Package ‘semicmprskcox MSM’

October 14, 2022

Type Package

Title Use Inverse Probability Weighting to Estimate Treatment Effect for Semi Competing Risks Data

Version 0.2.0

Author Yiran Zhang

Maintainer Yiran Zhang <yiz038@health.ucsd.edu>

Description Use inverse probability weighting methods to estimate treatment effect under marginal structure model (MSM) for the transition hazard of semi competing risk data, i.e. illness death model. We implement two specific such models, the usual Markov illness death structural model and the general Markov illness death structural model. We also provide the predicted three risks functions from the marginal structure models. Zhang, Y. and Xu, R. (2022) <arXiv:2204.10426>.

License GPL (>= 2)

Imports ggplot2, survival, stats, twang, graphics, fastGHQuad, Rcpp

Suggests knitr, rmarkdown

NeedsCompilation no

Repository CRAN

Date/Publication 2022-04-29 23:40:02 UTC

R topics documented:

- bayesian_boot_irrd ...
- cif_est_usual ...
- conditional_cif_b ...
- doPS ...
- em_illness_death_phmm_weight ...
- get_hazard ...
- get_hazard_offset_weights ...
- individual_RR_RD ...
- initial_fit_em_weights ...
- initial_lambda_em ...
- OUT_em_weights ...
bayesian_boot_irrd

Obtaining Bayesian Bootstrap Sample for Individual Risk Difference and Risk Ratio.

Description

bayesian_boot_irrd provides the bootstrap sample for individual risk difference and risk ratio, it can be used for further inferences.

Usage

bayesian_boot_irrd(dat2,B,sigma_2_0, EM_initial, varlist, t1_star,t)

Arguments

dat2 The dataset, includes non-terminal events, terminal events as well as event indicator.
B Number of bootstraps that the user want to run, typically we use B = 500.
sigma_2_0 Initial value for sigma_2 for the general Markov model
EM_initial Initial value for the EM algorithm, the output of OUT_em_weights.
varlist Confounder list for the propensity score model.
t1_star Fixed non-terminal event time for estimating risk difference/ratio for terminal event following the non-terminal event.
t Fixed time point of interest to compare the individual risk difference / ratio.

Details

For each bootstrap sample:
1. Generate n standard exponential (mean and variance 1) random variates : $u_1, u_2, ..., u_n$;
2. The weights for the Bayesian bootstrap are: $w_i^{boot} = u_i / \bar{u}$, where $\bar{u} = n^{-1} \sum_{i=1}^{n} u_i$;
3. Calculate the propensity score and IP weights w_i^{IPW} based on Bayesian bootstrap weighted data, and assigned the weights for fitting the MSM general Markov model as $w_i = w_i^{boot} * w_i^{IPW}$.
4. After obtaining $\hat{\theta}$ and \hat{b}_i, for each individual i, calculate the IRR and IRD by plugging $\hat{\theta}$, \hat{b}_i and $a=0$, $a=1$ separately at time t.

The 95% prediction intervals (PI) cam be obtained by the normal approximation using bootstrap standard error.
Value

- **RD1_boot**
 A n times B matrix as the Bayesian bootstrap sample for each data point. The sample is for individual risk difference for time to non-terminal event at time t.

- **RD2_boot**
 A n times B matrix as the Bayesian bootstrap sample for each data point. The sample is for individual risk difference for time to terminal event without non-terminal event at time t.

- **RD3_boot**
 A n times B matrix as the Bayesian bootstrap sample for each data point. The sample is for individual risk difference for time to terminal event following non-terminal event by t1_start at time t.

- **RR1_boot**
 A n times B matrix as the Bayesian bootstrap sample for each data point. The sample is for individual risk ratio for time to non-terminal event at time t.

- **RR2_boot**
 A n times B matrix as the Bayesian bootstrap sample for each data point. The sample is for individual risk ratio for time to terminal event without non-terminal event at time t.

- **RR3_boot**
 A n times B matrix as the Bayesian bootstrap sample for each data point. The sample is for individual risk ratio for time to terminal event following non-terminal event by t1_start at time t.

cif_est_usual

Estimating Three Cumulative Incidence Functions Using the Usual Markov Model

Description

cif_est_usual estimates the cumulative incidence function (CIF, i.e. risk) based on the MSM illness-death usual Markov model.

Usage

cif_est_usual(data,X1,X2,event1,event2,w,Trt,
 t1_star = t1_star)

Arguments

data
 The dataset, includes non-terminal events, terminal events as well as event indicator.

X1
 Time to non-terminal event, could be censored by terminal event or lost to follow up.

X2
 Time to terminal event, could be censored by lost to follow up.

event1
 Event indicator for non-terminal event.

event2
 Event indicator for terminal event.

w
 IP weights.

Trt
 Treatment variable.

t1_star
 Fixed non-terminal event time for estimating CIF function for terminal event following the non-terminal event.
Details

After estimating the parameters in the illness-death model λ_j^a using IPW, we could estimate the corresponding CIF:

$$\hat{P}(T_1^a < t, \delta_1^a = 1) = \int_0^t \hat{S}^a(u) d\hat{\Lambda}_1^a(u),$$

$$\hat{P}(T_2^a < t, \delta_1^a = 0, \delta_2^a = 1) = \int_0^t \hat{S}^a(u) d\hat{\Lambda}_2^a(u),$$

and

$$\hat{P}(T_2^a < t_2 \mid T_1^a < t_1, T_2^a > t_1) = 1 - e^{-\int_{t_1}^{t_2} d\hat{\Lambda}_{12}^a(u)},$$

where \hat{S}^a is the estimated overall survival function for joint T_1^a, T_2^a, $\hat{S}^a(u) = e^{-\hat{\Lambda}_1^a(u)} - \hat{\Lambda}_2^a(u)$.

We obtain three hazards by fitting the MSM illness-death model $\hat{\Lambda}_j^a(u) = \hat{\Lambda}_0j(u)e^{\beta_j^a}a$, $\hat{\Lambda}_{12}^a(u) = \hat{\Lambda}_{03}(u)e^{\beta_{12}^a}$, and $\hat{\Lambda}_0j(u)$ is a Breslow-type estimator of the baseline cumulative hazard.

Value

Returns a table containing the estimated CIF for the event of interest for control and treated group.

References

conditional_cif_b

Arguments

res1 The output from em_illness_death_phmm_weight, the general Markov model result.
t1_star Fixed non-terminal event time for estimating CIF function for terminal event following the non-terminal event.
b Fixed random effect value.

Details

Similar as cif_est_usual, after estimating the parameters in the illness-death model \(\lambda^a_j \) using IPW, we could estimate the corresponding conditional CIF under fixed \(b \):

\[
P(T^a_1 < t, \delta^a_1 = 1 | b) = \int_0^t \hat{S}^a(u | b) d\hat{\Lambda}^a_1(u | b),
\]

\[
P(T^a_2 < t, \delta^a_1 = 0, \delta^a_2 = 1 | b) = \int_0^t \hat{S}^a(u | b) d\hat{\Lambda}^a_2(u | b),
\]

and

\[
P(T^a_2 < t | T^a_1 < t_1, T^a_2 > t_1 | b) = 1 - e^{-\int_{t_1}^t d\hat{\Lambda}^a_{12}(u|b)},
\]

where \(\hat{S}^a \) is the estimated overall survival function for joint \(T^a_1, T^a_2 \), \(\hat{S}^a(u) = e^{-\hat{\Lambda}^a_1(u)} - \hat{\Lambda}^a_2(u) \).

We obtain three hazards by fitting the MSM illness-death model \(\hat{\Lambda}^a_j(u) = \hat{\Lambda}_{0j}(u)e^{\beta_j a^a}, \hat{\Lambda}^a_{12}(u) = \hat{\Lambda}_{03}(u)e^{\beta_3 a^a} \), and \(\hat{\Lambda}_{0j}(u) \) is a Breslow-type estimator of the baseline cumulative hazard.

Value

a1 The step function for estimated CIF conditional on b for time to non-terminal event for control group.
b1 The step function for estimated CIF conditional on b for time to non-terminal event for treated group.
a2 The step function for estimated CIF conditional on b for time to terminal event without non-terminal event for control group.
b2 The step function for estimated CIF conditional on b for time to terminal event without non-terminal event for treated group.
a3 The step function for estimated CIF conditional on b for time to terminal event following non-terminal event by t1_start for control group.
b3 The step function for estimated CIF conditional on b for time to terminal event without non-terminal event by t1_start for treated group.
cif.1 A data frame with time and estimated CIF conditional on b if is treated or controlled for time to non-terminal event.
A data frame with time and estimated CIF conditional on b if is treated or controlled for time to terminal event without non-terminal event.

A data frame with time and estimated CIF conditional on b if is treated or controlled for time to terminal event without non-terminal event by t1_start.

See Also
cif_est_usual

doPS

Generate the Inverse Probability Treatment Weights

Description
doPS calculates the unstabilized and stabilized inverse probability treatment weights (IPW) for average treatment effect using propensity score. The propensity score is calculated by twang package using the boosted logistic regression.

Usage
doPS(data, Trt, Trt.name, VARS., logistic = FALSE, w=NULL)

Arguments
data The dataset, includes treatment assignment as well as covariates.
Trt The name of the treatment variable in the dataset.
Trt.name The treated group name of the treatment variable in the dataset.
VARS. The vector of the name of potential confounding variables in the dataset.
logistic A logical value indicating whether use logistic regression (TRUE) or non-parametric boosted tree (FALSE).
w Optional sampling weights.

Details
The treatment variable should only contain 2 levels of treatment, and one should be viewed as treated group and another is control group.

For stabilized weights:

For the treated individuals, we assign the IPW: \(w = \frac{\Pr(T=1)}{\Pr(T=1|X=x)} \), for control individuals, the stabilized weight is: \(w = \frac{(1-\Pr(T=1))}{(1-\Pr(T=1|X=x))} \).
Value

doPS returns an object of class "PS". An object of class "PS" is a list containing the following components:

- **Data**: A new dataset which excludes all the missing value on the potential confounders from input data, add the propensity score and IPW into the new dataset.
- **ps_ate**: The estimated propensity scores with estimand of interest as ATE.
- **ipw_ate_unstab**: Unstabilized ipw calculated from ps_ate.
- **ipw_ate_stab**: Stabilized ipw calculated from ps_ate.
- **ps**: an object of class ps, See the help for ps for details of the ps class.

See Also

ps

Examples

```r
n <- 500
set.seed(1234)
Cens = runif(n,0.7,0.9)
set.seed(1234)
OUT1 <- sim_cox_msm_semicmrsk(beta1 = 1,beta2 = 1,beta3 = 0.5,
sigma_2 = 1,
alpha0 = 0.5, alpha1 = 0.1, alpha2 = -0.1, alpha3 = -0.2,
n=n, Cens = Cens)
data_test <- OUT1$data0
## Get the PS weights
vars <- c("Z1","Z2","Z3")
ps1 <- doPS(data = data_test,
            Trt = "A",
            Trt.name = 1,
            VARS. = vars,
            logistic = TRUE,w=NULL)
w <- ps1$Data$ipw_ate_stab
```

Using EM Type Algorithm for MSM Illness-death General Markov Model

Description

Under the general Markov illness-death model, with normal frailty term which is a latent variable. We use the EM type algorithm to estimate the coefficient in the MSM illness-death general Markov model.
Usage

em_illness_death_phmm_weight(data,X1,X2,event1,event2,w,Trt,
 EM_initial,sigma_2_0)

Arguments

data The dataset, includes non-terminal events, terminal events as well as event indicator.
X1 Time to non-terminal event, could be censored by terminal event or lost to follow up.
X2 Time to terminal event, could be censored by lost to follow up.
event1 Event indicator for non-terminal event.
event2 Event indicator for terminal event.
w IP weights.
Trt Treatment variable.
EM_initial Initial value for the EM algorithm, the output of OUT_em_weights.
sigma_2_0 Initial value for σ^2, the variance of zero-mean normal frailty, usually starts with 1.

Details

Similar as the usual Markov model. We postulate the semi-parametric Cox models with a frailty term for three transition rates in marginal structural illness-death model:

$$\lambda_1(t_1; a) = \lambda_{01}(t)e^{\beta_1 a + b}, t_1 > 0;$$
$$\lambda_2(t_2; a) = \lambda_{02}(t)e^{\beta_2 a + b}, t_2 > 0;$$

and

$$\lambda_{12}(t_2 \mid t_1; a) = \lambda_{03}(t_2)e^{\beta_3 a + b}, 0 < t_1 < t_2,$$

where $b \sim N(0, 1)$. Since b is not observed in the data, we use the IP weighted EM type algorithm to estimate all the parameters in the MSM illness-death general Markov model.

Value

beta1 The EM sequence for estimating β_1 at each iteration.
beta2 The EM sequence for estimating β_2 at each iteration.
beta3 The EM sequence for estimating β_3 at each iteration.
Lambda01 List of two dataframes for estimated Λ_{01} and λ_{01} when EM converges.
Lambda02 List of two dataframes for estimated Λ_{02} and λ_{02} when EM converges.
Lambda03 List of two dataframes for estimated Λ_{03} and λ_{03} when EM converges.
sigma_2 The EM sequence for estimating σ^2 at each iteration.
loglik The EM sequence for log-likelihood at each iteration.
em.n Number of EM steps to converge.
data Data after running the EM.
get_hazard

Get Hazard

Compute the (Cumulative) Baseline Hazard from Cox Model

Examples

```r
n <- 500
set.seed(1234)
Cens = runif(n, 0.7, 0.9)
set.seed(1234)
OUT1 <- sim_cox_msm_semicmrsk(beta1 = 1, beta2 = 1, beta3 = 0.5,
sigma_2 = 1,
alpha0 = 0.5, alpha1 = 0.1, alpha2 = -0.1, alpha3 = -0.2, n=n, Cens = Cens)
data_test <- OUT1$data0

## Get the PS weights
vars <- c("Z1", "Z2", "Z3")
ps1 <- doPS(data = data_test,
            Trt = "A",
            Trt.name = 1,
            VARS. = vars,
            logistic = TRUE, w=NULL)
w <- ps1$Data$ipw_ate_stab

### Fit the General Markov model
EM_initial <- OUT_em_weights(data = data_test,
                              X1 = "X1",
                              X2 = "X2",
                              event1 = "delta1",
                              event2 = "delta2",
                              w = w,
                              Trt = "A")

res1 <- em_illness_death_phmm_weight(data = data_test,
                                      X1 = "X1",
                                      X2 = "X2",
                                      event1 = "delta1",
                                      event2 = "delta2",
                                      w = w,
                                      Trt = "A",
                                      EM_initial = EM_initial,
                                      sigma_2_0 = 2)

print(paste("The estimated value for beta1 is: ", round(res1$beta1[res1$em.n,5], 5) )
```

Description

Compute the Breslow type baseline hazard and cumulative baseline hazard at each event time from a Cox model.
get_hazard_offset_weights

Usage
get_hazard(fit)

Arguments
fit The results of a coxph fit.

Details
See also basehaz, we only extract the estimated baseline hazard and baseline cumulative hazard from the results of a coxph fit.

Value
A list contains two dataframes.

Lambda See also basehaz, returns the Breslow type cumulative baseline hazard.
lambda Returns the Breslow type baseline hazard.

See Also
basehaz

get_hazard_offset_weights

Compute the (Cumulative) Baseline Hazard from Cox Model with Offsets

Description
Compute the Breslow type baseline hazard and cumulative baseline hazard at each event time from a weighted Cox model with offsets.

Usage
get_hazard_offset_weights(fit,data,time1= NULL,time2,w)

Arguments
fit The results of a weighted coxph fit.
data The original data for fitting the weighted Cox model.
time1 The default is NULL. For left truncation data, which refers to transition rate for terminal event following non-terminal events, this argument is the time to non-terminal event.
time2 For right censored data, this is the event time or censoring time. For left truncation data, the argument is the time to terminal event or the censoring time.
w IP weights.
individual_RR_RD

Details

See also get_hazard, handles the offset term in coxph for predicting the baseline hazard.

Value

A list contains two dataframes.

- **Lambda**
 - See also get_hazard, returns a step function for cumulative baseline hazard.

- **lambda**
 - Returns a data frame for baseline hazard.

- **cum_base_haz**
 - Returns a data frame for cumulative baseline hazard.

See Also

get_hazard, basehaz

individual_RR_RD

Estimating Three Individual Risk Difference and Risk Ratio Using the General Markov Model Conditional on Predicted Random Effect

Description

`individual_RR_RD` estimates the individual risk difference and risk ratio based on the MSM illness-death general Markov model conditional on predicted random effect for each data point at a fixed time point.

Usage

`individual_RR_RD(dat1,res1,t1_star ,t)`

Arguments

- **dat1**
 - The dataset, includes non-terminal events, terminal events as well as event indicator.

- **res1**
 - The output from `em_illness_death_phmm_weight`, the general Markov model result, the result data includes the predicted random effect.

- **t1_star**
 - Fixed non-terminal event time for estimating risk difference/ratio for terminal event following the non-terminal event.

- **t**
 - Fixed time point of interest to compare the individual risk difference / ratio.
Details

Similar as `cif_est_usual`, after estimating the parameters in the illness-death model λ_j^a using IPW, we could estimate the corresponding conditional CIF under the predicted b:

\[
\hat{P}(T_1^a < t, \delta_1^a = 1 \mid b) = \int_0^t \hat{S}_a(u \mid b) d\hat{\Lambda}_1^a(u \mid b),
\]

\[
\hat{P}(T_2^a < t, \delta_1^a = 0, \delta_2^a = 1 \mid b) = \int_0^t \hat{S}_a(u \mid b) d\hat{\Lambda}_2^a(u \mid b),
\]

and

\[
\hat{P}(T_2^a < t_2 \mid T_1^a < t_1, T_2^a > t_1 \mid b) = 1 - e^{-\int_{t_1}^{t_2} d\hat{\Lambda}_{12}^a(u \mid b)},
\]

The frailty term, or equivalently, the random effect b represents the unobserved heterogeneity among the individuals. As such, the above conditional risk represents individual risk, and the risk contrasts the individual risk contrasts. We therefore have the individual risk difference (IRD) and the individual risk ratio (IRR).

Under the random effects model, for $i = 1, 2, ..., n$, the predicted random effect is $\hat{b}_i = E(b_i \mid O_i, \hat{\theta})$. We then obtain the predicted IRD and the predicted IRR.

Value

Returns a data frame that includes the individual risk difference / ratio for three type of events.

initial_fit_em_weights

Fit the MSM Cox Model with IP Weights

Description

Fit the MSM cox model with IPW as the initial value for EM algorithm to fit the illness-death general Markov model

Usage

`initial_fit_em_weights(data, X1, X2, event1, event2, w, Trt)`
Arguments

- `data`: The dataset, includes non-terminal events, terminal events as well as event indicator.
- `X1`: Time to non-terminal event, could be censored by terminal event or lost to follow up.
- `X2`: Time to terminal event, could be censored by lost to follow up.
- `event1`: Event indicator for non-terminal event.
- `event2`: Event indicator for terminal event.
- `w`: IP weights.
- `Trt`: Treatment variable.

Details

As initial values we use for β_j, $j = 1, 2, 3$, the estimates from IP weighted Cox regression without the offsets, i.e. from the usual Markov model.

Value

A list of objects from `survival` package:

- `event1`: An object of class `Surv` for non-terminal event.
- `event2`: An object of class `Surv` for terminal event without non-terminal event.
- `event3`: An object of class `Surv` for terminal event following non-terminal event.
- `fit1`: An object of class `coxph` representing the fit for time to non-terminal event. See `coxph.object` for details.
- `fit2`: An object of class `coxph` representing the fit for time to terminal event without non-terminal event.
- `fit3`: An object of class `coxph` representing the fit for time to terminal event following non-terminal event.

See Also

- `Surv`, `coxph`

`initial_lambda_em` *Compute the Initial (Cumulative) Baseline Hazard From the MSM Illness-death Model*

Description

Compute the Breslow type baseline hazard and cumulative baseline hazard at each event time from the MSM illness-death model.
OUT_em_weights

Usage

 initial_lambda_em (OUT)

Arguments

 OUT The results of a initial_fit_em_weights fit.

Details

 See also get_hazard

Value

 A list contains six dataframes: including baseline hazard and cumulative baseline hazard for non-
terminal event, terminal event without non-terminal event, and terminal event following non-terminal
event.

See Also

 get_hazard

OUT_em_weights Initial Value For Fitting the General Markov Model

Description

 Compute the initial value for fitting the MSM illness-death general Markov model using EM type
algorithm

Usage

 OUT_em_weights(data,X1,X2,event1,event2,w,Trt)

Arguments

data The dataset, includes non-terminal events, terminal events as well as event indicator.
X1 Time to non-terminal event, could be censored by terminal event or lost to follow up.
X2 Time to terminal event, could be censored by lost to follow up.
event1 Event indicator for non-terminal event.
event2 Event indicator for terminal event.
w IP weights.
Trt Treatment variable.
OUT_em_weights

Details
See usual_illness_death_weight

Value
A list of vectors and dataframes:

- **beta1** Initial value for β_1, the coefficient for the non-terminal event model.
- **beta2** Initial value for β_2, the coefficient for the terminal event without non-terminal event model.
- **beta3** Initial value for β_3, the coefficient for the terminal event following non-terminal event model.
- **lambda1** Initial value for λ_{01}, the estimated baseline hazard for the non-terminal event model.
- **lambda2** Initial value for λ_{02}, the estimated baseline hazard for the terminal event without non-terminal event model.
- **lambda3** Initial value for λ_{03}, the estimated baseline hazard for the terminal event following non-terminal event model.
- **Lambda1** Initial value for Λ_{01}, the estimated cumulative baseline hazard for the non-terminal event model.
- **Lambda2** Initial value for Λ_{02}, the estimated cumulative baseline hazard for the terminal event without non-terminal event model.
- **Lambda3** Initial value for Λ_{03}, the estimated cumulative baseline hazard for the terminal event following non-terminal event model.
- **event1** An object of class `Surv` for non-terminal event.
- **event2** An object of class `Surv` for terminal event without non-terminal event.
- **event3** An object of class `Surv` for terminal event following non-terminal event.

See Also
usual_illness_death_weight

Examples

```r
n <- 500
set.seed(1234)
Cens = runif(n,0.7,0.9)
set.seed(1234)
OUT1 <- sim_cox_msm_semicmrsk(beta1 = 1,beta2 = 1,beta3 = 0.5,
sigma_2 = 1,
alpha0 = 0.5, alpha1 = 0.1, alpha2 = -0.1, alpha3 = -0.2,
n=n, Cens = Cens)

data_test <- OUT1$data0

## Get the PS weights
vars <- c("Z1","Z2","Z3")
```
ps1 <- doPS(data = data_test,
 Trt = "A",
 Trt.name = 1,
 VARS. = vars,
 logistic = TRUE, w = NULL)
w <- ps1$Data$ipw_ate_stab

Get the initial value
EM_initial <- OUT_em_weights(data = data_test,
 X1 = "X1",
 X2 = "X2",
 event1 = "delta1",
 event2 = "delta2",
 w = w,
 Trt = "A")

plot.PS
Plotting Histogram of Propensity Score and Balancing Plot for Covariates in the Propensity Score Model

Description
Displays a the histogram plots for the propensity score, stratified by treated and control group and a graph of standardized mean difference of potential confounders before and after weighing.

Usage
```r
## S3 method for class 'PS'
plot(x,...)
```

Arguments
- `x`
 The results of doPS function.
- `...`
 the other arguments you want to put in the built-in plot function.

Details
Only available when logistic = FALSE in doPS. The standardized mean difference (SMD), defined as the (weighted) treatment group mean minus the (weighted) control group mean divided by the (weighted) pooled sample (treatment and control) standard deviation. SMD between -0.1 and 0.1 typically indicates good balance.

Value
Histogram of propensity score and balancing plot for covariates in the propensity score model corresponding to the output from doPS.

See Also
- `bal.table`
Simulating Semi-competing Risks with Right-censored Survival Data under Marginal Structural Illness-death Cox Model

Description

The function to simulate semi-competing risk with right-censored survival data under marginal structural illness-death Cox model.

Usage

sim_cox_msm_semicmrsk(beta1,beta2,beta3,sigma_2,
alpha0,alpha1,alpha2,alpha3,
n,Cens)

Arguments

- **beta1**: True value of β_1 in the illness-death model.
- **beta2**: True value of β_2 in the illness-death model.
- **beta3**: True value of β_3 in the illness-death model.
- **sigma_2**: True value of variance of normal frailty σ^2 in the illness-death model, if $\sigma^2 = 0$, then there is no frailty term.
- **alpha0**: True value of α_0 in the propensity score model.
- **alpha1**: True value of α_1 in the propensity score model.
- **alpha2**: True value of α_2 in the propensity score model.
- **alpha3**: True value of α_3 in the propensity score model.
- **n**: Sample size.
- **Cens**: Censoring distribution.

Details

We simulate data followed by Xu(2010) to generate semi-competing risk data under illness-death model, where we have baseline hazard $\lambda_{01}(t) = \lambda_{02}(t) = 2exp(-t)I(0 \leq t \leq 3)+2exp(-3)I(t \geq 3)$, and $\lambda_{03}(t) = 2\lambda_{01}(t)$.

We also have the propensity score model to generate treatment assignment $P_A = logit^{-1}(\alpha_0 + \alpha_1Z_1 + \alpha_2Z_2 + \alpha_3Z3)$.

Value

Returns a data frame that contains time to non-terminal event, T1, terminal event, T2 and censoring time C with their event indicator, delta1 and delta2. Three covariates Z1, Z2, Z3, and treatment assignment A are also included.
Examples

n <- 500
set.seed(1234)
Cens = runif(n, 0.7, 0.9)
set.seed(1234)
OUT1 <- sim_cox_msm_semicmrsk(beta1 = 1, beta2 = 1, beta3 = 0.5,
sigma_2 = 1,
alpha0 = 0.5, alpha1 = 0.1, alpha2 = -0.1, alpha3 = -0.2,
n=n, Cens = Cens)
data_test <- OUT1$data0

usual_illness_death_weight

Fit MSM Illness-death Usual Markov Model For Semi-competing Risks Data

Description

Fit the marginal structural three-state illness-death model with Cox representation and IP weights for semi-competing risks data. Inference under this model can be carried out using estimating equations with IP weights.

Usage

usual_illness_death_weight(data, X1, X2, event1, event2, w, Trt)

Arguments

data
X1
X2
event1
event2
wevent2
w
Trt

The dataset, includes non-terminal events, terminal events as well as event indicator.
Time to non-terminal event, could be censored by terminal event or lost to follow up.
Time to terminal event, could be censored by lost to follow up.
Event indicator for non-terminal event.
Event indicator for terminal event.
IP weights.
Treatment variable.

Details

Let \(T_1, T_2 \) be the time to non-terminal event and terminal event, \(A \) be the treatment assignment. We postulate the semi-parametric Cox models for three transition rates in marginal structural illness-death model:

\[
\lambda_1(t_1; a) = \lambda_{01}(t)e^{\beta_1 a}, t_1 > 0;
\]
\[
\lambda_2(t_2; a) = \lambda_{02}(t)e^{\beta_2 a}, \ t_2 > 0;
\]

and

\[
\lambda_{12}(t_2 \mid t_1; a) = \lambda_{03}(t_2)e^{\beta_3 a}, \ 0 < t_1 < t_2.
\]

The coefficients as well as Breslow type baseline hazards can be estimated by fitting the IP weights Cox proportional hazards models. Meanwhile, if we assume the estimated weights as known, then the robust sandwich variance estimator can be used to obtain the estimated variance.

The usual Markov model is also the same as the initial value for the general Markov model.

Value

A list of values and dataframes:

- **beta1**: Estimated \(\beta_1 \), the coefficient for the non-terminal event model.
- **beta2**: Estimated \(\beta_2 \), the coefficient for the terminal event without non-terminal event model.
- **beta3**: Estimated \(\beta_3 \), the coefficient for the terminal event following non-terminal event model.
- **sd_beta1**: Model based standard error for \(\beta_1 \).
- **sd_beta2**: Model based standard error for \(\beta_2 \).
- **sd_beta3**: Model based standard error for \(\beta_3 \).
- **Lambda01**: List of two dataframes for estimated \(\Lambda_{01} \) and \(\lambda_{01} \), the estimated (cumulative) baseline hazard for the non-terminal event model.
- **Lambda02**: List of two dataframes for estimated \(\Lambda_{02} \) and \(\lambda_{02} \), the estimated (cumulative) baseline hazard for the terminal event without non-terminal event model.
- **Lambda03**: List of two dataframes for estimated \(\Lambda_{03} \) and \(\lambda_{03} \), the estimated (cumulative) baseline hazard for the terminal event following non-terminal event model.

Examples

```r
n <- 500
data_test <- OUT1$data0
# Get the PS weights
vars <- c("Z1", "Z2", "Z3")
pwl <- doPS(data = data_test,
```
Trt = "A",
Trt.name = 1,
VARS. = vars,
logistic = TRUE,w=NULL)
w <- ps1$Data$ipw_ate_stab

Fit the Usual Markov model
res1 <- usual_illness_death_weight(data = data_test,
X1 = "X1",
X2 = "X2",
event1 = "delta1",
event2 = "delta2",
w = w,
Trt = "A")
print(paste("The estimated value for beta1 is:", round(res1$beta1,5)))

var_em_illness_death_phmm

Variance of parameters in MSM Illness-death General Markov Model

Description
Use bootstrap to obtain the variance estimator for parameters in MSM illness-death general markov model.

Usage
```
var_em_illness_death_phmm(data,sigma_2_0,VARS.)
```

Arguments
- **data** The output dataset from `em_illness_death_phmm_weight`.
- **sigma_2_0** Initial value for σ^2, the variance of zero-mean normal frailty, usually starts with 1.
- **VARS.** Confounder sets.

Details
See `em_illness_death_phmm_weight`. In each bootstrap, the propensity score model needs to be re-fitted, and fit the MSM illness-death general markov model with new IP weights.

Value
List of bootstrap SE for all the parameters in the general Markov model
Index

- **Baseline hazard**
 - get_hazard, 9
 - get_hazard_offset_weights, 10
 - initial_lambda_em, 13
- **Bootstrap Variance**
 - var_em_illness_death_phmm, 20
- **Bootstrap sample**
 - bayesian_boot_irrd, 2
- **Conditional Cumulative Incidence Function**
 - conditional_cif_b, 4
- **Cox model**
 - sim_cox msm_semicmrsk, 17
- **Cumulative Incidence Function**
 - cif_est_usual, 3
- **EM Algorithm**
 - em_illness_death_phmm_weight, 7
 - initial_fit_em_weights, 12
- **EM algorithm**
 - OUT_em_weights, 14
- **Frailty**
 - bayesian_boot_irrd, 2
 - conditional_cif_b, 4
 - individual_RR_RD, 11
- **General Markov Model**
 - initial_fit_em_weights, 12
 - OUT_em_weights, 14
- **General Markov model**
 - em_illness_death_phmm_weight, 7
 - var_em_illness_death_phmm, 20
- **Histogram**
 - plot.PS, 16
- **Illness-death model**
 - sim_cox msm_semicmrsk, 17
 - usual_illness_death_weight, 18
- **Individual Risk Difference**
 - bayesian_boot_irrd, 2
 - individual_RR_RD, 11
- **Individual Risk Ratio**
 - bayesian_boot_irrd, 2
 - individual_RR_RD, 11
- **Initial Value**
 - initial_fit_em_weights, 12
- **Inverse Probability Weighting**
 - doPS, 6
- **Multi state Model**
 - bayesian_boot_irrd, 2
 - individual_RR_RD, 11
- **Multi-state Model**
 - cif_est_usual, 3
 - conditional_cif_b, 4
- **Offset**
 - get_hazard_offset_weights, 10
- **Propensity Score**
 - doPS, 6
- **Semi-competing risks**
 - em_illness_death_phmm_weight, 7
 - usual_illness_death_weight, 18
- **Semi-competing risk**
 - sim_cox msm_semicmrsk, 17
- **Standardized Mean Difference**
 - plot.PS, 16
- **Usual Markov model**
 - usual_illness_death_weight, 18

bal.table, 16
bayesian_boot_irrd, 2
cif_est_usual, 3
conditional_cif_b, 4
doPS, 6
em_illness_death_phmm_weight, 7
get_hazard, 9
get_hazard_offset_weights, 10
individual_RR_RD, 11
initial_fit_em_weights, 12
initial_lambda_em, 13
OUT_em_weights, 14
plot.PS, 16
ps, 7
sim_cox msm_semicmrsk, 17
usual_illness_death_weight, 18
var_em_illness_death_phmm, 20