Package ‘sensemakr’

July 22, 2024

Type Package

Title Sensitivity Analysis Tools for Regression Models

Date 2024-07-22

Version 0.1.6

Author Carlos Cinelli [aut, cre], Jeremy Ferwerda [aut], Chad Hazlett [aut], Danielle Tsao [ctb], Aaron Rudkin [ctb], Grigori Ljubownikow [ctb]

Maintainer Carlos Cinelli <carloscinelli@hotmail.com>

URL https://github.com/carloscinelli/sensemakr

BugReports https://github.com/carloscinelli/sensemakr/issues

License GPL-3

Depends R (>= 3.1.0)

Encoding UTF-8

RoxygenNote 7.2.3

Suggests testthat, covr, knitr, rmarkdown, png, stargazer, fixest

LazyData true

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2024-07-22 09:50:02 UTC
Description

The sensemakr package implements a suite of sensitivity analysis tools that makes it easier to understand the impact of omitted variables in linear regression models, as discussed in Cinelli and Hazlett (2020).

Details

The main function of the package is `sensemakr`, which computes the most common sensitivity analysis results. After running `sensemakr` you may directly use the plot and print methods in the returned object.

You may also use the other sensitivity functions of the package directly, such as the functions for sensitivity plots (`ovb_contour_plot, ovb_extreme_plot`) the functions for computing bias-adjusted estimates and t-values (`adjusted_estimate, adjusted_t`), the functions for computing the robustness value and partial R2 (`robustness_value, partial_r2`), or the functions for bounding the strength of unobserved confounders (`ovb_bounds`), among others.

More information can be found on the help documentation, vignettes and related papers.

References

Examples

loads dataset
data("darfur")

runs regression model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

runs sensemakr for sensitivity analysis
sensitivity <- sensemakr(model, treatment = "directlyharmed",
 benchmark_covariates = "female",
 kd = 1:3)

short description of results
sensitivity

long description of results
summary(sensitivity)

plot bias contour of point estimate
plot(sensitivity)

plot bias contour of t-value
plot(sensitivity, sensitivity.of = "t-value")

plot extreme scenario
plot(sensitivity, type = "extreme")

latex code for sensitivity table
ovb_minimal_reporting(sensitivity)

data.frame with sensitivity statistics
sensitivity$sensitivity_stats

data.frame with bounds on the strengh of confounders
sensitivity$bounds

Using sensitivity functions directly

robustness value of directly harmed q = 1 (reduce estimate to zero)
robustness_value(model, covariates = "directlyharmed")

robustness value of directly harmed q = 1/2 (reduce estimate in half)
robustness_value(model, covariates = "directlyharmed", q = 1/2)

robustness value of directly harmed q = 1/2, alpha = 0.05
robustness_value(model, covariates = "directlyharmed", q = 1/2, alpha = 0.05)

partial R2 of directly harmed with peacefactor
partial_r2(model, covariates = "directlyharmed")

partial R2 of female with peacefactor
partial_r2(model, covariates = "female")
data.frame with sensitivity statistics
def data.frame with sensitivity statistics
sensitivity_stats(model, treatment = "directlyharmed")

bounds on the strength of confounders using female and age
def bounds on the strength of confounders using female and age
ovb_bounds(model,
treatment = "directlyharmed",
benchmark_covariates = c("female", "age"),
kd = 1:3)

adjusted estimate given hypothetical strength of confounder
def adjusted estimate given hypothetical strength of confounder
adjusted_estimate(model, treatment = "directlyharmed", r2dz.x = 0.1, r2yz.dx = 0.1)

adjusted t-value given hypothetical strength of confounder
def adjusted t-value given hypothetical strength of confounder
adjusted_t(model, treatment = "directlyharmed", r2dz.x = 0.1, r2yz.dx = 0.1)

bias contour plot directly from lm model
def bias contour plot directly from lm model
ovb_contour_plot(model,
treatment = "directlyharmed",
benchmark_covariates = "female",
kd = 1:3)

extreme scenario plot directly from lm model
def extreme scenario plot directly from lm model
ovb_extreme_plot(model,
treatment = "directlyharmed",
benchmark_covariates = "female",
kd = 1:3, lim = 0.05)

add_bound_to_contour
Add bounds to contour plot of omitted variable bias

Description
Convenience function to add bounds on a sensitivity contour plot created with ovb_contour_plot.

Usage
```r
add_bound_to_contour(...)```
add_bound_to_contour

label.text = TRUE,
cex.label.text = 0.7,
label.bump.x = plot.env$lim.x * (1/15),
label.bump.y = plot.env$lim.y * (1/15),
round = 2,
...)

## S3 method for class 'fixest'
add_bound_to_contour(
  model,
  benchmark_covariates,
  kd = 1,
  ky = kd,
  bound_label = NULL,
  treatment = plot.env$treatment,
  reduce = plot.env$reduce,
  sensitivity.of = plot.env$sensitivity.of,
  label.text = TRUE,
  cex.label.text = 0.7,
  label.bump.x = plot.env$lim.x * (1/15),
  label.bump.y = plot.env$lim.y * (1/15),
  round = 2,
  ...
)

## S3 method for class 'numeric'
add_bound_to_contour(
  r2d.z.x,
  r2y.z.dx,
  bound_value = NULL,
  bound_label = NULL,
  label.text = TRUE,
  cex.label.text = 0.7,
  font.label.text = 1,
  label.bump.x = plot.env$lim.x * (1/15),
  label.bump.y = plot.env$lim.y * (1/15),
  round = 2,
  point.pch = 23,
  point.col = "black",
  point.bg = "red",
  point.cex = 1,
  point.font = 1,
  ...
)

Arguments

... arguments passed to other methods.
Add bounds to contour

**model**
An `lm` or `fixest` object with the outcome regression.

**benchmark_covariates**
The user has two options: (i) character vector of the names of covariates that will be used to bound the plausible strength of the unobserved confounders. Each variable will be considered separately; (ii) a named list with character vector names of covariates that will be used, *as a group*, to bound the plausible strength of the unobserved confounders. The names of the list will be used for the benchmark labels. Note: for factor variables with more than two levels, you need to provide the name of each level as encoded in the `fixest` model (the columns of `model.matrix`).

**kd**
numeric vector. Parameterizes how many times stronger the confounder is related to the treatment in comparison to the observed benchmark covariate. Default value is 1 (confounder is as strong as benchmark covariate).

**ky**
numeric vector. Parameterizes how many times stronger the confounder is related to the outcome in comparison to the observed benchmark covariate. Default value is the same as `kd`.

**bound_label**
label to bounds provided manually in `r2dz.x` and `r2yz.dx`.

**treatment**
A character vector with the name of the treatment variable of the model.

**reduce**
should the bias adjustment reduce or increase the absolute value of the estimated coefficient? Default is `TRUE`.

**sensitivity.of**
should the contour plot show adjusted estimates ("estimate") or adjusted t-values ("t-value")?

**label.text**
should label texts be plotted? Default is `TRUE`.

**cex.label.text**
size of the label text.

**label.bump.x**
bump on the x coordinate of label text.

**label.bump.y**
bump on the y coordinate of label text.

**round**
integer indicating the number of decimal places to be used for rounding.

**r2dz.x**
hypothetical partial R2 of unobserved confounder Z with treatment D, given covariates X.

**r2yz.dx**
hypothetical partial R2 of unobserved confounder Z with outcome Y, given covariates X and treatment D.

**bound_value**
value to be printed in label bound.

**font.label.text**
font for the label text.

**point.pch**
plotting character for `points`.

**point.col**
color code or name for `points`.

**point.bg**
background (fill) color for `points`.

**point.cex**
size of `points`.

**point.font**
font for `points`.

**Value**
The function adds bounds in an existing contour plot and returns ‘NULL’.
Examples

# runs regression model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsiz Darfur + female + village,
data = darfur)

# contour plot
ovb_contour_plot(model = model, treatment = "directlyharmed")

# add bound 3/1 times stronger than female
add_bound_to_contour(model = model,
benchmark_c covariates = "female",
kd = 3, ky = 1)

# add bound 50/2 times stronger than age
add_bound_to_contour(model = model,
benchmark_c covariates = "age",
kd = 50, ky = 2)

---

adjusted_critical_value

Bias-adjusted critical values

Description

These functions compute bias adjusted critical values for a given postulated strength of omitted variable with the dependent and independent variables of an OLS regression.

Researchers can thus easily perform sensitivity analysis by simply substituting traditional thresholds with bias-adjusted thresholds, when testing a particular null hypothesis, or when constructing confidence intervals.

Usage

adjusted_critical_value(r2dz.x, r2yz.dx, dof, alpha = 0.05, max = T)

Arguments

- **r2dz.x**: hypothetical partial R2 of unobserved confounder Z with treatment D, given covariates X.
- **r2yz.dx**: hypothetical partial R2 of unobserved confounder Z with outcome Y, given covariates X and treatment D.
- **dof**: residual degrees of freedom of the regression.
- **alpha**: significance level. Default is ‘0.05’.
- **max**: if ‘TRUE’ (default) it computes the worst possible adjusted critical threshold for an omitted variable with strength limited by ‘r2dz.x’ and ‘r2yz.dx’.
adjusted_estimate

Value
Numeric vector with bias-adjusted critical values.

References

Examples

# traditional critical threshold (no confounding) is 1.96 (dof = 1e4)
adjusted_critical_value(r2dz.x = 0, r2yz.dx = 0, dof = 1e4, alpha = 0.05)

# adjusted critical threshold, r2 = 1% is 2.96 (dof = 1e4)
adjusted_critical_value(r2dz.x = 0.01, r2yz.dx = 0.01, dof = 1e4, alpha = 0.05)

---

adjusted_estimate

Bias-adjusted estimates, standard-errors, t-values and confidence intervals

Description
These functions compute bias adjusted estimates (adjusted_estimate), standard-errors (adjusted_se) and t-values (adjusted_t), given a hypothetical strength of the confounder in the partial R2 parameterization.

The functions work either with an lm object, or directly passing in numerical inputs, such as the current coefficient estimate, standard error and degrees of freedom.

Usage
adjusted_estimate(...)

## S3 method for class 'lm'
adjusted_estimate(model, treatment, r2dz.x, r2yz.dx, reduce = TRUE, ...)

## S3 method for class 'fixest'
adjusted_estimate(model, treatment, r2dz.x, r2yz.dx, reduce = TRUE, ...)

## S3 method for class 'numeric'
adjusted_estimate(estimate, se, dof, r2dz.x, r2yz.dx, reduce = TRUE, ...)

adjusted_se(...)
## S3 method for class 'numeric'
adjusted_se(se, dof, r2dz.x, r2yz.dx, ...)

## S3 method for class 'lm'
adjusted_se(model, treatment, r2dz.x, r2yz.dx, ...)

## S3 method for class 'fixest'
adjusted_se(model, treatment, r2dz.x, r2yz.dx, message = TRUE, ...)

adjusted_ci(...)

## S3 method for class 'lm'
adjusted_ci(
  model,
  treatment,
  r2dz.x,
  r2yz.dx,
  which = c("both", "lwr", "upr"),
  reduce = TRUE,
  alpha = 0.05,
  ...
)

## S3 method for class 'fixest'
adjusted_ci(
  model,
  treatment,
  r2dz.x,
  r2yz.dx,
  which = c("both", "lwr", "upr"),
  reduce = TRUE,
  alpha = 0.05,
  message = T,
  ...
)

## S3 method for class 'numeric'
adjusted_ci(
  estimate,
  se,
  dof,
  r2dz.x,
  r2yz.dx,
  which = c("both", "lwr", "upr"),
  reduce = TRUE,
  alpha = 0.05,
  ...  )
adjusted_t(...)

## S3 method for class 'lm'
adjusted_t(model, treatment, r2dz.x, r2yz.dx, reduce = TRUE, h0 = 0, ...)

## S3 method for class 'fixest'
adjusted_t(model, treatment, r2dz.x, r2yz.dx, reduce = TRUE, h0 = 0,
message = T, ...
)

## S3 method for class 'numeric'
adjusted_t(estimate, se, dof, r2dz.x, r2yz.dx, reduce = TRUE, h0 = 0, ...)

adjusted_partial_r2(...)

## S3 method for class 'numeric'
adjusted_partial_r2(estimate, se, dof, r2dz.x, r2yz.dx, reduce = TRUE, h0 = 0, ...
)

## S3 method for class 'lm'
adjusted_partial_r2(model, treatment, r2dz.x, r2yz.dx, reduce = TRUE, h0 = 0, ...
)

## S3 method for class 'fixest'
adjusted_partial_r2(}
model, treatment, r2dz.x, r2yz.dx, reduce = TRUE, h0 = 0, ...
)

bias(...)

## S3 method for class 'numeric'
bias(se, dof, r2dz.x, r2yz.dx, ...)

## S3 method for class 'lm'
bias(model, treatment, r2dz.x, r2yz.dx, ...)

## S3 method for class 'fixest'
bias(model, treatment, r2dz.x, r2yz.dx, ...)

relative_bias(...)

## S3 method for class 'lm'
relative_bias(model, treatment, r2dz.x, r2yz.dx, ...)

## S3 method for class 'fixest'
relative_bias(model, treatment, r2dz.x, r2yz.dx, ...)

## S3 method for class 'numeric'
relative_bias(estimate, se, dof, r2dz.x, r2yz.dx, ...)

rel_bias(r.est, est)

Arguments

... arguments passed to other methods.
model An lm or fixest object with the outcome regression.
treatment A character vector with the name of the treatment variable of the model.
r2dz.x hypothetical partial R2 of unobserved confounder Z with treatment D, given covariates X.
r2yz.dx hypothetical partial R2 of unobserved confounder Z with outcome Y, given covariates X and treatment D.
reduce should the bias adjustment reduce or increase the absolute value of the estimated coefficient? Default is TRUE.
estimate Coefficient estimate.
se standard error of the coefficient estimate.
### adjusted_estimate

- **dof**: residual degrees of freedom of the regression.
- **message**: should messages be printed? Default = TRUE.
- **which**: which limit of the confidence interval to show? Options are "both", lower limit ("lwr") or upper limit ("upr").
- **alpha**: significance level.
- **h0**: Null hypothesis for computation of the t-value. Default is zero.
- **r.est**: restricted estimate. A numerical vector.
- **est**: unrestricted estimate. A numerical vector.

#### Value

Numeric vector with bias, adjusted estimate, standard error, or t-value.

#### References


#### Examples

```r
loads data
data("darfur")

fits model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

computes adjusted estimate for confounder with r2dz.x = 0.05, r2yz.dx = 0.05
adjusted_estimate(model, treatment = "directlyharmed", r2dz.x = 0.05, r2yz.dx = 0.05)

computes adjusted SE for confounder with r2dz.x = 0.05, r2yz.dx = 0.05
adjusted_se(model, treatment = "directlyharmed", r2dz.x = 0.05, r2yz.dx = 0.05)

computes adjusted t-value for confounder with r2dz.x = 0.05, r2yz.dx = 0.05
adjusted_t(model, treatment = "directlyharmed", r2dz.x = 0.05, r2yz.dx = 0.05)

Alternatively, pass in numerical values directly.
adjusted_estimate(estimate = 0.09731582, se = 0.02325654, dof = 783, r2dz.x = 0.05, r2yz.dx = 0.05)
adjusted_se(estimate = 0.09731582, se = 0.02325654, dof = 783, r2dz.x = 0.05, r2yz.dx = 0.05)
adjusted_t(estimate = 0.09731582, se = 0.02325654, dof = 783, r2dz.x = 0.05, r2yz.dx = 0.05)
```
Description

Data on support for the 2016 referendum for peace with the FARC in Colombia, as discussed in Hazlett and Parente (2020). The main "treatment" variables are santos2014, which indicates the share of town population voting in support of Santos in the 2014 Presidential election, and fat_2011to2015_gtd, which indicates the number of fatalities due to FARC violence between 2011 and 2015, again at the town level. The main outcome of interest is yes_vote, the proportion (0-100) at the town-level voting in support of the peace referendum. The question of interest in Hazlett and Parente (2020) is what can be said about the causal effect of either violence (fatalities) or of political affiliation with Santos, recognizing that analyses of either cannot likely rule out all confounding.

Usage
colombia

data frame with 1123 rows and 16 columns.

department Name for the provincial level unit, called departments or departamentos, of which there are 32 in the country.
dep_t_code Short code for the department
town Name for the town, which is the smallest electoral unit available and is the unit of analysis.
town_code Code for the town.
total_eligible Total eligible voters in the town
yes_vote Proportion (out of 100) voting in favor of the peace deal.
santos10 Proportion (out of 100) voting for Santos in the 2010 presidential election.
santos14 Proportion (out of 100) voting for Santos in the 2014 presidential election.
gdpc The town-level GDP per capita.
pop13 Town-level population in 2013.
elev Town’s mean elevation.
fat_all Sum of all known fatalities due to FARC violence in the town (from Global Terrorism Database, GTD).
fat_2001to2005_gtd Sum of fatalities due to FARC in the town in 2001 to 2005 (from GTD).
fat_2006to2010_gtd Sum of fatalities due to FARC in the town in 2006 to 2010 (from GTD).
fat_2011to2015_gtd Sum of fatalities due to FARC in the town in 2011 to 2015 (from GTD).
fat_2010to2013 Sum of fatalities due to FARC in the town in 2010 to 2013 (from GTD).
References


Examples

```r
loads data
data(colombia)

#---
Violence Models
#---

Model 1 (bivariate)
model1 <- lm(yes_vote ~ fat_2001to2005_gtd, data = colombia)

Model 2 (more controls, and lagged violence.)
model2 <- lm(yes_vote ~ fat_2001to2005_gtd + fat_2006to2010_gtd +
 fat_2011to2015_gtd + total_eligible + santos10 + gdppc,
data = colombia)

Sensitivity analysis - Model 2, for effect of most recent violence.
sense.model2 <- sensemakr(model2,
 treatment = "fat_2011to2015_gtd",
 benchmark = "santos10",
 kd = 1)

contour plot point estimate
plot(sense.model2)

contour plot t-value
plot(sense.model2, sensitivity.of = "t-value")

#---
Political Affiliation Model
#---

Model 3: santos2014 as measure of political support for Santos, with control variables.
model3 <- lm(yes_vote ~ santos14 + fat_2010to2013 + elev + gdppc + pop13,
data = colombia)

Sensitivity analysis - Model 3
sense.model3 <- sensemakr(model3, treatment = "santos14",
 benchmark = c("gdppc","elev"),
 kd = 3)

summary(sense.model3)

contour plot point estimate
plot(sense.model3, lim = .9)

contour plot t-value
plot(sense.model3, sensitivity.of = "t-value", lim = 0.9)
```
**Darfur**

*Data from survey of Darfuri refugees in eastern Chad.*

**Description**

Data on attitudes of Darfuri refugees in eastern Chad. The main "treatment" variable is `directlyharmed`, which indicates that the individual was physically injured during attacks on villages in Darfur, largely between 2003 and 2004. The main outcome of interest is `peacefactor`, a measure of pro-peace attitudes.

Key covariates include `herder_dar` (whether they were a herder in Darfur), `farmer_dar` (whether they were a farmer in Darfur), `age`, `female` (indicator for female), and `past_voted` (whether they report having voted in an earlier election, prior to the conflict).

**Usage**

darfur

**Format**

A data frame with 1276 rows and 14 columns.

- **wouldvote**  If elections were held in Darfur in the future, would you vote? (0/1)
- **peacefactor**  A measure of pro-peace attitudes, from a factor analysis of several questions. Rescaled such that 0 is minimally pro-peace and 1 is maximally pro-peace.
- **peace_formerenemies**  Would you be willing to make peace with your former enemies? (0/1)
- **peace_jjindiv**  Would you be willing to make peace with Janjweed individuals who carried out violence? (0/1)
- **peace_jjtribes**  Would you be willing to make peace with the tribes that were part of the Janjaweed? (0/1)
- **gos_soldier_execute**  Should Government of Sudan soldiers who perpetrated attacks on civilians be executed? (0/1)
- **directlyharmed**  A binary variable indicating whether the respondent was personally physically injured during attacks on villages in Darfur largely between 2003-2004. 529 respondents report being personally injured, while 747 do not report being injured.
- **age**  Age of respondent in whole integer years. Ages in the data range from 18 to 100.
- **farmer_dar**  The respondent was a farmer in Darfur (0/1). 1,051 respondents were farmers, 225 were not.
- **herder_dar**  The respondent was a herder in Darfur (0/1). 190 respondents were herders, 1,086 were not.
- **past_voted**  The respondent reported having voted in a previous election before the conflict (0/1). 821 respondents reported having voted in a previous election, 455 reported not having voted in a previous election.
**household size while in Darfur.**

**village** Factor variable indicating village of respondent. 486 unique villages are accounted for in the data.

**female** The respondent identifies as female (0/1). 582 respondents are female-identified, 694 are not.

**References**


---

**group_partial_r2** Partial R2 of groups of covariates in a linear regression model

**Description**

This function computes the partial R2 of a group of covariates in a linear regression model.

**Usage**

```r
group_partial_r2(...)
```

```r
S3 method for class 'lm'
group_partial_r2(model, covariates, ...)
```

```r
S3 method for class 'fixest'
group_partial_r2(model, covariates, ...)
```

```r
S3 method for class 'numeric'
group_partial_r2(F.stats, p, dof, ...)
```

**Arguments**

<table>
<thead>
<tr>
<th>...</th>
<th>arguments passed to other methods. First argument should either be an lm model or a fixest model with the regression model or a numeric vector with the F-statistics for the group of covariates.</th>
</tr>
</thead>
<tbody>
<tr>
<td>model</td>
<td>an fixest object with the regression model</td>
</tr>
<tr>
<td>covariates</td>
<td>model covariates for which their grouped partial R2 will be computed.</td>
</tr>
<tr>
<td>F.stats</td>
<td>F-statistics for the group of covariates.</td>
</tr>
<tr>
<td>p</td>
<td>number of parameters in the model.</td>
</tr>
<tr>
<td>dof</td>
<td>residual degrees of freedom of the model.</td>
</tr>
</tbody>
</table>
Value

A numeric vector with the computed partial R2.

Examples

data("darfur")

model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar +
pastvoted + hhsize_darfur + female + village, data = darfur)

group_partial_r2(model, covariates = c("female", "pastvoted"))

ovb_bounds

Bounds on the strength of unobserved confounders using observed covariates

Description

Bounds on the strength of unobserved confounders using observed covariates, as in Cinelli and Hazlett (2020). The main generic function is ovb_bounds, which can compute both the bounds on the strength of confounding as well as the adjusted estimates, standard errors, t-values and confidence intervals.

Other functions that compute only the bounds on the strength of confounding are also provided. These functions may be useful when computing benchmarks for using only summary statistics from papers you see in print.

Usage

ovb_bounds(...)

## S3 method for class 'lm'
ovb_bounds(
  model,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  ky = kd,
  reduce = TRUE,
  bound = c("partial r2", "partial r2 no D", "total r2"),
  adjusted_estimates = TRUE,
  alpha = 0.05,
  h0 = 0,
  ...
)

## S3 method for class 'fixest'
ovb_bounds(
    model,  
treatment,  
benchmark_covariates = NULL,  
k = 1,  
k_y = k,  
reduce = TRUE,  
bound = c("partial r2", "partial r2 no D", "total r2"),  
adjusted_estimates = TRUE,  
alpha = 0.05,  
h0 = 0,  
message = T,  
...
)

ovb_partial_r2_bound(...)

## S3 method for class 'numeric'
ovb_partial_r2_bound(
    r2dxj.x,  
r2yxj.dx,  
k = 1,  
k_y = k,  
bound_label = "manual",  
...
)

## S3 method for class 'lm'
ovb_partial_r2_bound(
    model,  
treatment,  
benchmark_covariates = NULL,  
k = 1,  
k_y = k,  
adjusted_estimates = TRUE,  
alpha = 0.05,  
...
)

## S3 method for class 'fixest'
ovb_partial_r2_bound(
    model,  
treatment,  
benchmark_covariates = NULL,  
k = 1,  
k_y = k,  
adjusted_estimates = TRUE,  
alpha = 0.05,
ovb_bounds

Arguments

... arguments passed to other methods.

model An lm or fixest object with the outcome regression.
treatment A character vector with the name of the treatment variable of the model.
benchmark_covariates The user has two options: (i) character vector of the names of covariates that will be used to bound the plausible strength of the unobserved confounders. Each variable will be considered separately; (ii) a named list with character vector names of covariates that will be used, as a group, to bound the plausible strength of the unobserved confounders. The names of the list will be used for the benchmark labels. Note: for factor variables with more than two levels, you need to provide the name of each level as encoded in the fixest model (the columns of model.matrix).

kd numeric vector. Parameterizes how many times stronger the confounder is related to the treatment in comparison to the observed benchmark covariate. Default value is 1 (confounder is as strong as benchmark covariate).

ky numeric vector. Parameterizes how many times stronger the confounder is related to the outcome in comparison to the observed benchmark covariate. Default value is the same as kd.

reduce should the bias adjustment reduce or increase the absolute value of the estimated coefficient? Default is TRUE.

bound type of bounding procedure. Currently only "partial r2" is implemented.

adjusted_estimates should the bounder also compute the adjusted estimates? Default is TRUE.

alpha significance level for computing the adjusted confidence intervals. Default is 0.05.

h0 Null hypothesis for computation of the t-value. Default is zero.

message should messages be printed? Default = TRUE.

r2dxj.x partial R2 of covariate Xj with the treatment D (after partialling out the effect of the remaining covariates X, excluding Xj).

r2yxj.dx partial R2 of covariate Xj with the outcome Y (after partialling out the effect of the remaining covariates X, excluding Xj).

bound_label label to bounds provided manually in r2dz.x and r2yz.dx.

Details

Currently it implements only the bounds based on partial R2. Other bounds will be implemented soon.
Value

The function `ovb_bounds` returns a `data.frame` with the bounds on the strength of the unobserved confounder as well with the adjusted point estimates, standard errors and t-values (optional, controlled by argument `adjusted_estimates = TRUE`).

The function `ovb_partial_r2_bound()` returns only `data.frame` with the bounds on the strength of the unobserved confounder. Adjusted estimates, standard errors and t-values (among other quantities) need to be computed manually by the user using those bounds with the functions `adjusted_estimate`, `adjusted_se` and `adjusted_t`.

References


Examples

```r
runs regression model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

bounds on the strength of confounders 1, 2, or 3 times as strong as female
and 1,2, or 3 times as strong as pastvoted
ovb_bounds(model, treatment = "directlyharmed",
 benchmark_covariates = c("female", "pastvoted"),
 kd = 1:3)

run regression model
model <- fixest::feols(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

bounds on the strength of confounders 1, 2, or 3 times as strong as female
and 1,2, or 3 times as strong as pastvoted
ovb_bounds(model, treatment = "directlyharmed",
 benchmark_covariates = c("female", "pastvoted"),
 kd = 1:3)
```

# Let's construct bounds from summary statistics only

# Suppose you didn't have access to the data, but only to the treatment and outcome regression tables.
# You can still compute the bounds.

# Use the t statistic of female in the outcome regression
# to compute the partial R2 of female with the outcome.
r2yxj.dx <- partial_r2(t_statistic = -9.789, dof = 783)

# Use the t-value of female in the *treatment* regression 
# to compute the partial R2 of female with the treatment 
r2dxj.x <- partial_r2(t_statistic = -2.680, dof = 783)

# Compute manually bounds on the strength of confounders 1, 2, or 3 
# times as strong as female 
bounds <- ovb_partial_r2_bound(r2dxj.x = r2dxj.x, 
r2yxj.dx = r2yxj.dx, 
k = 1:3, 
ky = 1:3, 
bound_label = paste(1:3, "x", "female"))

# Compute manually adjusted estimates 
bound.values <- adjusted_estimate(estimate = 0.0973, 
se = 0.0232, 
dof = 783, 
r2dz.x = bounds$r2dz.x, 
r2yz.dx = bounds$r2yz.dx)

# Plot contours and bounds 
ovb_contour_plot(estimate = 0.0973, 
se = 0.0232, 
dof = 783) 
add_bound_to_contour(bounds, bound_value = bound.values)

Description

Contour plots of omitted variable bias for sensitivity analysis. The main inputs are an `lm` model, the treatment variable and the covariates used for benchmarking the strength of unobserved confounding.

The horizontal axis of the plot shows hypothetical values of the partial R2 of the unobserved confounder(s) with the treatment. The vertical axis shows hypothetical values of the partial R2 of the unobserved confounder(s) with the outcome. The contour levels represent the adjusted estimates (or t-values) of the treatment effect. The reference points are the bounds on the partial R2 of the unobserved confounder if it were k times “as strong” as the observed covariate used for benchmarking (see arguments kd and ky). The dotted red line show the chosen critical threshold (for instance, zero): confounders with such strength (or stronger) are sufficient to invalidate the research conclusions. All results are exact for single confounders and conservative for multiple/nonlinear confounders.

See Cinelli and Hazlett (2020) for details.
Usage

ova_contour_plot(...)  

## S3 method for class 'lm'
ova_contour_plot(
  model,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  ky = kd,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = "manual",
  sensitivity.of = c("estimate", "t-value", "lwr", "upr"),
  reduce = TRUE,
  estimate.threshold = 0,
  alpha = 0.05,
  t.threshold = NULL,
  nlevels = 10,
  col.contour = "grey40",
  col.thr.line = "red",
  label.text = TRUE,
  cex.label.text = 0.7,
  round = 3,
  ...
)

## S3 method for class 'fixest'
ova_contour_plot(
  model,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  ky = kd,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = "manual",
  sensitivity.of = c("estimate", "t-value", "lwr", "upr"),
  reduce = TRUE,
  estimate.threshold = 0,
  alpha = 0.05,
  t.threshold = NULL,
  nlevels = 10,
  col.contour = "grey40",
  col.thr.line = "red",
  label.text = TRUE,
  cex.label.text = 0.7,
  round = 3,
## S3 method for class 'formula'
ova_contour_plot(
  formula,
  method = c("lm", "feols"),
  vcov = "iid",
  data,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  ky = kd,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = NULL,
  sensitivity.of = c("estimate", "t-value", "lwr", "upr"),
  reduce = TRUE,
  estimate.threshold = 0,
  alpha = 0.05,
  t.threshold = NULL,
  nlevels = 10,
  col.contour = "grey40",
  col.thr.line = "red",
  label.text = TRUE,
  cex.label.text = 0.7,
  round = 3,
  ...
)

## S3 method for class 'numeric'
ova_contour_plot(
  estimate,
  se,
  dof,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = rep("manual", length(r2dz.x)),
  sensitivity.of = c("estimate", "t-value", "lwr", "upr"),
  reduce = TRUE,
  estimate.threshold = 0,
  alpha = 0.05,
  t.threshold = NULL,
  show.unadjusted = TRUE,
  lim = NULL,
  lim.x = lim,
  lim.y = lim,
  nlevels = 10,
col.contour = "black",
col.thr.line = "red",
label.text = TRUE,
cex.label.text = 0.7,
label.bump.x = NULL,
label.bump.y = NULL,
xlab = NULL,
ylab = NULL,
cex.lab = 0.8,
cex.axis = 0.8,
cex.main = 1,
asp = lim.x/lim.y,
list.par = list(mar = c(4, 4, 1, 1), pty = "s"),
round = 3,

Arguments

... arguments passed to other methods. First argument should either be an lm model with the outcome regression, a formula describing the model along with the data.frame containing the variables of the model, or a numeric vector with the coefficient estimate.

model An lm or fixest object with the outcome regression.
treatment A character vector with the name of the treatment variable of the model.
benchmark_covariates The user has two options: (i) character vector of the names of covariates that will be used to bound the plausible strength of the unobserved confounders. Each variable will be considered separately; (ii) a named list with character vector names of covariates that will be used, as a group, to bound the plausible strength of the unobserved confounders. The names of the list will be used for the benchmark labels. Note: for factor variables with more than two levels, you need to provide the name of each level as encoded in the fixest model (the columns of model.matrix).

kd numeric vector. Parameterizes how many times stronger the confounder is related to the treatment in comparison to the observed benchmark covariate. Default value is 1 (confounder is as strong as benchmark covariate).

ky numeric vector. Parameterizes how many times stronger the confounder is related to the outcome in comparison to the observed benchmark covariate. Default value is the same as kd.

r2dz.x hypothetical partial R2 of unobserved confounder Z with treatment D, given covariates X.

r2yz.dx hypothetical partial R2 of unobserved confounder Z with outcome Y, given covariates X and treatment D.

bound_label label to bounds provided manually in r2dz.x and r2yz.dx.

sensitivity.of should the contour plot show adjusted estimates ("estimate") or adjusted t-values ("t-value")?
**ovb_contour_plot**

reduce should the bias adjustment reduce or increase the absolute value of the estimated coefficient? Default is TRUE.

estimate.threshold critical threshold for the point estimate.

alpha significance level

t.threshold critical threshold for the t-value.

nlevels number of levels for the contour plot.

col.contour color of contour lines.

col.thr.line color of threshold contour line.

label.text should label texts be plotted? Default is TRUE.

cex.label.text size of the label text.

round number of digits to show in contours and bound values

formula an object of the class formula: a symbolic description of the model to be fitted.

method the default is lm. This argument can be changed to estimate the model using feols. In this case the formula needs to be written so it can be estimated with feols and the package needs to be installed.

vcov the variance/covariance used in the estimation when using feols. See vcov.fixest for more details. Defaults to "iid".

data data needed only when you pass a formula as first parameter. An object of the class data.frame containing the variables used in the analysis.

estimate Coefficient estimate.

se standard error of the coefficient estimate.

dof residual degrees of freedom of the regression.

show.unadjusted should the unadjusted estimates be shown? Default is ‘TRUE’.

lim sets limit for both axis. If ‘NULL’, limits are computed automatically.

lim.x sets limit for x-axis. If ‘NULL’, limits are computed automatically.

lim.y sets limit for y-axis. If ‘NULL’, limits are computed automatically.

label.bump.x bump on the x coordinate of label text.

label.bump.y bump on the y coordinate of label text.

xlab label of x axis. If ‘NULL’, default label is used.

ylab label of y axis. If ‘NULL’, default label is used.

cex.lab The magnification to be used for x and y labels relative to the current setting of cex.

cex.axis The magnification to be used for axis annotation relative to the current setting of cex.

cex.main The magnification to be used for main titles relative to the current setting of cex.

asp the y/x aspect ratio. Default is 1.

list.par arguments to be passed to par. It needs to be a named list.
The function returns invisibly the data used for the contour plot (contour grid and bounds).

References

Examples
```r
runs regression model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsise_darfur + female + village,
data = darfur)

contour plot
ovb_contour_plot(model, treatment = "directlyharmed",
benchmark_covariates = "female",
kd = 1:2)
```

Description
Extreme scenario plots of omitted variable bias for sensitivity analysis. The main inputs are an `lm` model, the treatment variable and the covariates used for benchmarking the strength of unobserved confounding.

The horizontal axis shows the partial R2 of the unobserved confounder(s) with the treatment. The vertical axis shows the adjusted treatment effect estimate. The partial R2 of the confounder with the outcome is represented by different curves for each scenario, as given by the parameter `r2yz.dx`. The red marks on horizontal axis are bounds on the partial R2 of the unobserved confounder `kd` times as strong as the covariates used for benchmarking. The dotted red line represent the threshold for the effect estimate deemed to be problematic (for instance, zero).

See Cinelli and Hazlett (2020) for details.

Usage
```r
ovb_extreme_plot(...)
```
r2dz.x = NULL,
reduce = TRUE,
threshold = 0,
lim = min(c(r2dz.x + 0.1, 0.5)),
legend = TRUE,
cex.legend = 0.65,
legend.bty = "n",
...
)

## S3 method for class 'fixest'
ovb_extreme_plot(
  model,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  r2yz.dx = c(1, 0.75, 0.5),
  r2dz.x = NULL,
  reduce = TRUE,
  threshold = 0,
  lim = min(c(r2dz.x + 0.1, 0.5)),
  legend = TRUE,
cex.legend = 0.65,
legend.bty = "n",
...
)

## S3 method for class 'formula'
ovb_extreme_plot(
  formula,
  method = c("lm", "feols"),
  vcov = "iid",
data,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  r2yz.dx = c(1, 0.75, 0.5),
  r2dz.x = NULL,
  reduce = TRUE,
  threshold = 0,
  lim = min(c(r2dz.x + 0.1, 0.5)),
  legend = TRUE,
cex.legend = 0.65,
legend.bty = "n",
...
)

## S3 method for class 'numeric'
ovb_extreme_plot(
    estimate,
    se,
    dof,
    r2dz.x = NULL,
    r2yz.dx = c(1, 0.75, 0.5),
    reduce = TRUE,
    threshold = 0,
    lim = min(c(r2dz.x + 0.1, 0.5)),
    legend = TRUE,
    legend.title = NULL,
    cex.legend = 0.65,
    legend.bty = "n",
    xlab = NULL,
    ylab = NULL,
    cex.lab = 0.7,
    cex.axis = 0.7,
    list.par = list(oma = c(1, 1, 1, 1)),
    ...
)

Arguments

... arguments passed to other methods. First argument should either be an `lm` model with the outcome regression, a `formula` describing the model along with the `data.frame` containing the variables of the model, or a numeric vector with the coefficient estimate.

model An `lm` or `fixest` object with the outcome regression.
treatment A character vector with the name of the treatment variable of the model.
benchmark_covariates

The user has two options: (i) character vector of the names of covariates that will be used to bound the plausible strength of the unobserved confounders. Each variable will be considered separately; (ii) a named list with character vector names of covariates that will be used, as a group, to bound the plausible strength of the unobserved confounders. The names of the list will be used for the benchmark labels. Note: for factor variables with more than two levels, you need to provide the name of each level as encoded in the `fixest` model (the columns of `model.matrix`).

kd numeric vector. Parameterizes how many times stronger the confounder is related to the treatment in comparison to the observed benchmark covariate. Default value is 1 (confounder is as strong as benchmark covariate).

r2yz.dx hypothetical partial R2 of unobserved confounder Z with outcome Y, given covariates X and treatment D.

r2dz.x hypothetical partial R2 of unobserved confounder Z with treatment D, given covariates X.

reduce should the bias adjustment reduce or increase the absolute value of the estimated coefficient? Default is TRUE.
threshold

estimate threshold.

lim

sets limit for both axis. If ‘NULL’, limits are computed automatically.

legend

should legend be plotted? Default is TRUE.

cex.legend

size of the text for the legend.

legend.bty

legend box. See bty argument of par.

formula

an object of the class formula: a symbolic description of the model to be fitted.

method

the default is lm. This argument can be changed to estimate the model using feols. In this case the formula needs to be written so it can be estimated with feols and the package needs to be installed.

cov

the variance/covariance used in the estimation when using feols. See vcov.fixest for more details. Defaults to "iid".

data

data needed only when you pass a formula as first parameter. An object of the class data.frame containing the variables used in the analysis.

estimate

Coefficient estimate.

se

standard error of the coefficient estimate.

dof

residual degrees of freedom of the regression.

legend.title

the legend title. If NULL, then default legend is used.

xlab

label of x axis. If ‘NULL’, default label is used.

ylab

label of y axis. If ‘NULL’, default label is used.

cex.lab

The magnification to be used for x and y labels relative to the current setting of cex.

cex.axis

The magnification to be used for axis annotation relative to the current setting of cex.

list.par

arguments to be passed to par. It needs to be a named list.

Value

The function returns invisibly the data used for the extreme plot.

References


Examples

# runs regression model
model <- lm(peacfactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

# extreme scenarios plot
ovb_extreme_plot(model, treatment = "directlyharmed",
                  benchmark_covariates = "female",
                  kd = 1:2,
                  lim = 0.05)
These functions compute the partial R2 and the partial (Cohen’s) f2 for a linear regression model. The partial R2 describes how much of the residual variance of the outcome (after partialing out the other covariates) a covariate explains.

The partial R2 can be used as an extreme-scenario sensitivity analysis to omitted variables. Considering an unobserved confounder that explains 100% of the residual variance of the outcome, the partial R2 describes how strongly associated with the treatment this unobserved confounder would need to be in order to explain away the estimated effect. For details see Cinelli and Hazlett (2020).

The partial (Cohen’s) f2 is a common measure of effect size (a transformation of the partial R2) that can also be used directly for sensitivity analysis using a bias factor table.

The function `partial_r2` computes the partial R2. The function `partial_f2` computes the partial f2 and the function `partial_f` the partial f. They can take as input an `lm` object or you may pass directly t-value and degrees of freedom.

For partial R2 of groups of covariates, check `group_partial_r2`.

### Usage

```
partial_r2(...)
S3 method for class 'lm'
partial_r2(model, covariates = NULL, ...)

S3 method for class 'fixest'
partial_r2(model, covariates = NULL, ...)

S3 method for class 'numeric'
partial_r2(t_statistic, dof, ...)

partial_f2(...)
S3 method for class 'numeric'
partial_f2(t_statistic, dof, ...)

S3 method for class 'lm'
partial_f2(model, covariates = NULL, ...)

S3 method for class 'fixest'
partial_f2(model, covariates = NULL, ...)

partial_f(...)
```
## partial_r2

```r
S3 method for class 'fixest'
partial_f(model, covariates = NULL, ...)

S3 method for class 'lm'
partial_f(model, covariates = NULL, ...)

S3 method for class 'numeric'
partial_f(t_statistic, dof, ...)

S3 method for class 'numeric'
partial_f(t_statistic, dof, ...)

Default S3 method:
partial_r2(model, ...)
```

### Arguments

... arguments passed to other methods. First argument should either be an `lm` model or a `fixest` model with the regression model or a numeric vector with the t-value of the coefficient estimate.

- **model**: an `fixest` object with the regression model.
- **covariates**: model covariates for which the partial R2 will be computed. Default is to compute the partial R2 of all covariates.
- **t_statistic**: numeric vector with the t-value of the coefficient estimates.
- **dof**: residual degrees of freedom of the regression.

### Value

A numeric vector with the computed partial R2, r2, or f.

### References


### Examples

```r
using an lm object
loads data
data("darfur")

fits model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsizeldar + female + village, data = darfur)

partial R2 of the treatment (directly harmed) with the outcome (peacefactor)
partial_r2(model, covariates = "directlyharmed")

partial R2 of female with the outcome
```
```
partial_r2(model, covariates = "female")

you can also provide the statistics directly
partial_r2(t_statistic = 4.18445, dof = 783)
```

---

### `plot.sensemakr`  
**Sensitivity analysis plots for sensemakr**

#### Description

This function provides the contour and extreme scenario sensitivity plots of the sensitivity analysis results obtained with the function `sensemakr`. They are basically dispatchers to the core plot functions `ovb_contour_plot` and `ovb_extreme_plot`.

#### Usage

```r
S3 method for class 'sensemakr'
plot(x, type = c("contour", "extreme"), ...)
```

#### Arguments

- **x**: an object of class `sensemakr`.
- **type**: type of sensitivity plot. It can be "contour", for contour plots of omitted variable bias as in `ovb_contour_plot`; or, "extreme" for extreme scenarios plots of omitted variable bias as in `ovb_extreme_plot`.
- **...**: arguments passed to the plot functions. Check arguments in `ovb_contour_plot` and `ovb_extreme_plot`.

---

### `print.sensemakr`  
**Sensitivity analysis print and summary methods for sensemakr**

#### Description

The `print` and `summary` methods provide verbal descriptions of the sensitivity analysis results obtained with the function `sensemakr`. The function `ovb_minimal_reporting` provides latex or html code for a minimal sensitivity analysis reporting, as suggested in Cinelli and Hazlett (2020).
Usage

## S3 method for class 'sensemakr'
print(x, digits = max(3L, getOption("digits") - 2L), ...)

## S3 method for class 'sensemakr'
summary(object, digits = max(3L, getOption("digits") - 3L), ...)

ovb_minimal_reporting(
  x,
  digits = 3,
  verbose = TRUE,
  format = c("latex", "html", "pure_html"),
  ...
)

Arguments

x an object of class sensemakr.
digits minimal number of significant digits.
... arguments passed to other methods.
object an object of class sensemakr.
verbose if 'TRUE', the function prints the LaTeX code with cat
format code format to print, either latex or html. The default html version has some mathematical content that requires mathjax or equivalent library to parse. If you need only html, use the option "pure_html".

Value

The function ovb_minimal_reporting returns the LaTeX/HTML code invisibly in character form and also prints with cat the LaTeX code. To suppress automatic printing, set verbose = FALSE.

References


Examples

# runs regression model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

# runs sensemakr for sensitivity analysis
sensitivity <- sensemakr(model, treatment = "directlyharmed",
  benchmark_covariates = "female",
  kd = 1:3)

# print
robustness_value

sensitivity

# summary
summary(sensitivity)

# prints latex code for minimal sensitivity analysis reporting
ovb_minimal_reporting(sensitivity)

---

**robustness_value**  
*Computes the (extreme) robustness value*

**Description**

This function computes the (extreme) robustness value of a regression coefficient.

The extreme robustness value describes the minimum strength of association (parameterized in terms of partial R2) that omitted variables would need to have with the treatment alone in order to change the estimated coefficient by a certain amount (for instance, to bring it down to zero).

The robustness value describes the minimum strength of association (parameterized in terms of partial R2) that omitted variables would need to have both with the treatment and with the outcome to change the estimated coefficient by a certain amount (for instance, to bring it down to zero).

For instance, a robustness value of 1% means that an unobserved confounder that explain 1% of the residual variance of the outcome and 1% of the residual variance of the treatment is strong enough to explain away the estimated effect. Whereas a robustness value of 90% means that any unobserved confounder that explain less than 90% of the residual variance of both the outcome and the treatment assignment cannot fully account for the observed effect. You may also compute robustness value taking into account sampling uncertainty. See details in Cinelli and Hazlett (2020).

The functions `robustness_value` and `extreme_robustness_value` can take as input an `lm` object or you may directly pass the t-value and degrees of freedom.

`rv` is a shorthand wrapper for `robustness_value`.

`xrv` is a shorthand wrapper for `extreme_robustness_value`.

**Usage**

```r
robustness_value(...)

rv(...)
```

```r
S3 method for class 'lm'
robustness_value(
 model,
covariates = NULL,
q = 1,
alpha = 0.05,
invert = FALSE, ...
```
## S3 method for class 'fixest'
robustness_value(
  model,
  covariates = NULL,
  q = 1,
  alpha = 0.05,
  invert = FALSE,
  message = TRUE,
  ...
)

## Default S3 method:
robustness_value(model, ...)

## S3 method for class 'numeric'
robustness_value(t_statistic, dof, q = 1, alpha = 0.05, invert = FALSE, ...)

extreme_robustness_value(...)
xrv(...)

## S3 method for class 'lm'
extreme_robustness_value(
  model,
  covariates = NULL,
  q = 1,
  alpha = 0.05,
  invert = FALSE,
  ...
)

## S3 method for class 'fixest'
extreme_robustness_value(
  model,
  covariates = NULL,
  q = 1,
  alpha = 0.05,
  invert = FALSE,
  message = TRUE,
  ...
)

## Default S3 method:
extreme_robustness_value(model, ...)

## S3 method for class 'numeric'
extreme_robustness_value(
    t_statistic,
    dof,
    q = 1,
    alpha = 0.05,
    invert = FALSE,
    ...
)

Arguments

... arguments passed to other methods. First argument should either be an lm model or a fixest model with the regression model or a numeric vector with the t-value of the coefficient estimate

model an fixest object with the regression model.

covariates model covariates for which the robustness value will be computed. Default is to compute the robustness value of all covariates.

q percent change of the effect estimate that would be deemed problematic. Default is 1, which means a reduction of 100% of the current effect estimate (bring estimate to zero). It has to be greater than zero.

alpha significance level.

invert should IRV be computed instead of RV? (i.e. is the estimate insignificant?). Default is FALSE.

message should messages be printed? Default = TRUE.

t_statistic numeric vector with the t-value of the coefficient estimates

dof residual degrees of freedom of the regression

Value

The function returns a numerical vector with the robustness value. The arguments q and alpha are saved as attributes of the vector for reference.

References


Examples

# using an lm object
## loads data
data("darfur")

## fits model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

## robustness value of directly harmed q =1 (reduce estimate to zero)
robustness_value(model, covariates = "directlyharmed", alpha = 1)

## extreme robustness value of directly harmed q =1 (reduce estimate to zero)
unrobustness_value(model, covariates = "directlyharmed", alpha = 1)

## note it equals the partial R2 of the treatment with the outcome
partial_r2(model, covariates = "directlyharmed")

## robustness value of directly harmed q = 1/2 (reduce estimate in half)
robustness_value(model, covariates = "directlyharmed", q = 1/2, alpha = 1)

## robustness value of directly harmed q = 1/2, alpha = 0.05
## (reduce estimate in half, with 95% confidence)
robustness_value(model, covariates = "directlyharmed", q = 1/2, alpha = 0.05)

# you can also provide the statistics directly
robustness_value(t_statistic = 4.18445, dof = 783, alpha = 1)

extreme_robustness_value(t_statistic = 4.18445, dof = 783, alpha = 1)

---

### sensemakr

**Sensitivity analysis to unobserved confounders**

### Description

This function performs sensitivity analysis to omitted variables as discussed in Cinelli and Hazlett (2020). It returns an object of class sensemakr with several pre-computed sensitivity statistics for reporting. After running sensemakr you may directly use the plot, print and summary methods in the returned object.

### Usage

sensemakr(...)

## S3 method for class 'lm'
sensemakr(
  model,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  ky = kd,
  q = 1,
  alpha = 0.05,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = "Manual Bound",
  reduce = TRUE,
  ...


## S3 method for class 'fixest'
sensemakr(
  model,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  ky = kd,
  q = 1,
  alpha = 0.05,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = "Manual Bound",
  reduce = TRUE,
  ...
)

## S3 method for class 'formula'
sensemakr(
  formula,
  method = c("lm", "feols"),
  vcov = "iid",
  data,
  treatment,
  benchmark_covariates = NULL,
  kd = 1,
  ky = kd,
  q = 1,
  alpha = 0.05,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = "",
  reduce = TRUE,
  ...
)

## S3 method for class 'numeric'
sensemakr(
  estimate,
  se,
  dof,
  treatment = "D",
  q = 1,
  alpha = 0.05,
  r2dz.x = NULL,
  r2yz.dx = r2dz.x,
  bound_label = "manual_bound",
  ...
Arguments

... arguments passed to other methods.
model An \texttt{lm} or \texttt{fixest} object with the outcome regression.
treatment A character vector with the name of the treatment variable of the model.

benchmark covariates

The user has two options: (i) character vector of the names of covariates that will be used to bound the plausible strength of the unobserved confounders. Each variable will be considered separately; (ii) a named list with character vector names of covariates that will be used, as a group, to bound the plausible strength of the unobserved confounders. The names of the list will be used for the benchmark labels. Note: for factor variables with more than two levels, you need to provide the name of each level as encoded in the \texttt{fixest} model (the columns of \texttt{model.matrix}).

kd numeric vector. Parameterizes how many times stronger the confounder is related to the treatment in comparison to the observed benchmark covariate. Default value is 1 (confounder is as strong as benchmark covariate).

ky numeric vector. Parameterizes how many times stronger the confounder is related to the outcome in comparison to the observed benchmark covariate. Default value is the same as kd.

q percent change of the effect estimate that would be deemed problematic. Default is 1, which means a reduction of 100\% of the current effect estimate (bring estimate to zero). It has to be greater than zero.

alpha significance level.

r2dz.x hypothetical partial R2 of unobserved confounder Z with treatment D, given covariates X.
r2yz.dx hypothetical partial R2 of unobserved confounder Z with outcome Y, given covariates X and treatment D.

bound label label to bounds provided manually in \texttt{r2dz.x} and \texttt{r2yz.dx}.
reduce should the bias adjustment reduce or increase the absolute value of the estimated coefficient? Default is \texttt{TRUE}.

formula an object of the class \texttt{formula}: a symbolic description of the model to be fitted.
method the default is \texttt{lm}. This argument can be changed to estimate the model using \texttt{feols}. In this case the formula needs to be written so it can be estimated with \texttt{feols} and the package needs to be installed.
vcov  the variance/covariance used in the estimation when using `feols`. See `vcov.fixest` for more details. Defaults to "iid".

data  data needed only when you pass a formula as first parameter. An object of the class `data.frame` containing the variables used in the analysis.

estimate  Coefficient estimate.

se  standard error of the coefficient estimate.

dof  residual degrees of freedom of the regression.

r2dxj.x  partial R2 of covariate Xj with the treatment D (after partialling out the effect of the remaining covariates X, excluding Xj).

r2yxj.dx  partial R2 of covariate Xj with the outcome Y (after partialling out the effect of the remaining covariates X, excluding Xj).

Value

An object of class `sensemakr`, containing:

info  A `data.frame` with the general information of the analysis, including the formula used, the name of the treatment variable, parameter values such as q, alpha, and whether the bias is assumed to reduce the current estimate.

sensitivity_stats  A `data.frame` with the sensitivity statistics for the treatment variable, as computed by the function `sensitivity_stats`.

bounds  A `data.frame` with bounds on the strength of confounding according to some benchmark covariates, as computed by the function `ovb_bounds`.

References


See Also

The function `sensemakr` is a convenience function. You may use the other sensitivity functions of the package directly, such as the functions for sensitivity plots (`ovb_contour_plot, ovb_extreme_plot`) the functions for computing bias-adjusted estimates and t-values (`adjusted_estimate, adjusted_t`), the functions for computing the robustness value and partial R2 (`robustness_value, partial_r2`), or the functions for bounding the strength of unobserved confounders (`ovb_bounds`), among others.

Examples

```r
loads dataset
data("darfur")

runs regression model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

runs sensemakr for sensitivity analysis
sensitivity <- sensemakr(model, treatment = "directlyharmed",
```
sensitivity_stats

```
benchmark_covariates = "female",
kd = 1:3)

short description of results
sensitivity

long description of results
summary(sensitivity)

plot bias contour of point estimate
plot(sensitivity)

plot bias contour of t-value
plot(sensitivity, sensitivity.of = "t-value")

plot bias contour of lower limit of CI
plot(sensitivity, sensitivity.of = "lwr")

plot bias contour of upper limit of CI
plot(sensitivity, sensitivity.of = "upr")

plot extreme scenario
plot(sensitivity, type = "extreme")

latex code for sensitivity table
ovb_minimal_reporting(sensitivity)
```

---

**sensitivity_stats**  
*Sensitivity statistics for regression coefficients*

**Description**

Convenience function that computes the `robustness_value`, `partial_r2` and `partial_f2` of the coefficient of interest.

**Usage**

```r
sensitivity_stats(...)
```

```r
S3 method for class 'lm'
sensitivity_stats(
 model,
 treatment,
 q = 1,
 alpha = 0.05,
 reduce = TRUE,
 invert = FALSE,
 ...
)
```
## S3 method for class 'fixest'
sensitivity_stats(
    model,
    treatment,
    q = 1,
    alpha = 0.05,
    reduce = TRUE,
    invert = FALSE,
    message = T,
    ...
)

## S3 method for class 'numeric'
sensitivity_stats(
    estimate,
    se,
    dof,
    treatment = "treatment",
    q = 1,
    alpha = 0.05,
    reduce = TRUE,
    invert = FALSE,
    ...
)

Arguments

... arguments passed to other methods.

model An lm or fixest object with the outcome regression.

treatment A character vector with the name of the treatment variable of the model.

q percent change of the effect estimate that would be deemed problematic. Default is 1, which means a reduction of 100% of the current effect estimate (bring estimate to zero). It has to be greater than zero.

alpha significance level.

reduce should the bias adjustment reduce or increase the absolute value of the estimated coefficient? Default is TRUE.

invert should IRV be computed instead of RV? (i.e. is the estimate insignificant?). Default is FALSE.

message should messages be printed? Default = TRUE.

estimate Coefficient estimate.

se standard error of the coefficient estimate.

dof residual degrees of freedom of the regression.
sensitivity_stats

Value

A `data.frame` containing the following quantities:

- **treatment** a character with the name of the treatment variable
- **estimate** a numeric vector with the estimated effect of the treatment
- **se** a numeric vector with the estimated standard error of the treatment effect
- **t_statistics** a numeric vector with the t-value of the treatment
- **r2yd.x** a numeric vector with the partial R2 of the treatment and the outcome, see details in `partial_r2`
- **rv_q** a numeric vector with the robustness value of the treatment, see details in `robustness_value`
- **rv_qa** a numeric vector with the robustness value of the treatment considering statistical significance, see details in `robustness_value`
- **f2yd.x** a numeric vector with the partial (Cohen’s) f2 of the treatment with the outcome, see details in `partial_f2`
- **dof** a numeric vector with the degrees of freedom of the model

References


Examples

```r
loads data
data("darfur")

fits model
model <- lm(peacefactor ~ directlyharmed + age + farmer_dar + herder_dar + pastvoted + hhsize_darfur + female + village, data = darfur)

sensitivity stats for directly harmed
sensitivity_stats(model, treatment = "directlyharmed")

you can also pass the numeric values directly
sensitivity_stats(estimate = 0.09731582, se = 0.02325654, dof = 783)
```
Index

* datasets
  colombia, 13
darfur, 15

add_bound_to_contour, 4
adjusted_ci (adjusted_estimate), 8
adjusted_critical_value, 7
adjusted_estimate, 2, 8, 20, 40
adjusted_partial_r2
  (adjusted_estimate), 8
adjusted_se, 20
adjusted_se (adjusted_estimate), 8
adjusted_t, 2, 20, 40
adjusted_t (adjusted_estimate), 8
bias (adjusted_estimate), 8
cat, 33
colombia, 13
darfur, 15
data.frame, 20, 24, 25, 28, 29, 40

extreme_robustness_value, 34
extreme_robustness_value
  (robustness_value), 34

feols, 25, 29, 39, 40
formula, 24, 25, 28, 29, 39

group_partial_r2, 16, 30

lm, 8, 21, 24–26, 28–30, 34, 39

ovb_bounds, 2, 17, 40
ovb_contour_plot, 2, 4, 21, 32, 40
ovb_extreme_plot, 2, 26, 32, 40
ovb_minimal_reporting, 32
ovb_minimal_reporting
  (print.sensemakr), 32
ovb_partial_r2_bound (ovb_bounds), 17

par, 25, 29
partial_f (partial_r2), 30
partial_f2, 41, 43
partial_f2 (partial_r2), 30
partial_r2, 2, 30, 40, 41, 43
plot.sensemakr, 32
points, 6
print.sensemakr, 32
rel_bias (adjusted_estimate), 8
relative_bias (adjusted_estimate), 8
robustness_value, 2, 34, 34, 40, 41, 43
rv (robustness_value), 34
sensemakr, 2, 32, 33, 37
sensemakr-package, 2
sensitivity_stats, 40, 41
summary.sensemakr (print.sensemakr), 32
vcov.fixest, 25, 29, 40
xrv (robustness_value), 34