2.x5 + x3.x6
f13 = x1.x7 + x2.x8 + x3.x9
f23 = x4.x7 + x5.x8 + x6.x9
f123 = x1.x4.x7 + x2.x5.x8 + x3.x6.x9
f4 = x10 + x11 + x12
f4 ~ f1 + f2 + f3 + f12 + f13 + f23 + f123
f1 ~~ 0*f12
f1 ~~ 0*f13
f1 ~~ 0*f123
f2 ~~ 0*f12
f2 ~~ 0*f23
f2 ~~ 0*f123
f3 ~~ 0*f13
f3 ~~ 0*f23
f3 ~~ 0*f123
f12 ~~ 0*f123
f13 ~~ 0*f123
f23 ~~ 0*f123
x1 ~ 0*1
x4 ~ 0*1
x7 ~ 0*1
x10 ~ 0*1
x1.x4 ~ 0*1
x1.x7 ~ 0*1
x4.x7 ~ 0*1
x1.x4.x7 ~ 0*1
f1 ~ NA*1
f2 ~ NA*1
f3 ~ NA*1
f12 ~ NA*1
f13 ~ NA*1
f23 ~ NA*1
f123 ~ NA*1
f4 ~ NA*1
"

fitMC3way <- sem(model3, data = dat3wayMC, std.lv = FALSE,
               meanstructure = TRUE)
result3wayMC <- probe3WayMC(fitMC3way, nameX = c("f1", "f2", "f3", "f12",
                                          "f13", "f23", "f123"),
                           nameY = "f4", modVar = c("f1", "f2"),
                           valProbe1 = c(-1, 0, 1), valProbe2 = c(-1, 0, 1))
pplotProbe(result3wayMC, xlim = c(-2, 2))
plotRMSEAdist

Plot the sampling distributions of RMSEA

Description

Plots the sampling distributions of RMSEA based on the noncentral chi-square distributions

Usage

plotRMSEAdist(rmsea, n, df, ptile = NULL, caption = NULL,
               rmseaScale = TRUE, group = 1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmsea</td>
<td>The vector of RMSEA values to be plotted</td>
</tr>
<tr>
<td>n</td>
<td>Sample size of a dataset</td>
</tr>
<tr>
<td>df</td>
<td>Model degrees of freedom</td>
</tr>
<tr>
<td>ptile</td>
<td>The percentile rank of the distribution of the first RMSEA that users wish to plot</td>
</tr>
<tr>
<td>caption</td>
<td>The name vector of each element of rmsea</td>
</tr>
<tr>
<td>rmseaScale</td>
<td>If TRUE, the RMSEA scale is used in the x-axis. If FALSE, the chi-square scale is used in the x-axis.</td>
</tr>
<tr>
<td>group</td>
<td>The number of group that is used to calculate RMSEA.</td>
</tr>
</tbody>
</table>

Details

This function creates overlapping plots of the sampling distribution of RMSEA based on noncentral \( \chi^2 \) distribution (MacCallum, Browne, & Sugawara, 1996). First, the noncentrality parameter (\( \lambda \)) is calculated from RMSEA (Steiger, 1998; Dudgeon, 2004) by

\[
\lambda = (N - 1)d\varepsilon^2 / K,
\]

where \( N \) is sample size, \( d \) is the model degree of freedom, \( K \) is the number of group, and \( \varepsilon \) is the population RMSEA. Next, the noncentral \( \chi^2 \) distribution with a specified \( df \) and noncentrality parameter is plotted. Thus, the x-axis represents the sample \( \chi^2 \) value. The sample \( \chi^2 \) value can be transformed to the sample RMSEA scale (\( \hat{\varepsilon} \)) by

\[
\hat{\varepsilon} = \sqrt{K} \sqrt{\frac{\chi^2 - d}{(N - 1)d}},
\]

where \( \chi^2 \) is the \( \chi^2 \) value obtained from the noncentral \( \chi^2 \) distribution.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
plotRMSEApower

References


See Also

• plotRMSEApower to plot the statistical power based on population RMSEA given the sample size
• findRMSEApower to find the statistical power based on population RMSEA given a sample size
• findRMSEAsamplesize to find the minimum sample size for a given statistical power based on population RMSEA

Examples

plotRMSEAdist(c(.05, .08), n = 200, df = 20, ptile = .95, rmseaScale = TRUE)
plotRMSEAdist(c(.05, .01), n = 200, df = 20, ptile = .05, rmseaScale = FALSE)

plotRMSEApower

Plot power curves for RMSEA

Description

Plots power of RMSEA over a range of sample sizes

Usage

plotRMSEApower(rmsea0, rmseaA, df, nlow, nhigh, steps = 1, alpha = 0.05, group = 1, ...)

Arguments

rmsea0 Null RMSEA
rmseaA Alternative RMSEA
df Model degrees of freedom
nlow Lower sample size
nhigh Upper sample size
steps  Increase in sample size for each iteration. Smaller values of steps will lead to
more precise plots. However, smaller step sizes means a longer run time.

alpha  Alpha level used in power calculations

group  The number of group that is used to calculate RMSEA.

...  The additional arguments for the plot function.

Details

This function creates plot of power for RMSEA against a range of sample sizes. The plot places
sample size on the horizontal axis and power on the vertical axis. The user should indicate the
lower and upper values for sample size and the sample size between each estimate ("step size") We
strongly urge the user to read the sources below (see References) before proceeding. A web ver-

tion of this function is available at: http://quantpsy.org/rmsea/rmseaplot.htm. This func-
tion is also implemented in the web application "power4SEM": https://sjak.shinyapps.io/
power4SEM/

Value

Plot of power for RMSEA against a range of sample sizes

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)
Kristopher J. Preacher (Vanderbilt University; <kris.preacher@vanderbilt.edu>)
Donna L. Coffman (Pennsylvania State University; <dlc30@psu.edu>)

References

doi:10.1037/1082989X.11.1.19

MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determi-
nation of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149.
doi:10.1037/1082989X.1.2.130

MacCallum, R. C., Lee, T., & Browne, M. W. (2010). The issue of isopower in power analysis
for tests of structural equation models. Structural Equation Modeling, 17(1), 23–41. doi:10.1080/
10705510903438906

strategies for covariance structure models. In T. D. Little, J. A. Bovaird, & N. A. Card (Eds.),
Modeling contextual effects in longitudinal studies (pp. 33–62). Mahwah, NJ: Lawrence Erlbaum
Associates.

Equation Modeling, 5(4), 411–419. doi:10.1080/10705519809540115

presented at the annual meeting of the Psychometric Society, Iowa City, IA.

See Also

- `plotRMSEAdist` to visualize the RMSEA distributions
- `findRMSEApower` to find the statistical power based on population RMSEA given a sample size
- `findRMSEAsamplesize` to find the minimum sample size for a given statistical power based on population RMSEA

Examples

```r
plotRMSEApower(rmsea0 = .025, rmseaA = .075, df = 23,
 nlow = 100, nhigh = 500, steps = 10)
```

---

**plotRMSEApowernested**  
*Plot power of nested model RMSEA*

Description

Plot power of nested model RMSEA over a range of possible sample sizes.

Usage

```r
plotRMSEApowernested(rmsea0A = NULL, rmsea0B = NULL, rmsea1A,
 rmsea1B = NULL, dfA, dfB, nlow, nhigh, steps = 1, alpha = 0.05,
 group = 1, ...)
```

Arguments

- `rmsea0A` The $H_0$ baseline RMSEA
- `rmsea0B` The $H_0$ alternative RMSEA (trivial misfit)
- `rmsea1A` The $H_1$ baseline RMSEA
- `rmsea1B` The $H_1$ alternative RMSEA (target misfit to be rejected)
- `dfA` degree of freedom of the more-restricted model
- `dfB` degree of freedom of the less-restricted model
- `nlow` Lower bound of sample size
- `nhigh` Upper bound of sample size
- `steps` Step size
- `alpha` The alpha level
- `group` The number of group in calculating RMSEA
- `...` The additional arguments for the plot function.
Author(s)

Bell Clinton
Pavel Panko (Texas Tech University; <pavel.panko@ttu.edu>)
Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References


See Also

- `findRMSEApowernested` to find the power for a given sample size in nested model comparison based on population RMSEA
- `findRMSEAsamplesizenested` to find the minimum sample size for a given statistical power in nested model comparison based on population RMSEA

Examples

```r
plotRMSEApowernested(rmsea0A = 0, rmsea0B = 0, rmsea1A = 0.06,
 rmsea1B = 0.05, dfA = 22, dfB = 20, nlow = 50,
 nhigh = 500, steps = 1, alpha = .05, group = 1)
```

---

**poolMAloc**

*Pooled estimates and standard errors across M parcel-allocations: Combining sampling variability and parcel-allocation variability.*

Description

This function employs an iterative algorithm to pick the number of random item-to-parcel allocations needed to meet user-defined stability criteria for a fitted structural equation model (SEM) (see Details below for more information). Pooled point and standard-error estimates from this SEM can be outputted at this final selected number of allocations (however, it is more efficient to save the allocations and treat them as multiple imputations using `runMI`; see See Also for links with examples). Additionally, new indices (see Sterba & Rights, 2016) are outputted for assessing the relative contributions of parcel-allocation variability vs. sampling variability in each estimate. At each iteration, this function generates a given number of random item-to-parcel allocations, fits a SEM to each allocation, pools estimates across allocations from that iteration, and then assesses whether stopping criteria are met. If stopping criteria are not met, the algorithm increments the number of allocations used (generating all new allocations).
Usage

```r
poolMAlloc(nPerPar, facPlc, nAllocStart, nAllocAdd = 0,
 parceloutput = NULL, syntax, dataset, stopProp, stopValue,
 selectParam = NULL, indices = "default", double = FALSE,
 checkConv = FALSE, names = "default", leaveout = 0,
 useTotalAlloc = FALSE, ...)
```

Arguments

- **nPerPar**: A list in which each element is a vector, corresponding to each factor, indicating sizes of parcels. If variables are left out of parceling, they should not be accounted for here (i.e., there should not be parcels of size "1").

- **facPlc**: A list of vectors, each corresponding to a factor, specifying the item indicators of that factor (whether included in parceling or not). Either variable names or column numbers. Variables not listed will not be modeled or included in output datasets.

- **nAllocStart**: The number of random allocations of items to parcels to generate in the first iteration of the algorithm.

- **nAllocAdd**: The number of allocations to add with each iteration of the algorithm. Note that if only one iteration is desired, nAllocAdd can be set to 0 and results will be output for nAllocStart allocations only.

- **parceloutput**: Optional character. Path (folder/directory) where M (the final selected number of allocations) parceled data sets will be outputted from the iteration where the algorithm met stopping criteria. Note for Windows users: file path must be specified using forward slashes (/), not backslashes (\). See `path.expand` for details. If NULL (default), nothing is saved to disk.

- **syntax**: lavaan syntax that defines the model.

- **dataset**: Item-level dataset

- **stopProp**: Value used in defining stopping criteria of the algorithm ($\delta_a$ in Sterba & Rights, 2016). This is the minimum proportion of change (in any pooled parameter or pooled standard error estimate listed in `selectParam`) that is allowable from one iteration of the algorithm to the next. That is, change in pooled estimates and pooled standard errors from one iteration to the next must all be less than (stopProp) x (value from former iteration). Note that stopValue can override this criterion (see below). Also note that values less than .01 are unlikely to lead to more substantively meaningful precision. Also note that if only stopValue is a desired criterion, stopProp can be set to 0.

- **stopValue**: Value used in defining stopping criteria of the algorithm ($\delta_b$ in Sterba & Rights, 2016). stopValue is a minimum allowable amount of absolute change (in any pooled parameter or pooled standard error estimate listed in `selectParam`) from one iteration of the algorithm to the next. For a given pooled estimate or pooled standard error, stopValue is only invoked as a stopping criteria when the minimum change required by stopProp is less than stopValue. Note that values less than .01 are unlikely to lead to more substantively meaningful precision. Also note that if only stopProp is a desired criterion, stopValue can be set to 0.
selectParam  (Optional) A list of the pooled parameters to be used in defining stopping criteria (i.e., stopProp and stopValue). These parameters should appear in the order they are listed in the lavaan syntax. By default, all pooled parameters are used. Note that selectParam should only contain freely-estimated parameters. In one example from Sterba & Rights (2016) selectParam included all free parameters except item intercepts and in another example selectParam included only structural parameters.

indices  Optional character vector indicating the names of available fitMeasures to be included in the output. The first and second elements should be a chi-squared test statistic and its associated degrees of freedom, both of which will be added if missing. If "default", the indices will be c("chisq", "df", "cfi", "tli", "rmsea", "srmr"). If a robust test statistic is requested (see lavOptions), c("chisq", "df") will be replaced by c("chisq.scaled", "df.scaled"). For the output to include both the naive and robust test statistics, indices should include both, but put the scaled test statistics first, as in indices = c("chisq.scaled", "df.scaled", "chisq", "df")

double  (Optional) If set to TRUE, requires stopping criteria (stopProp and stopValue) to be met for all parameters (in selectParam) for two consecutive iterations of the algorithm. By default, this is set to FALSE, meaning stopping criteria need only be met at one iteration of the algorithm.

checkConv  (Optional) If set to TRUE, function will output pooled estimates and standard errors from 10 iterations post-convergence.

names  (Optional) A character vector containing the names of parceled variables.

leaveout  (Optional) A vector of variables to be left out of randomized parceling. Either variable names or column numbers are allowed.

useTotalAlloc  (Optional) If set to TRUE, function will output a separate set of results that uses all allocations created by the algorithm, rather than M allocations (see "Allocations needed for stability" below). This distinction is further discussed in Sterba and Rights (2016).

Additional arguments to be passed to lavaan. See also lavOptions.

Details

For further details on the benefits of the random allocation of items to parcels, see Sterba (2011) and Sterba & MacCallum (2010).

This function implements an algorithm for choosing the number of allocations (M; described in Sterba & Rights, 2016), pools point and standard-error estimates across these M allocations, and produces indices for assessing the relative contributions of parcel-allocation variability vs. sampling variability in each estimate.

To obtain pooled test statistics for model fit or model comparison, the list or parcel allocations can be passed to runMI (find Examples on the help pages for parcelAllocation and PAVranking).

This function randomly generates a given number (nAllocStart) of item-to-parcel allocations, fits a SEM to each allocation, and then increments the number of allocations used (by nAllocAdd) until the pooled point and standard-error estimates fulfill stopping criteria (stopProp and stopValue, defined above). A summary of results from the model that was fit to the M allocations are returned.
Additionally, this function outputs the proportion of allocations with solutions that converged (using a maximum likelihood estimator) as well as the proportion of allocations with solutions that were converged and proper. The converged and proper solutions among the final $M$ allocations are used in computing pooled results.

Additionally, after each iteration of the algorithm, information useful in monitoring the algorithm is outputted. The number of allocations used at that iteration, the proportion of pooled parameter estimates meeting stopping criteria at the previous iteration, the proportion of pooled standard errors meeting stopping criteria at the previous iteration, and the runtime of that iteration are outputted. When stopping criteria are satisfied, the full set of results are outputted.

**Value**

**Estimates**  A table containing pooled results across $M$ allocations at the iteration where stopping criteria were met. Columns correspond to individual parameter name, pooled estimate, pooled standard error, $p$-value for a $z$-test of the parameter, $z$-based 95% confidence interval, $p$-value for a $t$-test of the parameter (using degrees of freedom described in Sterba & Rights, 2016), and $t$-based 95% confidence interval for the parameter.

**Fit**  A table containing results related to model fit from the $M$ allocations at the iteration where stopping criteria were met. Columns correspond to fit index names, the average of each index across allocations, the standard deviation of each fit index across allocations, the maximum of each fit index across allocations, the minimum of each fit index across allocations, the range of each fit index across allocations, and the percent of the $M$ allocations where the chi-square test of absolute fit was significant.

**Proportion of converged and proper allocations**  A table containing the proportion of the final $M$ allocations that converged (using a maximum likelihood estimator) and the proportion of allocations that converged to proper solutions. Note that pooled estimates, pooled standard errors, and other results are computed using only the converged, proper allocations.

**Allocations needed for stability ($M$)**  The number of allocations ($M$) at which the algorithm’s stopping criteria (defined above) were met.

**Indices used to quantify uncertainty in estimates due to sample vs. allocation variability**  A table containing individual parameter names, an estimate of the proportion of total variance of a pooled parameter estimate that is attributable to parcel-allocation variability (PPAV), and an estimate of the ratio of the between-allocation variance of a pooled parameter estimate to the within-allocation variance (RPAV). See Sterba & Rights (2016) for more detail.

**Total runtime (minutes)**  The total runtime of the function, in minutes. Note that the total runtime will be greater when the specified model encounters convergence problems for some allocations, as is the case with the simParcel dataset used below.

**Author(s)**

Jason D. Rights (Vanderbilt University; <jason.d.rights@vanderbilt.edu>)
The author would also like to credit Corbin Quick and Alexander Schoemann for providing the original parcelAllocation function on which this function is based.

References


See Also

`runMI` for treating allocations as multiple imputations to pool results across allocations. See Examples on help pages for:

- `parcelAllocation` for fitting a single model
- `PAVranking` for comparing 2 models

Examples

```r
Not run:
lavaan syntax: A 2 Correlated
factor CFA model to be fit to parceled data

parmodel <- 'f1 =~ NA*p1f1 + p2f1 + p3f1
f2 =~ NA*p1f2 + p2f2 + p3f2
 p1f1 ~ 1
 p2f1 ~ 1
 p3f1 ~ 1
 p1f2 ~ 1
 p2f2 ~ 1
 p3f2 ~ 1
 p1f1 ~~ p1f1
 p2f1 ~~ p2f1
 p3f1 ~~ p3f1
 p1f2 ~~ p1f2
 p2f2 ~~ p2f2
 p3f2 ~~ p3f2
 f1 ~~ 1*f1
 f2 ~~ 1*f2
 f1 ~~ f2
'```

specify items for each factor
f1name <- colnames(simParcel)[1:9]
f2name <- colnames(simParcel)[10:18]

run function
poolMAlloc(nPerPar = list(c(3,3,3), c(3,3,3)),
 facPlc = list(f1name, f2name), nAllocStart = 10, nAllocAdd = 10,
 syntax = parmodel, dataset = simParcel, stopProp = .03,
 stopValue = .03, selectParam = c(1:6, 13:18, 21),
 names = list("p1f1","p2f1","p3f1","p1f2","p2f2","p3f2"),
 double = FALSE, useTotalAlloc = FALSE)

End(Not run)

See examples on ?parcelAllocation and ?PAVranking for how to obtain
pooled test statistics and other pooled lavaan output.
Details provided in Sterba & Rights (2016).

probe2WayMC

Probing two-way interaction on the no-centered or mean-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered latent two-way interaction

Usage

```r
probe2WayMC(fit, nameX, nameY, modVar, valProbe, group = 1L,
             omit.imps = c("no.conv", "no.se"))
```

Arguments

- **fit**: A fitted `lavaan` or `lavaan.mi` object with a latent 2-way interaction.
- **nameX**: character vector of all 3 factor names used as the predictors. The lower-order factors must be listed first, and the final name must be the latent interaction factor.
- **nameY**: The name of factor that is used as the dependent variable.
- **modVar**: The name of factor that is used as a moderator. The effect of the other independent factor will be probed at each value of the moderator variable listed in `valProbe`.
- **valProbe**: The values of the moderator that will be used to probe the effect of the focal predictor.
In multigroup models, the label of the group for which the results will be returned. Must correspond to one of `lavaInspect(fit, "group.label")`, or an integer corresponding to which of those group labels.

Character vector specifying criteria for omitting imputations from pooled results. Ignored unless `fit` is of class `lavaan.mi`. Can include any of `c("no.conv", "no.se", "no.npd")`, the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. NPD solutions are not excluded by default because they are likely to occur due to sampling error, especially in small samples. However, gross model misspecification could also cause NPD solutions, users can compare pooled results with and without this setting as a sensitivity analysis to see whether some imputations warrant further investigation.

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean centering may not be appropriate for probing interaction if researchers are interested in simple intercepts. The mean or double-mean centering can be done by the `indProd` function. The indicator products can be made for all possible combinations or matched-pair approach (Marsh et al., 2004).

Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction. Let that the latent interaction model regressing the dependent variable (Y) on the independent variable (X) and the moderator (Z) be

$$
Y = b_0 + b_1 X + b_2 Z + b_3 X Z + r,
$$

where b_0 is the estimated intercept or the expected value of Y when both X and Z are 0, b_1 is the effect of X when Z is 0, b_2 is the effect of Z when X is 0, b_3 is the interaction effect between X and Z, and r is the residual term.

For probing two-way interaction, the simple intercept of the independent variable at each value of the moderator (Aiken & West, 1991; Cohen, Cohen, West, & Aiken, 2003; Preacher, Curran, & Bauer, 2006) can be obtained by

$$
b_{0|X=0,Z} = b_0 + b_2 Z.
$$

The simple slope of the independent variable at each value of the moderator can be obtained by

$$
b_{X|Z} = b_1 + b_3 Z.
$$

The variance of the simple intercept formula is

$$
Var \left(b_{0|X=0,Z} \right) = Var \left(b_0 \right) + 2ZCov \left(b_0, b_2 \right) + Z^2Var \left(b_2 \right)
$$

where Var denotes the variance of a parameter estimate and Cov denotes the covariance of two parameter estimates.
The variance of the simple slope formula is
\[\text{Var}(b_{X|Z}) = \text{Var}(b_1) + 2ZCov(b_1, b_3) + Z^2\text{Var}(b_3) \]

Wald z statistic is used for test statistic (even for objects of class \text{lavaan.mi}).

Value

A list with two elements:

1. \text{SimpleIntercept}: The intercepts given each value of the moderator. This element will be NULL unless the factor intercept is estimated (e.g., not fixed at 0).
2. \text{SimpleSlope}: The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the \text{valProbe} argument. The second column is the simple intercept or simple slope. The third column is the SE of the simple intercept or simple slope. The fourth column is the Wald (z) statistic. The fifth column is the p value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Tutorial:

Background literature:

See Also

- \text{indProd} For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- \text{probe3WayMC} For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering
• **probe2WayMC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.

• **probe3WayRC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.

• **plotProbe** Plot the simple intercepts and slopes of the latent interaction.

Examples

dat2wayMC <- indProd(dat2way, 1:3, 4:6)

model1 <- "
 f1 =~ x1 + x2 + x3
 f2 =~ x4 + x5 + x6
 f12 =~ x1.x4 + x2.x5 + x3.x6
 f3 =~ x7 + x8 + x9
 f3 ~ f1 + f2 + f12
 f12 ~~ 0*f1 + 0*f2
 x1 + x4 + x1.x4 + x7 ~ 0*1 # identify latent means
 f1 + f2 + f12 + f3 ~ NA*1
"

fitMC2way <- sem(model1, data = dat2wayMC, meanstructure = TRUE)

summary(fitMC2way)

probe2WayMC(fitMC2way, nameX = c("f1", "f2", "f12"), nameY = "f3",
 modVar = "f2", valProbe = c(-1, 0, 1))

can probe multigroup models, one group at a time
dat2wayMC$g <- 1:2

model2 <- "
 f1 =~ x1 + x2 + x3
 f2 =~ x4 + x5 + x6
 f12 =~ x1.x4 + x2.x5 + x3.x6
 f3 =~ x7 + x8 + x9
 f3 ~ c(b1.g1, b1.g2)*f1 + c(b2.g1, b2.g2)*f2 + c(b12.g1, b12.g2)*f12
 f12 ~~ 0*f1 + 0*f2
 x1 + x4 + x1.x4 + x7 ~ 0*1 # identify latent means
 f1 + f2 + f12 ~ NA*1
 f3 ~ NA*1 + c(b0.g1, b0.g2)*1
"

fit2 <- sem(model2, data = dat2wayMC, group = "g")

probe2WayMC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
 modVar = "f2", valProbe = c(-1, 0, 1)) # group = 1 by default

probe2WayMC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
 modVar = "f2", valProbe = c(-1, 0, 1), group = 2)
probe2WayRC Probing two-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent two-way interaction (Geldhof et al., 2013)

Usage

probe2WayRC(fit, nameX, nameY, modVar, valProbe, group = 1L,
omit.imps = c("no.conv", "no.se"))

Arguments

fit
A fitted lavaan or lavaan.mi object with a latent 2-way interaction.

nameX
character vector of all 3 factor names used as the predictors. The lower-order factors must be listed first, and the final name must be the latent interaction factor.

nameY
The name of factor that is used as the dependent variable.

modVar
The name of factor that is used as a moderator. The effect of the other independent factor will be probed at each value of the moderator variable listed in valProbe.

valProbe
The values of the moderator that will be used to probe the effect of the focal predictor.

group
In multigroup models, the label of the group for which the results will be returned. Must correspond to one of lavInspect(fit, "group.label"), or an integer corresponding to which of those group labels.

omit.imps
character vector specifying criteria for omitting imputations from pooled results. Ignored unless fit is of class lavaan.mi. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. NPD solutions are not excluded by default because they are likely to occur due to sampling error, especially in small samples. However, gross model misspecification could also cause NPD solutions, users can compare pooled results with and without this setting as a sensitivity analysis to see whether some imputations warrant further investigation.
Details

Before using this function, researchers need to make the products of the indicators between the first-order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird, & Widaman, 2006). The process can be automated by the indProd function. Note that the indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. To use this function the model must be fit with a mean structure. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

The probing process on residual-centered latent interaction is based on transforming the residual-centered result into the no-centered result. See Geldhof et al. (2013) for further details. Note that this approach based on a strong assumption that the first-order latent variables are normally distributed. The probing process is applied after the no-centered result (parameter estimates and their covariance matrix among parameter estimates) has been computed. See the probe2WayMC for further details.

Value

A list with two elements:

1. SimpleIntercept: The intercepts given each value of the moderator. This element will be NULL unless the factor intercept is estimated (e.g., not fixed at 0).
2. SimpleSlope: The slopes given each value of the moderator.

In each element, the first column represents the values of the moderators specified in the valProbe argument. The second column is the simple intercept or simple slope. The third column is the standard error of the simple intercept or simple slope. The fourth column is the Wald (z) statistic. The fifth column is the p value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Tutorial:

Background literature:

See Also
- **indProd** For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- **probe2WayMC** For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- **probe3WayMC** For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering.
- **probe3WayRC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- **plotProbe** Plot the simple intercepts and slopes of the latent interaction.

Examples

```r
dat2wayRC <- orthogonalize(dat2way, 1:3, 4:6)

model1 <- 
  f1 =~ x1 + x2 + x3
  f2 =~ x4 + x5 + x6
  f12 =~ x1.x4 + x2.x5 + x3.x6
  f3 =~ x7 + x8 + x9
  f3 ~ f1 + f2 + f12
  f12 ~~ 0*f1 + 0*f2
  x1 + x4 + x1.x4 + x7 ~ 0*1 # identify latent means
  f1 + f2 + f12 + f3 ~ NA*1

fitRC2way <- sem(model1, data = dat2wayRC, meanstructure = TRUE)
summary(fitRC2way)

probe2WayRC(fitRC2way, nameX = c("f1", "f2", "f12"), nameY = "f3",
            modVar = "f2", valProbe = c(-1, 0, 1))
```

can probe multigroup models, one group at a time

dat2wayRC$g <- 1:2

model2 <-
 f1 =~ x1 + x2 + x3
 f2 =~ x4 + x5 + x6
 f12 =~ x1.x4 + x2.x5 + x3.x6
 f3 =~ x7 + x8 + x9
```
\[
f_3 = c(b_1.g_1, b_1.g_2)f_1 + c(b_2.g_1, b_2.g_2)f_2 + c(b_{12}.g_1, b_{12}.g_2)f_{12}
\]
\[
f_{12} \sim 0 \times f_1 + 0 \times f_2
\]
\[
x_1 + x_4 + x_1.x_4 + x_7 \sim 0 \times 1 \quad # \text{identify latent means}
\]
\[
f_1 + f_2 + f_{12} \sim \text{NA} \times 1
\]
\[
f_3 \sim \text{NA} \times 1 + c(b_0.g_1, b_0.g_2) \times 1
\]

```
fit2 <- sem(model2, data = dat2wayRC, group = "g")
probe2WayRC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
 modVar = "f2", valProbe = c(-1, 0, 1)) # group = 1 by default
probe2WayRC(fit2, nameX = c("f1", "f2", "f12"), nameY = "f3",
 modVar = "f2", valProbe = c(-1, 0, 1), group = 2)
```

---

**probe3WayMC**

*Probing three-way interaction on the no-centered or mean-centered latent interaction*

**Description**

Probing interaction for simple intercept and simple slope for the no-centered or mean-centered latent two-way interaction

**Usage**

```
probe3WayMC(fit, nameX, nameY, modVar, valProbe1, valProbe2, group = 1L,
 omit.imps = c("no.conv", "no.se"))
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>A fitted lavaan or lavaan.mi object with a latent 2-way interaction.</td>
</tr>
<tr>
<td>nameX</td>
<td>character vector of all 7 factor names used as the predictors. The 3 lower-order factors must be listed first, followed by the 3 second-order factors (specifically, the 4th element must be the interaction between the factors listed first and second, the 5th element must be the interaction between the factors listed first and third, and the 6th element must be the interaction between the factors listed second and third). The final name will be the factor representing the 3-way interaction.</td>
</tr>
<tr>
<td>nameY</td>
<td>The name of the factor that is used as the dependent variable.</td>
</tr>
<tr>
<td>modVar</td>
<td>The name of two factors that are used as the moderators. The effect of the independent factor on each combination of the moderator variable values will be probed.</td>
</tr>
<tr>
<td>valProbe1</td>
<td>The values of the first moderator that will be used to probe the effect of the independent factor.</td>
</tr>
<tr>
<td>valProbe2</td>
<td>The values of the second moderator that will be used to probe the effect of the independent factor.</td>
</tr>
<tr>
<td>group</td>
<td>In multigroup models, the label of the group for which the results will be returned. Must correspond to one of lavInspect(fit, &quot;group.label&quot;).</td>
</tr>
</tbody>
</table>
Details

Before using this function, researchers need to make the products of the indicators between the first-order factors using mean centering (Marsh, Wen, & Hau, 2004). Note that the double-mean centering may not be appropriate for probing interaction if researchers are interested in simple intercepts. The mean or double-mean centering can be done by the indProd function. The indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.

Let that the latent interaction model regressing the dependent variable ($Y$) on the independent varaible ($X$) and two moderators ($Z$ and $W$) be

$$Y = b_0 + b_1X + b_2Z + b_3W + b_4XZ + b_5XW + b_6ZW + b_7XZW + r,$$

where $b_0$ is the estimated intercept or the expected value of $Y$ when $X$, $Z$, and $W$ are 0, $b_1$ is the effect of $X$ when $Z$ and $W$ are 0, $b_2$ is the effect of $Z$ when $X$ and $W$ is 0, $b_3$ is the effect of $W$ when $X$ and $Z$ are 0, $b_4$ is the interaction effect between $X$ and $Z$ when $W$ is 0, $b_5$ is the interaction effect between $X$ and $W$ when $Z$ is 0, $b_6$ is the interaction effect between $Z$ and $W$ when $X$ is 0, $b_7$ is the three-way interaction effect between $X$, $Z$, and $W$, and $r$ is the residual term.

For probing three-way interaction, the simple intercept of the independent variable at the specific values of the moderators (Aiken & West, 1991) can be obtained by

$$b_{0|X=0,Z,W} = b_0 + b_2Z + b_3W + b_6ZW.$$

The simple slope of the independent varaible at the specific values of the moderators can be obtained by

$$b_{X|Z,W} = b_1 + b_3Z + b_4W + b_7ZW.$$

The variance of the simple intercept formula is

$$Var\,(b_{0|X=0,Z,W}) = Var\,(b_0) + Z^2\,Var\,(b_2) + W^2\,Var\,(b_3) + Z^2W^2\,Var\,(b_6) + 2ZCov\,(b_0,b_2) + 2WCov\,(b_0,b_3) + 2ZW\,Cov\,(b_6,b_2),$$

where $Var$ denotes the variance of a parameter estimate and $Cov$ denotes the covariance of two parameter estimates.

The variance of the simple slope formula is

$$Var\,(b_{X|Z,W}) = Var\,(b_1) + Z^2\,Var\,(b_4) + W^2\,Var\,(b_5) + Z^2W^2\,Var\,(b_7) + 2ZCov\,(b_1,b_4) + 2WCov\,(b_1,b_5) + 2ZW\,Cov\,(b_4,b_7).$$

Wald $z$ statistic is used for test statistic (even for objects of class lavaan.mi).
Value

A list with two elements:

1. **SimpleIntercept**: The intercepts given each combination of moderator values. This element will be shown only if the factor intercept is estimated (e.g., not fixed at 0).

2. **SimpleSlope**: The slopes given each combination of moderator values.

In each element, the first column represents values of the first moderator specified in the `valProbe1` argument. The second column represents values of the second moderator specified in the `valProbe2` argument. The third column is the simple intercept or simple slope. The fourth column is the standard error of the simple intercept or simple slope. The fifth column is the Wald ($z$) statistic. The sixth column is the $p$ value testing whether the simple intercepts or slopes are different from 0.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

Tutorial:

Background literature:


See Also

- **indProd** For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- **probe2WayMC** For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering
- **probe2WayRC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- **probe3WayRC** For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- **plotProbe** Plot the simple intercepts and slopes of the latent interaction.
Examples

dat3wayMC <- indProd(dat3way, 1:3, 4:6, 7:9)

model3 <- " ## define latent variables
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f3 =~ x7 + x8 + x9
## 2-way interactions
f12 =~ x1.x4 + x2.x5 + x3.x6
f13 =~ x1.x7 + x2.x8 + x3.x9
f23 =~ x4.x7 + x5.x8 + x6.x9
## 3-way interaction
f123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
## outcome variable
f4 =~ x10 + x11 + x12
## latent regression model
f4 ~ b1*f1 + b2*f2 + b3*f3 + b12*f12 + b13*f13 + b23*f23 + b123*f123
## orthogonal terms among predictors
f1 -- 0*f12 + 0*f13 + 0*f123
f2 -- 0*f12 + 0*f23 + 0*f123
f3 -- 0*f13 + 0*f23 + 0*f123
f12 + f13 + f23 ~~ 0*f123
## identify latent means
x1 + x4 + x7 + x1.x4 + x1.x7 + x4.x7 + x1.x4.x7 + x10 ~ 0\times1
f1 + f2 + f3 + f12 + f13 + f23 + f123 + f4 ~ NA\times1"

fitMC3way <- sem(model3, data = dat3wayMC, meanstructure = TRUE)
summary(fitMC3way)
probe3WayMC(fitMC3way, nameX = c("f1" ,"f2" ,"f3",
"f12","f13","f23"), # the order matters!
"f23"), # 3-way interaction
nameY = "f4", modVar = c("f1", "f2"),
valProbe1 = c(-1, 0, 1), valProbe2 = c(-1, 0, 1))

probe3WayRC

Probing three-way interaction on the residual-centered latent interaction

Description

Probing interaction for simple intercept and simple slope for the residual-centered latent three-way interaction (Geldhof et al., 2013)
Usage

probe3WayRC(fit, nameX, nameY, modVar, valProbe1, valProbe2, group = 1L,
omit.imps = c("no.conv", "no.se"))

Arguments

fit A fitted lavaan or lavaan.mi object with a latent 2-way interaction.
nameX character vector of all 7 factor names used as the predictors. The 3 lower-order factors must be listed first, followed by the 3 second-order factors (specifically, the 4th element must be the interaction between the factors listed first and second, the 5th element must be the interaction between the factors listed first and third, and the 6th element must be the interaction between the factors listed second and third). The final name will be the factor representing the 3-way interaction.
nameY The name of factor that is used as the dependent variable.
modVar The name of two factors that are used as the moderators. The effect of the independent factor on each combination of the moderator variable values will be probed.
valProbe1 The values of the first moderator that will be used to probe the effect of the independent factor.
valProbe2 The values of the second moderator that will be used to probe the effect of the independent factor.
group In multigroup models, the label of the group for which the results will be returned. Must correspond to one of lavInspect(fit, "group.label").
omit.imps character vector specifying criteria for omitting imputations from pooled results. Ignored unless fit is of class lavaan.mi. Can include any of c("no.conv", "no.se", "no.npd"), the first 2 of which are the default setting, which excludes any imputations that did not converge or for which standard errors could not be computed. The last option ("no.npd") would exclude any imputations which yielded a nonpositive definite covariance matrix for observed or latent variables, which would include any "improper solutions" such as Heywood cases. NPD solutions are not excluded by default because they are likely to occur due to sampling error, especially in small samples. However, gross model misspecification could also cause NPD solutions, users can compare pooled results with and without this setting as a sensitivity analysis to see whether some imputations warrant further investigation.

Details

Before using this function, researchers need to make the products of the indicators between the first-order factors and residualize the products by the original indicators (Lance, 1988; Little, Bovaird, & Widaman, 2006). The process can be automated by the indProd function. Note that the indicator products can be made for all possible combination or matched-pair approach (Marsh et al., 2004). Next, the hypothesized model with the regression with latent interaction will be used to fit all original indicators and the product terms (Geldhof et al., 2013). To use this function the model must be fit with a mean structure. See the example for how to fit the product term below. Once the lavaan result is obtained, this function will be used to probe the interaction.
The probing process on residual-centered latent interaction is based on transforming the residual-centered result into the no-centered result. See Geldhof et al. (2013) for further details. Note that this approach based on a strong assumption that the first-order latent variables are normally distributed. The probing process is applied after the no-centered result (parameter estimates and their covariance matrix among parameter estimates) has been computed. See the probe3WayMC for further details.

**Value**

A list with two elements:

1. **SimpleIntercept**: The intercepts given each value of the moderator. This element will be shown only if the factor intercept is estimated (e.g., not fixed as 0).
2. **SimpleSlope**: The slopes given each value of the moderator.

In each element, the first column represents values of the first moderator specified in the `valProbe1` argument. The second column represents values of the second moderator specified in the `valProbe2` argument. The third column is the simple intercept or simple slope. The fourth column is the `SE` of the simple intercept or simple slope. The fifth column is the Wald (`z`) statistic. The sixth column is the `p` value testing whether the simple intercepts or slopes are different from 0.

**Author(s)**

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

**References**

**Tutorial:**


**Background literature:**


See Also

- `indProd` For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.
- `probe2WayMC` For probing the two-way latent interaction when the results are obtained from mean-centering, or double-mean centering
- `probe3WayMC` For probing the three-way latent interaction when the results are obtained from mean-centering, or double-mean centering
- `probe2WayRC` For probing the two-way latent interaction when the results are obtained from residual-centering approach.
- `plotProbe` Plot the simple intercepts and slopes of the latent interaction.

Examples

dat3wayRC <- orthogonalize(dat3way, 1:3, 4:6, 7:9)
model3 <- "## define latent variables
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
f3 =~ x7 + x8 + x9
## 2-way interactions
f12 =~ x1.x4 + x2.x5 + x3.x6
f13 =~ x1.x7 + x2.x8 + x3.x9
f23 =~ x4.x7 + x5.x8 + x6.x9
## 3-way interaction
f123 =~ x1.x4.x7 + x2.x5.x8 + x3.x6.x9
## outcome variable
f4 =~ x10 + x11 + x12
## latent regression model
f4 ~ b1*f1 + b2*f2 + b3*f3 + b12*f12 + b13*f13 + b23*f23 + b123*f123
## orthogonal terms among predictors
f1 =~ 0*f12 + 0*f13 + 0*f123
f2 =~ 0*f12 + 0*f23 + 0*f123
f3 =~ 0*f13 + 0*f23 + 0*f123
f12 =~ 0*f12 + 0*f23 + 0*f123
## identify latent means
x1 + x4 + x7 + x1.x4 + x1.x7 + x4.x7 + x1.x4.x7 + x10 ~ 0*1
f1 + f2 + f3 + f12 + f13 + f23 + f123 + f4 ~ NA*1"

fitRC3way <- sem(model3, data = dat3wayRC, meanstructure = TRUE)
summary(fitRC3way)
probe3WayMC(fitRC3way, nameX = c("f1", "f2", "f3",
     "f12","f13","f23"), # the order matters!
     nameY = "f4", modVar = c("f1", "f2"),
    )
valProbe1 = c(-1, 0, 1), valProbe2 = c(-1, 0, 1))

Description

The `quark` function provides researchers with the ability to calculate and include component scores calculated by taking into account the variance in the original dataset and all of the interaction and polynomial effects of the data in the dataset.

Usage

```r
quark(data, id, order = 1, silent = FALSE, ...)
```

Arguments

data: The data frame is a required component for `quark`. In order for `quark` to process a data frame, it must not contain any factors or text-based variables. All variables must be in numeric format. Identifiers and dates can be left in the data; however, they will need to be identified under the `id` argument.

id: Identifiers and dates within the dataset will need to be acknowledged as `quark` cannot process these. By acknowledging the identifiers and dates as a vector of column numbers or variable names, `quark` will remove them from the data temporarily to complete its main processes. Among many potential issues of not acknowledging identifiers and dates are issues involved with imputation, product and polynomial effects, and principal component analysis.

order: Order is an optional argument provided by `quark` that can be used when the imputation procedures in `mice` fail. Under some circumstances, `mice` cannot calculate missing values due to issues with extreme missingness. Should an error present itself stating a failure due to not having any columns selected, set the argument `order = 2` in order to reorder the imputation method procedure. Otherwise, use the default `order = 1`.

silent: If `FALSE`, the details of the `quark` process are printed.

...: additional arguments to pass to `mice`.

Details

The `quark` function calculates these component scores by first filling in the data via means of multiple imputation methods and then expanding the dataset by aggregating the non-overlapping interaction effects between variables by calculating the mean of the interactions and polynomial effects. The multiple imputation methods include one of iterative sampling and group mean substitution and multiple imputation using a polytomous regression algorithm (`mice`). During the expansion process, the dataset is expanded to three times its normal size (in width). The first third of the dataset contains all of the original data post imputation, the second third contains the means of the polynomial
effects (squares and cubes), and the final third contains the means of the non-overlapping interaction effects. A full principal component analysis is conducted and the individual components are retained. The subsequent \texttt{combinequark} function provides researchers the control in determining how many components to extract and retain. The function returns the dataset as submitted (with missing values) and the component scores as requested for a more accurate multiple imputation in subsequent steps.

**Value**

The output value from using the quark function is a list. It will return a list with 7 components.

- **ID Columns**: Is a vector of the identifier columns entered when running quark.
- **ID Variables**: Is a subset of the dataset that contains the identifiers as acknowledged when running quark.
- **Used Data**: Is a matrix / dataframe of the data provided by user as the basis for quark to process.
- **Imputed Data**: Is a matrix / dataframe of the data after the multiple method imputation process.
- **Big Matrix**: Is the expanded product and polynomial matrix.
- **Principal Components**: Is the entire dataframe of principal components for the dataset. This dataset will have the same number of rows of the big matrix, but will have 1 less column (as is the case with principal component analyses).
- **Percent Variance Explained**: Is a vector of the percent variance explained with each column of principal components.

**Author(s)**

Steven R. Chesnut (University of Southern Mississippi; <Steven.Chesnut@usm.edu>)

Danny Squire (Texas Tech University)

Terrence D. Jorgensen (University of Amsterdam)

The PCA code is copied and modified from the \texttt{FactoMineR} package.

**References**


**See Also**

\texttt{combinequark}
Examples

```r
set.seed(123321)

dat <- HolzingerSwineford1939[,7:15]
misspat <- matrix(runif(nrow(dat) * 9) < 0.3, nrow(dat))
dat[misspat] <- NA
dat <- cbind(HolzingerSwineford1939[,1:3], dat)
Not run:
quark.list <- quark(data = dat, id = c(1, 2))
final.data <- combinequark(quark = quark.list, percent = 80)
Example to rerun quark after imputation failure:
quark.list <- quark(data = dat, id = c(1, 2), order = 2)
End(Not run)
```

### residualCovariate

**Residual-center all target indicators by covariates**

#### Description

This function will regress target variables on the covariate and replace the target variables by the residual of the regression analysis. This procedure is useful to control the covariate from the analysis model (Geldhof, Pornprasertmanit, Schoemann, & Little, 2013).

#### Usage

```r
residualCovariate(data, targetVar, covVar)
```

#### Arguments

- **data**: The desired data to be transformed.
- **targetVar**: Variable names or the position of indicators that users wish to be residual centered (as dependent variables)
- **covVar**: Covariate names or the position of the covariates using for residual centering (as independent variables) onto target variables

#### Value

The data that the target variables replaced by the residuals

#### Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)
References


See Also

`indProd` For creating the indicator products with no centering, mean centering, double-mean centering, or residual centering.

Examples

```r
dat <- residualCovariate(attitude, 2:7, 1)
```

---

**runMI**

*Fit a lavaan Model to Multiple Imputed Data Sets*

**Description**

This function fits a lavaan model to a list of imputed data sets, and can also implement multiple imputation for a single data.frame with missing observations, using either the Amelia package or the mice package.

**Usage**

```r
runMI(model, data, fun = "lavaan", ..., m, miArgs = list(), miPackage = "Amelia", seed = 12345)
```

```r
lavaan.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia", seed = 12345)
```

```r
cfa.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia", seed = 12345)
```

```r
sem.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia", seed = 12345)
```

```r
growth.mi(model, data, ..., m, miArgs = list(), miPackage = "Amelia", seed = 12345)
```

**Arguments**

- **model** The analysis model can be specified using lavaan `model.syntax` or a parameter table (as returned by `parTable`).
data  A data.frame with missing observations, or a list of imputed data sets (if data are imputed already). If runMI has already been called, then imputed data sets are stored in the @DataList slot, so data can also be a lavaan.mi object from which the same imputed data will be used for additional analyses.

fun  character. Name of a specific lavaan function used to fit model to data (i.e., "lavaan", "cfa", "sem", or "growth"). Only required for runMI.

...  additional arguments to pass to lavaan or lavaanList. See also lavOptions. Note that lavaanList provides parallel computing options, as well as a FUN argument so the user can extract custom output after the model is fitted to each imputed data set (see Examples). TIP: If a custom FUN is used and parallel = "snow" is requested, the user-supplied function should explicitly call library or use :: for any functions not part of the base distribution.

m  integer. Request the number of imputations. Ignored if data is already a list of imputed data sets or a lavaan.mi object.

miArgs  Additional arguments for the multiple-imputation function (miPackage). The arguments should be put in a list (see example below). Ignored if data is already a list of imputed data sets or a lavaan.mi object.

miPackage  Package to be used for imputation. Currently these functions only support "Amelia" or "mice" for imputation. Ignored if data is already a list of imputed data sets or a lavaan.mi object.

seed  integer. Random number seed to be set before imputing the data. Ignored if data is already a list of imputed data sets or a lavaan.mi object.

Value

A lavaan.mi object

Author(s)

Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)

References


Examples

```r
Not run:
impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
 "ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

specify CFA model from lavaan's ?cfa help page
```
HS.model <- '
  visual <- x1 + x2 + x3
  textual <- x4 + x5 + x6
  speed <- x7 + x8 + x9
',

## impute data within runMI...
out1 <- cfa.mi(HS.model, data = HSMiss, m = 20, seed = 12345,
               miArgs = list(noms = "school"))

## ... or impute missing data first
library(Amelia)
set.seed(12345)
HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE)
imps <- HS.amelia$imputations
out2 <- cfa.mi(HS.model, data = imps)

## same results (using the same seed results in the same imputations)
cbind(impute.within = coef(out1), impute.first = coef(out2))

summary(out1, fit.measures = TRUE)
summary(out1, ci = FALSE, fmi = TRUE, output = "data.frame")
summary(out1, ci = FALSE, stand = TRUE, rsq = TRUE)

## model fit. D3 includes information criteria
anova(out1)

## equivalently:
lavTestLRT.mi(out1)

## request D2
anova(out1, test = "D2")

## request fit indices
fitMeasures(out1)

## fit multigroup model without invariance constraints
mgfit.config <- cfa.mi(HS.model, data = imps, estimator = "mlm",
                        group = "school")

## add invariance constraints, and use previous fit as "data"
mgfit.metric <- cfa.mi(HS.model, data = mgfit.config, estimator = "mlm",
                        group = "school", group.equal = "loadings")

mgfit.scalar <- cfa.mi(HS.model, data = mgfit.config, estimator = "mlm",
                        group = "school",
                        group.equal = c("loadings","intercepts"))

## compare fit of 2 models to test metric invariance
## (scaled likelihood ratio test)
lavTestLRT.mi(mgfit.metric, h1 = mgfit.config)

## To compare multiple models, you must use anova()
anova(mgfit.config, mgfit.metric, mgfit.scalar)
## or compareFit(), which also includes fit indices for comparison
## (optional: name the models)
compareFit(config = mgfit.config, metric = mgfit.metric,
          scalar = mgfit.scalar,
argsLRT = list(test = "D2", method = "satorra.bentler.2010")

## correlation residuals to investigate local misfit
resid(mgfit.scalar, type = "cor.bentler")
## modification indices for fixed parameters, to investigate local misfit
modindices.mi(mgfit.scalar)
## or lavTestScore.mi for modification indices about equality constraints
lavTestScore.mi(mgfit.scalar)

## Wald test of whether latent means are == (fix 3 means to zero in group 2)
eq.means <- '.p70. == 0
      .p71. == 0
      .p72. == 0'
lavTestWald.mi(mgfit.scalar, constraints = eq.means)

## ordered-categorical data
data(datCat)
lapply(datCat, class) # indicators already stored as ordinal
## impose missing values
set.seed(123)
for (i in 1:8) datCat[sample(1:nrow(datCat), size = .1*nrow(datCat)), i] <- NA

## impute ordinal missing data using mice package
library(mice)
set.seed(456)
miceImps <- mice(datCat)
## save imputations in a list of data.frames
implist <- list()
for (i in 1:miceImps$m) implist[[i]] <- complete(miceImps, action = i)

## fit model, save zero-cell tables and obsolete "WRMR" fit indices
catout <- cfa.mi('f =~ 1*u1 + 1*u2 + 1*u3 + 1*u4 ', data = implist,
        FUN = function(fit) {
        list(wrmr = lavaan::fitMeasures(fit, "wrmr"),
              zeroCells = lavaan::lavInspect(fit, "zero.cell.tables"))
        })
sapply(catout@funList, function(x) x$wrmr) # WRMR for each imputation
catout@funList[[1]]$zeroCells # zero-cell tables for first imputation
catout@funList[[2]]$zeroCells # zero-cell tables for second imputation ...

## End(Not run)
The `semTools` package provides many miscellaneous functions that are useful for statistical analysis involving SEM in R. Many functions extend the functionality of the `lavaan` package. Some sets of functions in `semTools` correspond to the same theme. We call such a collection of functions a suite. Our suites include:

- **Model Fit Evaluation**: `moreFitIndices`, `nullRMSEA`, `singleParamTest`, `miPowerFit`, and `chisqSmallN`
- **Measurement Invariance**: `measEq.syntax`, `partialInvariance`, `partialInvarianceCat`, and `permuteMeasEq`
- **Power Analysis**: `SSpower`, `findRMSEApower`, `plotRMSEApower`, `plotRMSEAdist`, `findRMSEAsamplesize`, `findRMSEApowerNested`, `plotRMSEApowerNested`, and `findRMSEAsamplesizenested`
- **Missing Data Analysis**: `runMI`, `auxiliary`, `twostage`, `fmi`, `bsBootMiss`, `quark`, and `combinequark`
- **Exploratory Factor Analysis (EFA)**: `efa.ekc`, `efaUnrotate`, `orthRotate`, `oblqRotate`, and `funRotate`
- **Reliability Estimation**: `compRelSEM` and `maximalRelia` (see also AVE)
- **Parceling**: `parcelAllocation`, `PAVranking`, and `poolMAlloc`
- **Non-Normality**: `skew`, `kurtosis`, `mardiaSkew`, `mardiaKurtosis`, and `mvrnonnorm`

All users of R (or SEM) are invited to submit functions or ideas for functions by contacting the maintainer, Terrence Jorgensen (<TJorgensen314@gmail.com>). Contributors are encouraged to use Roxygen comments to document their contributed code, which is consistent with the rest of `semTools`. Read the vignette from the `roxygen2` package for details: `vignette("rd", package = "roxygen2")`
Format

A data.frame with 800 observations of 18 variables.

- f1item1 Item 1 loading on factor 1
- f1item2 Item 2 loading on factor 1
- f1item3 Item 3 loading on factor 1
- f1item4 Item 4 loading on factor 1
- f1item5 Item 5 loading on factor 1
- f1item6 Item 6 loading on factor 1
- f1item7 Item 7 loading on factor 1
- f1item8 Item 8 loading on factor 1
- f1item9 Item 9 loading on factor 1
- f2item1 Item 1 loading on factor 2
- f2item2 Item 2 loading on factor 2
- f2item3 Item 3 loading on factor 2
- f2item4 Item 4 loading on factor 2
- f2item5 Item 5 loading on factor 2
- f2item6 Item 6 loading on factor 2
- f2item7 Item 7 loading on factor 2
- f2item8 Item 8 loading on factor 2
- f2item9 Item 9 loading on factor 2

Source

Data were generated using the simsem package.

Examples

head(simParcel)

```
singleParamTest

Single Parameter Test Divided from Nested Model Comparison

Description

In comparing two nested models, $\Delta \chi^2$ test may indicate that two models are different. However, like other omnibus tests, researchers do not know which fixed parameters or constraints make these two models different. This function will help researchers identify the significant parameter.

Usage

singleParamTest(model1, model2, return.fit = FALSE,
 method = "satorra.bentler.2001")
```
Arguments

model1    Model 1.
model2    Model 2. Note that two models must be nested models. Further, the order of
          parameters in their parameter tables are the same. That is, nested models with
different scale identifications may not be able to test by this function.

return.fit Return the submodels fitted by this function
method     The method used to calculate likelihood ratio test. See lavTestLRT for available
options

Details

This function first identifies the differences between these two models. The model with more free
parameters is referred to as parent model and the model with fewer free parameters is referred to as
nested model. Two tests are implemented here:

1. free: The nested model is used as a template. Then, one parameter indicating the differences
   between two models is freed. The new model is compared with the nested model. This process
   is repeated for all differences between two models.
2. fix: The parent model is used as a template. Then, one parameter indicating the differences
   between two models is fixed or constrained to be equal to other parameters. The new model
   is then compared with the parent model. This process is repeated for all differences between
   two models.
3. mi: No longer available because the test of modification indices is not consistent. For example,
   if two parameters are equality constrained, the modification index from the first parameter is
   not equal to the second parameter.

Note that this function does not adjust for the inflated Type I error rate from multiple tests.

Value

If return.fit = FALSE, the result tables are provided. $\chi^2$ and $p$ value are provided for all methods.
Note that the $\chi^2$ is all based on 1 df. Expected parameter changes and their standardized forms are
also provided.

If return.fit = TRUE, a list with two elements are provided. The first element is the tabular result.
The second element is the submodels used in the free and fix methods.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

Examples

library(lavaan)

# Nested model comparison by hand
HS.model1 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6'
HS.model2 <- ' visual =~ a*x1 + a*x2 + a*x3
textual =~ b*x4 + b*x5 + b*x6'
m1 <- cfa(HS.model1, data = HolzingerSwineford1939, std.lv = TRUE,
estimator = "MLR")
m2 <- cfa(HS.model2, data = HolzingerSwineford1939, std.lv = TRUE,
estimator = "MLR")
anova(m1, m2)
singleParamTest(m1, m2)

## Nested model comparison from the measurementInvariance function
HW.model <- ' visual =~ x1 + x2 + x3
              textual =~ x4 + x5 + x6
              speed =~ x7 + x8 + x9 '
models <- measurementInvariance(model = HW.model, data = HolzingerSwineford1939,
group = "school")
singleParamTest(models[[1]], models[[2]])

## Note that the comparison between metric (Model 2) and scalar invariance
## (Model 3) cannot be done by this function because the metric invariance
## model fixes factor means as 0 in Group 2 but the strong invariance model
## frees the factor means in Group 2. Users may use this function to compare
## scalar invariance (Model 3) to a homogeneous-means model.

---

skew

**Finding skewness**

**Description**

Finding skewness ($g_1$) of an object

**Usage**

skew(object, population = FALSE)

**Arguments**

- **object**: A vector used to find a skewness
- **population**: TRUE to compute the parameter formula. FALSE to compute the sample statistic formula.

**Details**

The skewness computed by default is $g_1$, the third standardized moment of the empirical distribution of object. The population parameter skewness $\gamma_1$ formula is

$$
\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}}
$$
where $\mu_i$ denotes the $i$ order central moment.

The skewness formula for sample statistic $g_1$ is

$$g_1 = \frac{k_3}{k_2^2},$$

where $k_i$ are the $i$ order $k$-statistic.

The standard error of the skewness is

$$\text{Var}(\hat{g}_1) = \frac{6}{N},$$

where $N$ is the sample size.

Value

A value of a skewness with a test statistic if the population is specified as FALSE.

Author(s)

Sunthud Pornprasertmanit (<psunthud@gmail.com>)

References


See Also

- kurtosis Find the univariate excessive kurtosis of a variable
- mardiaSkew Find Mardia’s multivariate skewness of a set of variables
- mardiaKurtosis Find the Mardia’s multivariate kurtosis of a set of variables

Examples

```r
skew(1:5)
```
splitSample

Randomly Split a Data Set into Halves

Description

This function randomly splits a data set into two halves, and saves the resulting data sets to the same folder as the original.

Usage

```r
splitSample(dataset, path = "default", div = 2, type = "default",
 name = "splitSample")
```

Arguments

- **dataset**: The original data set to be divided. Can be a file path to a *.csv or *.dat file (headers will automatically be detected) or an R object (matrix or dataframe). (Windows users: file path must be specified using FORWARD SLASHES (/) ONLY.)
- **path**: File path to folder for output data sets. NOT REQUIRED if dataset is a filename. Specify ONLY if dataset is an R object, or desired output folder is not that of original data set. If path is specified as "object", output data sets will be returned as a list, and not saved to hard drive.
- **div**: Number of output data sets. NOT REQUIRED if default, 2 halves.
- **type**: Output file format ("dat" or "csv"). NOT REQUIRED unless desired output formatting differs from that of input, or dataset is an R object and csv formatting is desired.
- **name**: Output file name. NOT REQUIRED unless desired output name differs from that of input, or input dataset is an R object. (If input is an R object and name is not specified, name will be "splitSample".)

Details

This function randomly orders the rows of a data set, divides the data set into two halves, and saves the halves to the same folder as the original data set, preserving the original formatting. Data set type (*.csv or *.dat) and formatting (headers) are automatically detected, and output data sets will preserve input type and formatting unless specified otherwise. Input can be in the form of a file path (*.dat or *.csv), or an R object (matrix or dataframe). If input is an R object and path is default, output data sets will be returned as a list object.

Value

If `path = "object"`, list of output data sets. Otherwise, output will saved to hard drive in the same format as input.
SSpower

Power for model parameters

Description


Usage

SSpower(powerModel, n, nparam, popModel, mu, Sigma, fun = "sem", alpha = 0.05, ...)

Arguments

powerModel lavaan model.syntax for the model to be analyzed. This syntax should constrain at least one nonzero parameter to 0 (or another number).
n  integer. Sample size used in power calculation, or a vector of sample sizes if analyzing a multigroup model. If length(n) < length(Sigma) when Sigma is a list, n will be recycled. If popModel is used instead of Sigma, n must specify a sample size for each group, because that is used to infer the number of groups.

nparam  integer. Number of invalid constraints in powerModel.

popModel  lavaan model.syntax specifying the data-generating model. This syntax should specify values for all nonzero parameters in the model. If length(n) > 1, the same population values will be used for each group, unless different population values are specified per group, either in the lavaan model.syntax or by utilizing a list of Sigma (and optionally mu).

mu  numeric or list. For a single-group model, a vector of population means. For a multigroup model, a list of vectors (one per group). If mu and popModel are missing, mean structure will be excluded from the analysis.

Sigma  matrix or list. For a single-group model, a population covariance matrix. For a multigroup model, a list of matrices (one per group). If missing, popModel will be used to generate a model-implied Sigma.

fun  character. Name of lavaan function used to fit powerModel (i.e., "cfa", "sem", "growth", or "lavaan").

alpha  Type I error rate used to set a criterion for rejecting H0.

...  additional arguments to pass to lavaan. See also lavOptions.

Details

Specify all non-zero parameters in a population model, either by using lavaan syntax (popModel) or by submitting a population covariance matrix (Sigma) and optional mean vector (mu) implied by the population model. Then specify an analysis model that places at least one invalid constraint (note the number in the nparam argument).

There is also a Shiny app called "power4SEM" that provides a graphical user interface for this functionality (Jak et al., in press). It can be accessed at https://sjak.shinyapps.io/power4SEM/.

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)
Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References


Examples

## Specify population values. Note every parameter has a fixed value.

```r
modelP <- 'f1 =~ .7*V1 + .7*V2 + .7*V3 + .7*V4
f2 =~ .7*V5 + .7*V6 + .7*V7 + .7*V8
f1 ~~ .3*f2
f1 ~~ 1*f1
f2 ~~ 1*f2
V1 ~~ .51*V1
V2 ~~ .51*V2
V3 ~~ .51*V3
V4 ~~ .51*V4
V5 ~~ .51*V5
V6 ~~ .51*V6
V7 ~~ .51*V7
V8 ~~ .51*V8
'
```

## Specify analysis model. Note parameter of interest f1~f2 is fixed to 0.

```r
modelA <- 'f1 =~ V1 + V2 + V3 + V4
f2 =~ V5 + V6 + V7 + V8
f1 ~~ 0*f2
'
```

## Calculate power

```r
SSpower(powerModel = modelA, popModel = modelP, n = 150, nparam = 1, std.lv = TRUE)
```

## Get power for a range of sample sizes

```r
Ns <- seq(100, 500, 40)
Power <- rep(NA, length(Ns))
for(i in 1:length(Ns)) {
 Power[i] <- SSpower(powerModel = modelA, popModel = modelP, n = Ns[i], nparam = 1, std.lv = TRUE)
}
plot(x = Ns, y = Power, type = "l", xlab = "Sample Size")
```

## Optionally specify different values for multiple populations

```r
modelP2 <- '
f1 =~ .7*V1 + .7*V2 + .7*V3 + .7*V4
f2 =~ .7*V5 + .7*V6 + .7*V7 + .7*V8
f1 ~~ c(-.3, .3)*f2 # DIFFERENT ACROSS GROUPS
f1 ~~ 1*f1
f2 ~~ 1*f2
V1 ~~ .51*V1
V2 ~~ .51*V2
V3 ~~ .51*V3
V4 ~~ .51*V4
V5 ~~ .51*V5
V6 ~~ .51*V6
V7 ~~ .51*V7
'```
V8 ~~ .51*V8

modelA2 <-'
 f1 =~ V1 + V2 + V3 + V4
 f2 =~ V5 + V6 + V7 + V8
 f1 ~~ c(psi21, psi21)*f2 # EQUALITY CONSTRAINT ACROSS GROUPS
',
Calculate power
SSpower(powerModel = modelA2, popModel = modelP2, n = c(100, 100), nparam = 1,
 std.lv = TRUE)
Get power for a range of sample sizes
Ns2 <- cbind(Group1 = seq(10, 100, 10), Group2 = seq(10, 100, 10))
Power2 <- apply(Ns2, MARGIN = 1, FUN = function(nn) {
 SSpower(powerModel = modelA2, popModel = modelP2, n = nn,
 nparam = 1, std.lv = TRUE)
})
plot(x = rowSums(Ns2), y = Power2, type = "l", xlab = "Total Sample Size",
 ylim = 0:1)
abline(h = c(.8, .9), lty = c("dotted","dashed"))
legend("bottomright", c("80% Power","90% Power"), lty = c("dotted","dashed"))

== tukeySEM ==

Tukey's WSD post-hoc test of means for unequal variance and sample size

Description

This function computes Tukey's WSD post hoc test of means when variances and sample sizes are not equal across groups. It can be used as a post hoc test when comparing latent means in multiple group SEM.

Usage

tukeySEM(m1, m2, var1, var2, n1, n2, ng)

Arguments

m1 Mean of group 1.
m2 Mean of group 2.
var1 Variance of group 1.
var2 Variance of group 2.
n1 Sample size of group 1.
n2 Sample size of group 2.
ng Total number of groups to be compared (i.e., the number of groups compared in the omnibus test).
Details

After conducting an omnibus test of means across three or more groups, researchers often wish to know which sets of means differ at a particular Type I error rate. Tukey’s WSD test holds the error rate stable across multiple comparisons of means. This function implements an adaptation of Tukey’s WSD test from Maxwell & Delaney (2004), that allows variances and sample sizes to differ across groups.

Value

A vector with three elements:

1. q: The q statistic
2. df: The degrees of freedom for the q statistic
3. p: A p value based on the q statistic, df, and the total number of groups to be compared

Author(s)

Alexander M. Schoemann (East Carolina University; <schoemanna@ecu.edu>)

References

Examples

```r
## For a case where three groups have been compared:
## Group 1: mean = 3.91, var = 0.46, n = 246
## Group 2: mean = 3.96, var = 0.62, n = 465
## Group 3: mean = 2.94, var = 1.07, n = 64

## compare group 1 and group 2
tukeySEM(3.91, 3.96, 0.46, 0.62, 246, 425, 3)

## compare group 1 and group 3
tukeySEM(3.91, 2.94, 0.46, 1.07, 246, 64, 3)

## compare group 2 and group 3
tukeySEM(3.96, 2.94, 0.62, 1.07, 465, 64, 3)
```
twostage

Fit a lavaan model using 2-Stage Maximum Likelihood (TSML) estimation for missing data.

Description

This function automates 2-Stage Maximum Likelihood (TSML) estimation, optionally with auxiliary variables. Step 1 involves fitting a saturated model to the partially observed data set (to variables in the hypothesized model as well as auxiliary variables related to missingness). Step 2 involves fitting the hypothesized model to the model-implied means and covariance matrix (also called the "EM" means and covariance matrix) as if they were complete data. Step 3 involves correcting the Step-2 standard errors (SEs) and chi-squared statistic to account for additional uncertainty due to missing data (using information from Step 1; see References section for sources with formulas).

Usage

twostage(..., aux, fun, baseline.model = NULL)

lavaan.2stage(..., aux = NULL, baseline.model = NULL)
cfa.2stage(..., aux = NULL, baseline.model = NULL)
sem.2stage(..., aux = NULL, baseline.model = NULL)
growth.2stage(..., aux = NULL, baseline.model = NULL)

Arguments

... Arguments passed to the lavaan function specified in the fun argument. See also lavOptions. At a minimum, the user must supply the first two named arguments to lavaan (i.e., model and data).

aux An optional character vector naming auxiliary variable(s) in data

fun The character string naming the lavaan function used to fit the Step-2 hypothesized model ("cfa", "sem", "growth", or "lavaan").

baseline.model An optional character string, specifying the lavaan model.syntax for a user-specified baseline model. Interested users can use the fitted baseline model to calculate incremental fit indices (e.g., CFI and TLI) using the corrected chi-squared values (see the anova method in twostage). If NULL, the default "independence model" (i.e., freely estimated means and variances, but all covariances constrained to zero) will be specified internally.

Details

All variables (including auxiliary variables) are treated as endogenous variables in the Step-1 saturated model (fixed.x = FALSE), so data are assumed continuous, although not necessarily multivariate normal (dummy-coded auxiliary variables may be included in Step 1, but categorical en-
doegenous variables in the Step-2 hypothesized model are not allowed). To avoid assuming multivariate normality, request se = "robust.huber.white". CAUTION: In addition to setting fixed.x = FALSE and conditional.x = FALSE in lavaan, this function will automatically set meanstructure = TRUE, estimator = "ML", missing = "fiml", and test = "standard". lavaan's se option can only be set to "standard" to assume multivariate normality or to "robust.huber.white" to relax that assumption.

Value

The twostage object contains 3 fitted lavaan models (saturated, target/hypothesized, and baseline) as well as the names of auxiliary variables. None of the individual models provide the correct model results (except the point estimates in the target model are unbiased). Use the methods in twostage to extract corrected SEs and test statistics.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)

References

See Also

twostage

Examples

```r
## impose missing data for example
HSMiss <- HolzingerSwineford1939[, c(paste("x", 1:9, sep = ""),
    "ageyr","agemo","school")]
set.seed(12345)
HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5)
age <- HSMiss$ageyr + HSMiss$agemo/12
HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9)

## specify CFA model from lavaan's ?cfa help page
HS.model <- '
  visual =~ x1 + x2 + x3
  textual =~ x4 + x5 + x6
  speed =~ x7 + x8 + x9
',

## use ageyr and agemo as auxiliary variables
out <- cfa.2stage(model = HS.model, data = HSMiss, aux = c("ageyr","agemo"))
```
two versions of a corrected chi-squared test results are shown
see Savalei & Bentler (2009) and Savalei & Falk (2014) for details

the summary additionally provides the parameter estimates with corrected
standard errors, test statistics, and confidence intervals, along with
any other options that can be passed to parameterEstimates()
summary(out, standardized = TRUE)

use parameter labels to fit a more constrained model
modc <- 'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + a*x8 + a*x9
',
outc <- cfa.2stage(model = modc, data = HSMiss, aux = c("ageyr","agemo"))

use the anova() method to test this constraint
anova(out, outc)
like for a single model, two corrected statistics are provided

twostage-class

Class for the Results of 2-Stage Maximum Likelihood (TSML) Estimation for Missing Data

Description

This class contains the results of 2-Stage Maximum Likelihood (TSML) estimation for missing data. The summary, anova, vcov methods return corrected SEs and test statistics. Other methods are simply wrappers around the corresponding *lavaan* methods.

Usage

```r
## S4 method for signature 'twostage'
show(object)

## S4 method for signature 'twostage'
summary(object, ...)

## S4 method for signature 'twostage'
anova(object, h1 = NULL, baseline = FALSE)

## S4 method for signature 'twostage'
nobs(object, type = c("ntotal", "ngroups"),
```
Arguments

object An object of class twostage.
... arguments passed to parameterEstimates.
h1 An object of class twostage in which object is nested, so that their difference in fit can be tested using anova (see Value section for details).
baseline logical indicating whether to return results for the baseline model, rather than the default target (hypothesized) model.
type The meaning of this argument varies depending on which method it it used for. Find detailed descriptions in the Value section under coef, nobs, and residuals.
model character naming the slot for which to return the model-implied sample moments (see fitted.values description.)
labels logical indicating whether the model-implied sample moments should have (row/column) labels.

Value

show signature(object = "twostage"): The show function is used to display the results of the anova method, as well as the header of the (uncorrected) target model results.

summary signature(object = "twostage", ...): The summary function prints the same information from the show method, but also provides (and returns) the output of parameterEstimates(object@target, ...) with corrected SEs, test statistics, and confidence intervals. Additional arguments can be passed to parameterEstimates,
including fmi = TRUE to provide an estimate of the fraction of missing information.

anova signature(object = "twostage", h1 = NULL, baseline = FALSE): The anova function returns the residual-based χ^2 test statistic result, as well as the scaled χ^2 test statistic result, for the model in the target slot, or for the model in the baseline slot if baseline = TRUE. The user can also provide a single additional twostage object to the h1 argument, in which case anova returns residual-based and scaled (Δ)χ^2 test results, under the assumption that the models are nested. The models will be automatically sorted according their degrees of freedom.

nobs signature(object = "twostage", type = c("ntotal", "ngroups", "n.per.group", "norig", "patterns", "coverage")): The nobs function will return the total sample sized used in the analysis by default. Also available are the number of groups or the sample size per group, the original sample size (if any rows were deleted because all variables were missing), the missing data patterns, and the matrix of coverage (diagonal is the proportion of sample observed on each variable, and off-diagonal is the proportion observed for both of each pair of variables).

coeff signature(object = "twostage", type = c("free", "user")): This is simply a wrapper around the corresponding lavaan method, providing point estimates from the target slot.

vcov signature(object = "twostage", baseline = FALSE): Returns the asymptotic covariance matrix of the estimated parameters (corrected for additional uncertainty due to missing data) for the model in the target slot, or for the model in the baseline slot if baseline = TRUE.

fitted.values, fitted signature(object = "twostage", model = c("target", "saturated", "baseline")): This is simply a wrapper around the corresponding lavaan method, providing model-implied sample moments from the slot specified in the model argument.

residuals, resid signature(object = "twostage", type = c("raw", "cor", "normalized", "standardized")): This is simply a wrapper around the corresponding lavaan method, providing residuals of the specified type from the target slot.

Slots

- saturated: A fitted lavaan object containing the saturated model results
- target: A fitted lavaan object containing the target/hypothesized model results
- baseline: A fitted lavaan object containing the baseline/null model results
- auxNames: A character string (potentially of length == 0) of any auxiliary variable names, if used

Objects from the Class

Objects can be created via the twostage function.

Author(s)

Terrence D. Jorgensen (University of Amsterdam; <TJorgensen314@gmail.com>)
See Also

twostage

Examples

See the example from the twostage function
Index

* datasets
 dat2way, 27
 dat3way, 28
 datCat, 29
 exLong, 36
 simParcel, 172
::, 169

anova, lavaan.mi-method
 (lavaan.mi-class), 56
anova, twostage-method (twostage-class), 185
as.character, measEq.syntax-method
 (measEq.syntax-class), 89
auxiliary, 4, 84, 172
AVE, 6, 172
blavaan, 136
BootMiss, 11
BootMiss-class, 8
bsBootMiss, 9, 9, 172
c, 99
calculate.D2, 12
ceiling, 136
cfa, 30, 35, 81, 82
cfa, 2stage (twostage), 183
cfa, auxiliary (auxiliary), 4
cfa.mi, 59
cfa.mi (runMI), 168
chisqSmallN, 13, 172
clipboard, 15, 18, 43
clusterSetRNGStream, 127
coeff, lavaan.mi-method
 (lavaan.mi-class), 56
coeff, twostage-method (twostage-class), 185
combinequark, 17, 166, 172
compareFit, 18, 42, 43, 58, 66, 85
compRelSEM, 7, 20, 172
cov, 76, 77
dat2way, 27
dat3way, 28
datCat, 29
detectCores, 127
dimnames, 74
discriminantValidity, 30
EFA-class, 31
efa.ekc, 33, 172
efaUnrotate, 32, 34, 172
emm_basis.lavaan (lavaan2emmeans), 60
exLong, 36
factanal, 35
findRMSEApower, 37, 40, 143, 145, 172
findRMSEApowerNested, 38, 41, 146, 172
findRMSEAsamplesize, 38, 39, 143, 145, 172
findRMSEAsamplesizenested, 39, 40, 146, 172
FitDiff, 15, 18
FitDiff-class, 42
fitMeasures, 5, 15, 18, 42, 57–59, 112, 121, 126, 148
fitMeasures, lavaan.mi-method
 (lavaan.mi-class), 56
fitmeasures, lavaan.mi-method
 (lavaan.mi-class), 56
fitted, lavaan.mi-method
 (lavaan.mi-class), 56
fitted, twostage-method
 (twostage-class), 185
fitted.values, lavaan.mi-method
 (lavaan.mi-class), 56
fitted.values, twostage-method
 (twostage-class), 185
fmi, 43, 172
funRotate, 172
funRotate (orthRotate), 110
GPA, 110
GPFoblq, 110
GPForth, 110
growth.2stage (twoStage), 183
growth.auxiliary (auxiliary), 4
growth.mi, 59
growth.mi (runMI), 168

hist, 8, 99, 133
hist.BootMiss-method (BootMiss-class), 8
hist.permuteMeasEq-method
(permuteMeasEq-class), 133

kurtosis, 54, 77, 78, 172, 176

lav_func_jacobian_simple, 110
lav_partable_unrestricted, 59
lavaan, 4–6, 10, 13, 18, 20, 30, 44, 58, 60, 78, 81, 82, 84, 91, 98, 99, 112, 121, 128, 135, 136, 148, 151, 155, 158, 162, 169, 179, 183–185, 187
lavaan-class, 15
lavaan.2stage (twoStage), 183
lavaan.auxiliary (auxiliary), 4
lavaan.mi (runMI), 168
lavaan.mi-class, 56
lavaan2mmmeans, 60
lavaanify, 112, 121
lavaanList, 56, 59, 112, 113, 121, 169
lavCor, 33, 46
lavInspect, 22, 59, 69, 91, 96, 152, 155, 158, 162
lavOptions, 10, 81, 82, 84, 91, 112, 121, 148, 169, 179, 183
lavParseModelString, 82
lavPredict, 136
lavTestLRT, 14, 18, 57, 65, 66, 116, 174
lavTestLRT.mi, 12–14, 18, 57–59, 64
lavTestScore, 69, 70, 125, 128, 129, 134
lavTestScore.mi, 12, 13, 67
lavTestWald, 72, 117, 118
lavTestWald.mi, 12, 13, 57, 70
legend, 8, 133, 139
loadingFromAlpha, 73
lrv2ord, 74

makeCluster, 127
mardiaKurtosis, 55, 76, 78, 172, 176
mardiaSkew, 55, 77, 78, 172, 176
matrix, 74
maximalRelia, 25, 78, 172
measEq.syntax, 80, 84, 89, 90, 172
measEq.syntax-class, 89
measurementInvariance, 116, 118, 128, 129
measurementInvarianceCat, 116, 118, 129
mice, 165
miPowerFit, 15, 92, 104, 109, 172
model.syntax, 4, 46, 81, 90, 93, 98, 99, 125, 126, 168, 178, 179, 183
modificationIndices, 92
modificationIndices.mi (modindices.mi), 95
modificationindices.mi (modindices.mi), 95
modindices, 59
modindices.mi, 95
monteCarloCI, 98
monteCarloMed (monteCarloCI), 98
moreFitIndices, 18, 94, 101, 109, 126, 172
mvronorm, 105, 172
mvnorm, 28

Net, 106
net, 18, 106, 108
Net-class, 107
nobs, lavaan.mi-method
(lavaan.mi-class), 56
nobs, twoStage-method (twoStage-class), 185
nullRMSEA, 102, 104, 108, 172

oblqRotate, 32, 34, 172
oblqRotate (orthRotate), 110
options, 126
orthogonalize, 172
orthogonalize (indProd), 50
orthRotate, 32, 34, 110, 172

p.adjust, 116
INDEX

parameterEstimates, 57, 59, 186
parcelAllocation, 111, 120, 122, 123, 148, 150, 172
parTable, 4, 81, 134, 168
partialInvariance, 115, 172
partialInvarianceCat, 172
partialInvarianceCat
(partialInvariance), 115
path.expand, 147
PAVranking, 113, 120, 148, 150, 172
permuteMeasEq, 124, 125, 128, 134, 135, 172
permuteMeasEq-class, 133
plausibleValues, 135
plot, 139
plotProbe, 52, 139, 154, 157, 160, 164, 172
plotRMSEAdist, 38, 40, 142, 145, 172
plotRMSEapower, 38, 40, 143, 143, 172
plotRMSEapowernested, 39, 41, 145, 172
poolMAlloc, 113, 123, 146, 172
probe2WayMC, 51, 139, 140, 151, 156, 157,
160, 164, 172
probe2WayRC, 51, 139, 140, 154, 155, 160,
164, 172
probe3WayMC, 51, 139, 140, 153, 157, 158,
163, 164, 172
probe3WayRC, 52, 139, 140, 154, 157, 160,
161, 172
quantile, 99
quark, 17, 165, 172
recover_data.lavaan (lavaan2emmmeans), 60
reliability, 80
reliabilityL2, 21
resid, lavaan.mi-method
(lavaan.mi-class), 56
resid,twostage-method (twostage-class), 185
residualCovariate, 167
residuals, lavaan.mi-method
(lavaan.mi-class), 56
residuals,twostage-method (twostage-class), 185
RNGkind, 127
rotations, 110
runMI, 59, 84, 135, 137, 146, 148, 150, 168,
172
saveFile (clipboard), 15

sem.2stage (twostage), 183
sem.auxiliary (auxiliary), 4
sem.mi, 59
sem.mi (runMI), 168
semTools, 172
set.seed, 127, 136
show, BootMiss-method (BootMiss-class), 8
show, EFA-method (EFA-class), 31
show, FitDiff-method (FitDiff-class), 42
show, lavaan.mi-method
(lavaan.mi-class), 56
show, measEq.syntax-method
(measEq.syntax-class), 89
show, Net-method (Net-class), 107
show, permuteMeasEq-method
(permuteMeasEq-class), 133
show, twostage-method (twostage-class), 185
simParcel, 149, 172
simulateData, 105
singleParamTest, 172, 173
skew, 55, 77, 78, 172, 175
splitSample, 177
SSpower, 172, 178
standardizedSolution, 69
summary, BootMiss-method
(BootMiss-class), 8
summary, EFA-method (EFA-class), 31
summary, FitDiff-method (FitDiff-class), 42
summary, lavaan.mi-method
(lavaan.mi-class), 56
summary, measEq.syntax-method
(measEq.syntax-class), 89
summary, Net-method (Net-class), 107
summary, permuteMeasEq-method
(permuteMeasEq-class), 133
summary, twostage-method
(twostage-class), 185
TukeyHSD, 129
tukeySEM, 181
twostage, 172, 183, 183, 184, 187, 188
twostage-class, 185
txtProgressBar, 112, 121
update, measEq.syntax-method
(measEq.syntax-class), 89
vcov,lavaan.mi-method
 (lavaan.mi-class), 56
vcov,twostage-method(twostage-class), 185

write.table, 10, 15