Package ‘sensiPhy’

December 10, 2019

Title Sensitivity Analysis for Comparative Methods
Version 0.8.4
Date 2019-12-10
Maintainer Gustavo Paterno <paternogbc@gmail.com>
Description An implementation of sensitivity analysis for phylogenetic comparative methods. The package is an umbrella of statistical and graphical methods that estimate and report different types of uncertainty in PCM:
(i) Species Sampling uncertainty (sample size; influential species and clades).
(ii) Phylogenetic uncertainty (different topologies and/or branch lengths).
(iii) Data uncertainty (intraspecific variation and measurement error).
Depends R (> = 3.4.0), ape (> = 3.3), phylolm (> = 2.4), ggplot2 (> = 2.1.0)
Imports caper (> = 0.5.2), phytools (> = 0.6), geiger (> = 2.0)
License GPL-2
URL https://github.com/paternogbc/sensiPhy
BugReports https://github.com/paternogbc/sensiPhy/issues
LazyData true
RoxygenNote 7.0.2
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Gustavo Paterno [cre, aut],
Gijsbert Werner [aut],
Caterina Penone [aut],
Pablo Martinez [ctb]
Repository CRAN
Date/Publication 2019-12-10 20:50:03 UTC
R topics documented:

alien ... 3
alien.data 4
alien.phy 5
clade_continuous 6
clade_discrete 8
clade_phyglm 11
clade_phylm 13
clade_physig 16
influ_continuous 18
influ_discrete 20
influ_phyglm 22
influ_phylm 24
influ_physig 27
intra_clade_phyglm 29
intra_clade_phylm 31
intra_influ_phyglm 34
intra_influ_phylm 37
intra_phyglm 40
intra_phylm 42
intra_physig 45
intra_samp_phyglm 47
intra_samp_phylm 50
match_dataphy 53
miss.phylo.d 55
primates .. 56
primates.data 57
primates.phy 58
samp_continuous 59
samp_discrete 61
samp_phyglm 64
samp_phylm 66
samp_physig 68
sensiPhy 70
sensi_plot 71
sensi_plot.clade.physig 72
sensi_plot.influ.physig 73
sensi_plot.intra.physig 74
sensi_plot.samp.physig 75
sensi_plot.sensiClade 76
sensi_plot.sensiClade.TraitEvol 77
sensi_plot.sensiInflu 78
sensi_plot.sensiInflu.TraitEvol 79
sensi_plot.sensiIntra 80
sensi_plot.sensiIntra_Clade 81
sensi_plot.sensiIntra_Influ 82
sensi_plot.sensiIntra_Samp 83
Alien Mammals dataset: Example dataset for the package sensiPhy

Description

A comparative dataset containing traits for 94 alien mammal species (alien.data) and a multiphylo object with 101 phylogenies matching the data (alien.phy). Tip labels are the binomial species names and match with data rownames. Data was taken from (Gonzalez-Suarez et al. 2015) and phylogenies from (Fritz et al 2009) and (Kuhn et al 2011).

Usage

data(alien)

Format

A data frame with 94 rows and 7 variables:

- family: Taxonomic family
- adultMass: Mean adult body mass (g)
- gestaLen: Mean gestation length (days)
- homeRange: Mean home range (km)
- SE_mass: Standard deviation (intraspecific) for mean adult body mass (g)
- SE_gesta: Standard deviation (intraspecific) for mean gestation length (days)
- SE_range: Standard deviation (intraspecific) for mean home range (km)

References
Alien mammal data: Gonzalez-Suarez, Manuela, Sven Bacher, and Jonathan M. Jeschke. "Intraspecific trait variation is correlated with establishment success of alien mammals." The American Naturalist 185.6 (2015): 737-746 DOI: 10.1086/681105

alien.data Alien Mammals dataset: Example dataset for the package sensiPhy

Description
A comparative dataset containing traits for 94 alien mammal species (alien.data) and a multiphylo object with 101 phylogenies matching the data (alien.phy). Tip labels are the binomial species names and match with data rownames. Data was taken from (Gonzalez-Suarez et al. 2015) and phylogenies from (Fritz et al 2009) and (Kuhn et al 2011).

Usage
data(alien)

Format
A data frame with 94 rows and 7 variables:
- family: Taxonomic family
- adultMass: Mean adult body mass (g)
- gestaLen: Mean gestation length (days)
- homeRange: Mean home range (km)
- SE_mass: Standard deviation (intraspecific) for mean adult body mass (g)
- SE_gesta: Standard deviation (intraspecific) for mean gestation length (days)
- SE_range: Standard deviation (intraspecific) for mean home range (km)
References

Alien mammal data: Gonzalez-Suarez, Manuela, Sven Bacher, and Jonathan M. Jeschke. "Intraspecific trait variation is correlated with establishment success of alien mammals." The American Naturalist 185.6 (2015): 737-746 DOI: 10.1086/681105

alien.phy

Alien Mammals dataset: Example dataset for the package sensiPhy

Description

A comparative dataset containing traits for 94 alien mammal species (alien.data) and a multiphylo object with 101 phylogenies matching the data (alien.phy). Tip labels are the binomial species names and match with data rownames. Data was taken from (Gonzalez-Suarez et al. 2015) and phylogenies from (Fritz et al 2009) and (Kuhn et al 2011).

Usage

data(alien)

Format

A data frame with 94 rows and 7 variables:

- family: Taxonomic family
- adultMass: Mean adult body mass (g)
- gestaLen: Mean gestation length (days)
- homeRange: Mean home range (km)
- SE_mass: Standard deviation (intraspecific) for mean adult body mass (g)
- SE_gesta: Standard deviation (intraspecific) for mean gestation length (days)
- SE_range: Standard deviation (intraspecific) for mean home range (km)
References

Alien mammal data: Gonzalez-Suarez, Manuela, Sven Bacher, and Jonathan M. Jeschke. "Intraspecific trait variation is correlated with establishment success of alien mammals." The American Naturalist 185.6 (2015): 737-746 DOI: 10.1086/681105

clade_continuous
Influential Clade Detection - Trait Evolution Continuous Characters

Description

Fits models for trait evolution of continuous characters, detecting influential clades

Usage

```r
clade_continuous(
  data,  
  phy,  
  model,  
  trait.col,  
  clade.col,  
  n.species = 5,  
  n.sim = 20,  
  bounds = list(),  
  n.cores = NULL,  
  track = TRUE,  
  ...
)
```

Arguments

- **data**: Data frame containing species traits with row names matching tips in `phy`.
- **phy**: A phylogeny (class 'phylo') matching `data`.
- **model**: The evolutionary model (see Details).
- **trait.col**: The column in the provided data frame which specifies the trait to analyse (which should be a factor with two level)
- **clade.col**: The column in the provided data frame which specifies the clades (a character vector with clade names).
Details

This function sequentially removes one clade at a time, fits a model of continuous character evolution using `fitContinuous`, repeats this many times (controlled by `n.sim`), stores the results and calculates the effects on model parameters. Currently, only binary continuous traits are supported.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species as in the given clade. The number of simulations to be performed is set by `n.sim`. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using `summary(x)`.

Different evolutionary models from `fitContinuous` can be used, i.e. BM, OU, EB, trend, lambda, kappa, delta and drift.

See `fitContinuous` for more details on evolutionary models.

Output can be visualised using `sensi_plot`.

Value

The function `tree_continuous` returns a list with the following components:

- `call`: The function call
- `data`: The original full data frame.
- `full.model.estimates`: Parameter estimates (rate of evolution sigsq and where applicable optpar), root state z₀, AICc for the full model without deleted clades.
- `sensi.estimates`: Parameter estimates (sigsq and optpar), (percentual) difference in parameter estimate compared to the full model (DIFsigsq, sigsq.perc, DIFoptpar, optpar.perc), AICc and z₀ for each repeat with a clade removed.
- `null.dist`: A data frame with estimates for the null distributions for all clades analysed.
- `errors`: Clades where deletion resulted in errors.
- `clade.col`: Which column was used to specify the clades?
- `optpar`: Transformation parameter used (e.g. lambda, kappa etc.)

Author(s)

Gijsbert Werner & Gustavo Paterno
References

See Also

fitContinuous

Examples

Not run:
data("primates")
#Model trait evolution accounting for phylogenetic uncertainty
clade_cont<-clade_continuous(data=primates$data,phy = primates$phy[[1]], model="OU", trait.col = "adultMass",clade.col="family",n.sim=30,n.species=10,n.cores = 2,track=TRUE)
#Print summary statistics
summary(clade_cont)
sensi_plot(clade_cont,graph="all")
sensi_plot(clade_cont,clade="Cercopithecidae",graph = "sigsq")
sensi_plot(clade_cont,clade="Cercopithecidae",graph = "optpar")
#Change the evolutionary model, tree transformation or minimum number of species per clade
clade_cont2<-clade_continuous(data=primates$data,phy = primates$phy[[1]],model="delta", trait.col = "adultMass",clade.col="family",n.sim=30,n.species=5,n.cores = 2,track=TRUE)
summary(clade_cont2)
sensi_plot(clade_cont2)
clade_cont3<-clade_continuous(data=primates$data,phy = primates$phy[[1]],model="BM", trait.col = "adultMass",clade.col="family",n.sim=30,n.species=5,n.cores = 2,track=TRUE)
summary(clade_cont3)
sensi_plot(clade_cont3,graph="sigsq")
End(Not run)

clade_discrete

Influential Clade Detection - Trait Evolution Discrete Characters

Description

Fits models for trait evolution of discrete (binary) characters, detecting influential clades

Usage

clade_discrete(
 data,
 phy,
clade_discrete

model,
transform = "none",
trait.col,
clade.col,
n.species = 5,
n.sim = 20,
bounds = list(),
n.cores = NULL,
track = TRUE,
...
)

Arguments

data Data frame containing species traits with row names matching tips in phy.
phy A phylogeny (class 'phylo') matching data.
model The Mkn model to use (see Details).
transform The evolutionary model to transform the tree (see Details). Default is none.
trait.col The column in the provided data frame which specifies the trait to analyse
(clade.col The column in the provided data frame which specifies the clades (a character
vector with clade names).
n.species Minimum number of species in a clade for the clade to be included in the leave-
one-out deletion analysis. Default is 5.
n.sim Number of simulations for the randomization test.
bounds settings to constrain parameter estimates. See fitDiscrete
n.cores number of cores to use. If 'NULL', number of cores is detected.
track Print a report tracking function progress (default = TRUE)
...
Further arguments to be passed to fitDiscrete

Details

This function sequentially removes one clade at a time, fits a model of discrete character evolution using fitDiscrete, repeats this this many times (controlled by n.sim), stores the results and calculates the effects on model parameters. Currently, only binary discrete traits are supported.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species as in the given clade. The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.

Different character model from fitDiscrete can be used, including ER (equal-rates), SYM (symmetric), ARD (all-rates-different) and meristic (stepwise fashion).

All transformations to the phylogenetic tree from fitDiscrete can be used, i.e. none, EB, lambda, kappa and delta.

See fitDiscrete for more details on character models and tree transformations.
Output can be visualised using sensi_plot.
Value
The function `tree_discrete` returns a list with the following components:
call: The function call
data: The original full data frame.
full.model.estimates: Parameter estimates (transition rates q12 and q21), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for the full model without deleted clades.
sensi.estimates: Parameter estimates (transition rates q12 and q21), (percentual) difference in parameter estimate compared to the full model (DIFq12, sigsq.q12, DIFq21, optpar.q21), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for each repeat with a clade removed.
null.dist: A data frame with estimates for the null distributions for all clades analysed.
errors: Clades where deletion resulted in errors.
clade.col: Which column was used to specify the clades?
optpar: Transformation parameter used (e.g. lambda, kappa etc.)

Author(s)
Gijsbert Werner & Gustavo Paterno

References

See Also
fitDiscrete

Examples
```r
## Not run:
#Load data:
data("primates")
#Create a binary trait factor
primates$data$adultMass_binary <- ifelse(primates$data$adultMass > 7350, "big", "small")
clade_disc <- clade_discrete(data = primates$data, phy = primates$phy[[1]], model = "SYM", trait.col = "adultMass_binary", clade.col = "family", n.sim = 30, n.species = 10, n.cores = 2)
summary(clade_disc)
sensi_plot(clade_disc)
sensi_plot(clade_disc, clade = "Cebidae", graph = "q12")
#Change the evolutionary model, tree transformation or minimum number of species per clade
clade_disc_2 <- clade_discrete(data = primates$data, phy = primates$phy[[1]], model = "ARD", transform = "kappa")
```
Estimate the impact on model estimates of phylogenetic logistic regression after removing clades from the analysis.

Usage

```r
clade_phyglm(
  formula, 
  data, 
  phy, 
  btol = 50, 
  track = TRUE, 
  clade.col, 
  n.species = 5, 
  n.sim = 100, 
  ...
)
```

Arguments

- `formula` The model formula.
- `data` Data frame containing species traits with row names matching tips in `phy`.
- `phy` A phylogeny (class 'phylo') matching `data`.
- `btol` Bound on searching space. For details see `phyloglm`.
- `track` Print a report tracking function progress (default = TRUE).
- `clade.col` The column in the provided data frame which specifies the clades (a character vector with clade names).
- `n.species` Minimum number of species in a clade for the clade to be included in the leave-one-out deletion analysis. Default is 5.
- `n.sim` Number of simulations for the randomization test.
- `...` Further arguments to be passed to `phyloglm`.

clade_phyglm

trait.col = "adultMass_binary",clade.col="family",n.sim=30,
n.species=8,n.cores=2)
summary(clade_disc_2)
sensi_plot(clade_disc_2)
sensi_plot(clade_disc_2, graph = "q12")
sensi_plot(clade_disc_2, graph = "q21")

End(Not run)
Details

This function sequentially removes one clade at a time, fits a phylogenetic logistic regression model using `phyloglm` and stores the results. The impact of a specific clade on model estimates is calculated by a comparison between the full model (with all species) and the model without the species belonging to a clade.

To account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species as in the given clade. The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.

Currently, only logistic regression using the "logistic_MPLE"-method from `phyloglm` is implemented.

`clade_phyglm` detects influential clades based on difference in intercept and/or estimate when removing a given clade compared to the full model including all species.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species in the given clade. The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.

Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.

Value

The function `clade_phyglm` returns a list with the following components:

- **formula**: The formula
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. alpha) for the full model without deleted species.
- **sensi.estimates**: A data frame with all simulation estimates. Each row represents a deleted clade. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter are reported.
- **null.dist**: A data frame with estimates for the null distributions for all clades analysed.
- **data**: Original full dataset.
- **errors**: Clades where deletion resulted in errors.
- **clade.col**: Which column was used to specify the clades?

Author(s)

Gustavo Paterno & Gijsbert Werner
clade_phylm

References

See Also

phyloglm, clade_phylm, influ_phyglm, sensi_plot

Examples

```r
## Not run:
# Simulate Data:
set.seed(6987)
phy = rtree(150)
x = rTrait(n=1,phy=phy)
X = cbind(rep(1,150),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7,X=X)
cla <- rep(c("A","B","C","D","E"), each = 30)
dat = data.frame(y, x, cla)
# Run sensitivity analysis:
clade <- clade_phyglm(y ~ x, phy = phy, data = dat, n.sim = 30, clade.col = "cla")
# To check summary results and most influential clades:
summary(clade)
# Visual diagnostics for clade removal:
sensi_plot(clade)
# Specify which clade removal to plot:
sensi_plot(clade, "B")
sensi_plot(clade, "C")
sensi_plot(clade, "D") #The clade with the largest effect on slope and intercept
## End(Not run)
```

clade_phylm

Influential clade detection - Phylogenetic Linear Regression

Description

Estimate the impact on model estimates of phylogenetic linear regression after removing clades from the analysis.

Usage

```r
clade_phylm(
  formula,
  data,
  phy,
)```
clade_phylm

```r
model = "lambda",
track = TRUE,
clade.col,
n.species = 5,
n.sim = 100,
...
)
```

**Arguments**

- `formula`: The model formula
- `data`: Data frame containing species traits with row names matching tips in `phy`.
- `phy`: A phylogeny (class 'phylo') matching `data`.
- `model`: The phylogenetic model to use (see Details). Default is `lambda`.
- `track`: Print a report tracking function progress (default = `TRUE`)
- `clade.col`: The column in the provided data frame which specifies the clades (a character vector with clade names).
- `n.species`: Minimum number of species in a clade for the clade to be included in the leave-one-out deletion analysis. Default is `5`.
- `n.sim`: Number of simulations for the randomization test.
- `...`: Further arguments to be passed to `phylolm`

**Details**

This function sequentially removes one clade at a time, fits a phylogenetic linear regression model using `phylolm` and stores the results. The impact of a specific clade on model estimates is calculated by a comparison between the full model (with all species) and the model without the species belonging to a clade.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species as in the given clade. The number of simulations to be performed is set by `n.sim`. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using `summary(x)`.

All phylogenetic models from `phylolm` can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See `?phylolm` for details.

`clade_phylm` detects influential clades based on difference in intercept and/or estimate when removing a given clade compared to the full model including all species.

Currently, this function can only implement simple linear models (i.e. $y = a + bx$). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.
The function `clade_phylm` returns a list with the following components:

- **formula**: The formula used for the analysis.
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g., lambda) for the full model without deleted species.
- **sensi.estimates**: A data frame with all simulation estimates. Each row represents a deleted clade. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g., kappa or lambda, depending on the phylogenetic model used) are reported.
- **null.dist**: A data frame with estimates for the null distributions for all clades analysed.
- **data**: Original full dataset.
- **errors**: Clades where deletion resulted in errors.
- **clade.col**: Which column was used to specify the clades?

**Author(s)**

Gustavo Paterno

**References**


**See Also**

`phylolm`, `samp_phylm`, `influ_phylm`, `sensi_plot`, `sensi_plot`, `clade_phyglm`

**Examples**

```r
Not run:
Load data:
data(primates)
run analysis:
clade <- clade_phylm(log(sexMaturity) ~ log(adultMass),
phy = primates$phy[[1]], data = primates$data, n.sim = 30, clade.col = "family")
To check summary results and most influential clades:
summary(clade)
Visual diagnostics for clade removal:
sensi_plot(clade)
Specify which clade removal to plot:
sensi_plot(clade, "Cercopithecidae")
sensi_plot(clade, "Cebidae")
```
## clade_physig

Influential clade detection - Phylogenetic signal

### Description

Estimate the influence of clade removal on phylogenetic signal estimates

### Usage

```r
clade_physig(
 trait.col,
 data,
 phy,
 clade.col,
 n.species = 5,
 n.sim = 100,
 method = "K",
 track = TRUE,
 ...
)
```

### Arguments

- **trait.col**: The name of a column in the provided data frame with trait to be analyzed (e.g. "Body_mass").
- **data**: Data frame containing species traits with row names matching tips in `phy`.
- **phy**: A phylogeny (class 'phylo') matching `data`.
- **clade.col**: The column in the provided data frame which specifies the clades (a character vector with clade names).
- **n.species**: Minimum number of species in a clade for the clade to be included in the leave-one-out deletion analysis. Default is 5.
- **n.sim**: Number of simulations for the randomization test.
- **method**: Method to compute signal: can be "K" or "lambda".
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to `phylosig`
Details

This function sequentially removes one clade at a time, estimates phylogenetic signal (K or lambda) using `phylosig` and stores the results. The impact of a specific clade on signal estimates is calculated by the comparison between the full data (with all species) and reduced data estimates (without the species belonging to a clade).

To account for the influence of the number of species on each clade (clade sample size), this function also estimate a null distribution of signal estimates expected by the removal of the same number of species as in a given clade. This is done by estimating phylogenetic signal without the same number of species in the given clade. The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.

Output can be visualised using `sensi_plot`.

Value

The function `clade_physig` returns a list with the following components:

- `trait.col`: Column name of the trait analysed
- `full.data.estimates`: Phylogenetic signal estimate (K or lambda) and the P value (for the full data).
- `sensi.estimates`: A data frame with all simulation estimates. Each row represents a deleted clade. Columns report the calculated phylogenetic signal (K or lambda) (estimate), difference between simulation signal and full data signal (DF), the percentage of change in signal compared to the full data estimate (perc) and p-value of the phylogenetic signal with the reduced data (pval).
- `null.dist`: A data frame with estimates for the null distribution of phylogenetic signal for all clades analysed.
- `data`: Original full dataset.

Note

The argument "se" from `phylosig` is not available in this function. Use the argument "V" instead with `intra_physig` to indicate the name of the column containing the standard deviation or the standard error of the trait variable instead.

Author(s)

Gustavo Paterno

References


See Also

`phylosig`, `clade_phylm`, `sensi_plot`

Examples

```r
data(alien)
alien.data<-alien$data
alien.phy<-alien$phy
 # Logtransform data
alien.data$logMass <- log(alien.data$adultMass)
 # Run sensitivity analysis:
clade <- clade_physig(trait.col = "logMass", data = alien.data, n.sim = 20,
 phy = alien.phy[[1]], clade.col = "family", method = "K")
summary(clade)
sensi_plot(clade, "Bovidae")
sensi_plot(clade, "Sciuridae")
```

influ_continuous

**Influential Species Detection - Trait Evolution Continuous Characters**

Description

Fits models for trait evolution of continuous characters, detecting influential species.

Usage

```r
influ_continuous(
 data, phy, model,
 bounds = list(), cutoff = 2,
 n.cores = NULL,
 track = TRUE,
 ...
)
```

Arguments

- **data** Data vector for a single continuous trait, with names matching tips in phy.
- **phy** A phylogeny (class 'phylo') matching data.
- **model** The evolutionary model (see Details).
- **bounds** settings to constrain parameter estimates. See `fitContinuous`
- **cutoff** The cut-off parameter for influential species (see Details).
- **n.cores** number of cores to use. If 'NULL', number of cores is detected.
- **track** Print a report tracking function progress (default = TRUE)
- **...** Further arguments to be passed to `fitContinuous`
influ_continuous

Details

This function sequentially removes one species at a time, fits different models of continuous character evolution using `fitContinuous`, stores the results and calculates the effects on model parameters.

`influ_continuous` detects influential species based on the standardised difference in the rate parameter `sigsq` and the optimisation parameter `optpar` (e.g. lambda, kappa, alpha, depending on which model is set), when removing a given species compared to the full model including all species. Species with a standardised difference above the value of `cutoff` are identified as influential.

Different evolutionary models from `fitContinuous` can be used, i.e. BM, OU, EB, trend, lambda, kappa, delta and drift.

See `fitContinuous` for more details on evolutionary models.

Value

The function `tree_discrete` returns a list with the following components:

- `call`: The function call
- `cutoff`: The value selected for `cutoff`
- `data`: The original full data vector
- `optpar`: Transformation parameter used (e.g. lambda, kappa etc.)
- `full.model.estimates`: Parameter estimates (rate of evolution `sigsq` and where applicable `optpar`), root state `z0`, AICc for the full model without deleted species.
- `influential_species`: List of influential species, based on standardised difference in estimates for `sigsq` and `optpar`. Species are ordered from most influential to less influential and only include species with a standardised difference > `cutoff`.
- `sensi.estimates`: Parameter estimates (`sigsq` and `optpar`),(percentual) difference in parameter estimate compared to the full model (DIFsigsq, sigsq.perc,sDIFsigsq, DIFoptpar, optpar.perc,sDIFoptpar), AICc and `z0` for each repeat with a species removed.

Author(s)

Gijsbert Werner & Gustavo Paterno

References


See Also

`fitContinuous`
Examples

## Not run:
# Load data:
data("primates")
# Model trait evolution accounting for influential species
adultMass<-primates$data$adultMass
names(adultMass)<-rownames(primates$data)
influ_cont<-influ_continuous(data = adultMass, phy = primates$phy[[1]],
model = "OU", cutoff = 2, n.cores = 2, track = TRUE)
# Print summary statistics
summary(influ_cont)
sensi_plot(influ_cont)
sensi_plot(influ_cont, graphs = "sigsq")
# sensi_plot(influ_cont, graphs = "optpar")
# Use a different evolutionary model or cutoff
influ_cont2<-influ_continuous(data = adultMass, phy = primates$phy[[1]],
model = "lambda", cutoff = 1.2, n.cores = 2, track = TRUE)
summary(influ_cont2)
sensi_plot(influ_cont2)
influ_cont3<-influ_continuous(data = adultMass, phy = primates$phy[[1]],
model = "BM", cutoff = 2, n.cores = 2, track = TRUE)
summary(influ_cont3)

## End(Not run)

influ_discrete

Influential Species Detection - Trait Evolution Discrete Characters

Description

Fits models for trait evolution of discrete (binary) characters, detecting influential species.

Usage

influ_discrete(  
data,  
phy,  
model,  
transform = "none",  
bounds = list(),  
cutoff = 2,  
n.cores = NULL,  
track = TRUE,  
...  
)
Arguments

- **data**: Data vector for a single binary trait, with names matching tips in phy.
- **phy**: A phylogeny (class 'phylo') matching data.
- **model**: The Mkn model to use (see Details).
- **transform**: The evolutionary model to transform the tree (see Details). Default is none.
- **bounds**: settings to constrain parameter estimates. See `fitDiscrete`
- **cutoff**: The cut-off parameter for influential species (see Details).
- **n.cores**: number of cores to use. If 'NULL', number of cores is detected.
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to `fitDiscrete`

Details

This function sequentially removes one species at a time, fits a model of discrete character evolution using `fitDiscrete`, stores the results and calculates the effects on model parameters. Currently, only binary discrete traits are supported.

`influ_discrete` detects influential species based on the standardised difference in q12 or q21 when removing a given species compared to the full model including all species. Species with a standardised difference above the value of cutoff are identified as influential.

Different character model from `fitDiscrete` can be used, including ER (equal-rates), SYM (symmetric), ARD (all-rates-different) and meristic (stepwise fashion).

Different transformations to the phylogenetic tree from `fitDiscrete` can be used, i.e. none, EB, lambda, kappa and delta.

See `fitDiscrete` for more details on character models and tree transformations.

Value

The function `tree_discrete` returns a list with the following components:

- **call**: The function call
- **cutoff**: The value selected for cutoff
- **data**: The original full data vector
- **optpar**: Transformation parameter used (e.g. lambda, kappa etc.)
- **full.model.estimates**: Parameter estimates (transition rates q12 and q21), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for the full model.
- **influential_species**: List of influential species, based on standardised difference in estimates for q12 and q21. Species are ordered from most influential to less influential and only include species with a standardised difference > cutoff.
- **sensi.estimates**: Parameter estimates (transition rates q12 and q21),(percentual) difference in parameter estimate compared to the full model (DIFq12, sigsq.q12,sDIFq12, DIFq21, optpar.q21,sDIFq21), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for each analysis with a species deleted.
Author(s)

Gijsbert Werner & Gustavo Paterno

References


See Also

fitDiscrete

Examples

```r
Not run:
#Load data:
data("primates")
#Create a binary trait factor
adultMass_binary<-ifelse(primates$data$adultMass > 7350, "big", "small")
adultMass_binary<-as.factor(as.factor(adultMass_binary))
names(adultMass_binary)<-rownames(primates$data)

#Model trait evolution accounting for influential species
influ_binary<-influ_discrete(data = adultMass_binary,phy = primates$phy[[1]],
model = "SYM",transform = "none",cutoff = 2,n.cores = 2,track = TRUE)

#Print summary statistics
summary(influ_binary)
sensi_plot(influ_binary) #q12 and q21 are, as expected, exactly the same in symmetrical model.

#Use a different evolutionary model.
influ_binary2<-influ_discrete(data = adultMass_binary,phy = primates$phy[[1]],
model = "SYM",transform = "delta",n.cores = 2,track = TRUE)

summary(influ_binary2)
sensi_plot(influ_binary2)

#Or change the cutoff and transformation
influ_binary3<-influ_discrete(data = adultMass_binary,phy = primates$phy[[1]],
model = "ARD",transform = "none",cutoff = 1.2,n.cores = 2,track = TRUE)

summary(influ_binary3)
sensi_plot(influ_binary3)

End(Not run)
```

influ_phyglm *Influential species detection - Phylogenetic Logistic Regression*
**influ_phyglm**

Description

Performs leave-one-out deletion analysis for phylogenetic logistic regression, and detects influential species.

Usage

```r
influ_phyglm(formula, data, phy, btol = 50, cutoff = 2, track = TRUE, ...)
```

Arguments

- `formula`: The model formula
- `data`: Data frame containing species traits with row names matching tips in `phy`.
- `phy`: A phylogeny (class 'phylo') matching `data`.
- `btol`: Bound on searching space. For details see `phyloglm`.
- `cutoff`: The cutoff value used to identify for influential species (see Details).
- `track`: Print a report tracking function progress (default = TRUE).
- `...`: Further arguments to be passed to `phyloglm`.

Details

This function sequentially removes one species at a time, fits a phylogenetic logistic regression model using `phyloglm`, stores the results and detects influential species.

Currently only logistic regression using the "logistic_MPLE"-method from `phyloglm` is implemented.

`influ_phyglm` detects influential species based on the standardised difference in intercept and/or slope when removing a given species compared to the full model including all species. Species with a standardised difference above the value of `cutoff` are identified as influential. The default value for the cutoff is 2 standardised differences change.

Currently, this function can only implement simple logistic models (i.e. `trait predictor`). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.

Value

The function `influ_phyglm` returns a list with the following components:

- `cutoff`: The value selected for `cutoff`.
- `formula`: The formula.
- `full_model.estimates`: Coefficients, aic and the optimised value of the phylogenetic parameter (i.e. `alpha`) for the full model without deleted species.
- `influential_species`: List of influential species, both based on standardised difference in intercept and in the slope of the regression. Species are ordered from most influential to less influential and only include species with a standardised difference > `cutoff`.
- `sensi.estimates`: A data frame with all simulation estimates. Each row represents a deleted clade. Columns report the calculated regression intercept (`intercept`), difference between simulation intercept and full model intercept (`DIFintercept`), the standardised difference (`sDIFintercept`),
the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (i.e. alpha) are reported.

data: Original full dataset.
errors: Species where deletion resulted in errors.

Author(s)
Gustavo Paterno & Gijsbert D.A. Werner

References

See Also
phyloglm, samp_phyglm, influ_phylm, sensi_plot

Examples
# Simulate Data:
set.seed(6987)
phy = rtree(100)
x = rTrait(n=1,phy=phy)
X = cbind(rep(1,100),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7 ,X=X)
dat = data.frame(y, x)
# Run sensitivity analysis:
influ <- influ_phyglm(y ~ x, data = dat, phy = phy)
# To check summary results and most influential species:
summary(influ)
# Visual diagnostics for clade removal:
sensi_plot(influ)
**Usage**

```r
influ_phylm(
 formula,
 data,
 phy,
 model = "lambda",
 cutoff = 2,
 track = TRUE,
 ...
)
```

**Arguments**

- `formula`: The model formula
- `data`: Data frame containing species traits with row names matching tips in `phy`.
- `phy`: A phylogeny (class 'phylo') matching `data`.
- `model`: The phylogenetic model to use (see Details). Default is `lambda`.
- `cutoff`: The cutoff value used to identify for influential species (see Details)
- `track`: Print a report tracking function progress (default = TRUE)
- `...`: Further arguments to be passed to `phylolm`

**Details**

This function sequentially removes one species at a time, fits a phylogenetic linear regression model using `phylolm`, stores the results and detects influential species.

All phylogenetic models from `phylolm` can be used, i.e. `BM`, `OUnfixedRoot`, `OUnrandomRoot`, `lambda`, `kappa`, `delta`, `EB` and `trend`. See `?phylolm` for details.

`influ_phylm` detects influential species based on the standardised difference in intercept and/or slope when removing a given species compared to the full model including all species. Species with a standardised difference above the value of `cutoff` are identified as influential. The default value for the `cutoff` is 2 standardised differences change.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.

**Value**

The function `influ_phylm` returns a list with the following components:

- `cutoff`: The value selected for `cutoff`
- `formula`: The formula
- `full.model.estimates`: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. `lambda`) for the full model without deleted species.
- `influential_species`: List of influential species, both based on standardised difference in intercept and in the slope of the regression. Species are ordered from most influential to less influential and only include species with a standardised difference > `cutoff`.  


sensi.estimates: A data frame with all simulation estimates. Each row represents a deleted clade. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the standardised difference (sDIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.

data: Original full dataset.

errors: Species where deletion resulted in errors.

Author(s)

Gustavo Paterno & Gijsbert D.A. Werner

References


See Also

phylolm, samp_phylm, influ_phyglm, sensi_plot

Examples

# Load data:
data(alien)
# run analysis:
influ <- influ_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy[[1]], data = alien$data)
# To check summary results:
summary(influ)
# Most influential species:
influ$influential.species
# Visual diagnostics
sensi_plot(influ)
# You can specify which graph and parameter ("estimate" or "intercept") to print:
sensi_plot(influ, param = "estimate", graphs = 2)
influ_physig

Influential species detection - Phylogenetic signal

Description
Performs leave-one-out deletion analysis for phylogenetic signal estimates, and detects influential species for K or lambda.

Usage
influ_physig(trait.col, data, phy, method = "K", cutoff = 2, track = TRUE, ...)

Arguments
- **trait.col**: The name of a column in the provided data frame with trait to be analyzed (e.g. "Body_mass").
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class 'phylo') matching data.
- **method**: Method to compute signal: can be "K" or "lambda".
- **cutoff**: The cutoff value used to identify for influential species (see Details)
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to phylosig

Details
This function sequentially removes one species at a time, and estimates phylogenetic signal (K or lambda) using phylosig, stores the results and detects the most influential species.

influ_physig detects influential species based on the standardised difference in signal estimate (K or lambda) when removing a given species compared to the full data estimate (with all species). Species with a standardised difference above the value of cutoff are identified as influential. The default value for the cutoff is 2 standardised differences in signal estimate.

Output can be visualised using sensi_plot.

Value
The function influ_physig returns a list with the following components:
- cutoff: The value selected for cutoff
- trait.col: Column name of the trait analysed
- full.data.estimates: Phylogenetic signal estimate (K or lambda) and the P value (for the full data).
- influential_species: List of influential species, based on standardised difference in K or lambda. Species are ordered from most influential to less influential and only include species with a standardised difference > cutoff.
influ.physig.estimates: A data frame with all simulation estimates. Each row represents a deleted species. Columns report the calculated signal estimate (k) or (λ), difference between signal estimation of the reduced and full data (Δ), the percentage of change in signal compared to the full data signal (perc) and p-value for the phylogenetic signal test (pval).

data: Original full dataset.

Note
The argument "se" from phylosig is not available in this function. Use the argument "V" instead with intra_physig to indicate the name of the column containing the standard deviation or the standard error of the trait variable instead.

Author(s)
Gustavo Paterno

References

See Also
phylosig, influ_phylm, sensi_plot

Examples

```r
Not run:
Load data:
data(alien)
Logtransform data
alien.data$logMass <- log(alien.data$adultMass)
Run sensitivity analysis:
influ <- influ_physig("logMass", data = alien.data, phy = alien.phy[[1]])
To check summary results:
summary(influ)
Most influential species
influ$influential.species
Visual diagnostics
sensi_plot(influ)
You can specify which graph to print:
sensi_plot(influ, graphs = 1)
sensi_plot(influ, graphs = 2)
```
Description

Estimate the impact on model estimates of phylogenetic logistic regression after removing clades from the analysis, while taking into account potential interactions with intraspecific variability.

Usage

```r
intra_clade_phyglm(
 formula,
 data,
 phy,
 clade.col,
 n.species = 5,
 n.sim = 100,
 n.intra = 2,
 Vx = NULL,
 distrib = "normal",
 x.transf = NULL,
 btol = 50,
 track = TRUE,
 ...
)
```

Arguments

- `formula`: The model formula
- `data`: Data frame containing species traits with row names matching tips in `phy`.
- `phy`: A phylogeny (class 'phylo') matching `data`.
- `clade.col`: The column in the provided data frame which specifies the clades (a character vector with clade names).
- `n.species`: Minimum number of species in a clade for the clade to be included in the leave-one-out deletion analysis. Default is 5.
- `n.sim`: Number of simulations for the randomization test.
- `n.intra`: Number of datasets resimulated taking into account intraspecific variation (see: "intra_phyglm")
- `Vx`: Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function rnorm). Uniform distribution: "uniform" (runif). Warning: we recommend to use normal distribution with Vx or Vy = standard deviation of the mean.

Transformation for the predictor variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).

Bound on searching space. For details see phyloglm

Print a report tracking function progress (default = TRUE)

Further arguments to be passed to phyloglm

This function sequentially removes one clade at a time, fits a phylogenetic logistic regression model using phyloglm and stores the results. The impact of of a specific clade on model estimates is calculated by the comparison between the full model (with all species) and the model without the species belonging to a clade. This operation is repeated n.intra times for simulated values of the dataset, taking into account intraspecific variation. At each iteration, the function generates a random value for each row in the dataset using the standard deviation or errors supplied, and detect the influential species within that iteration.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimate a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species in the given clade. The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.

All phylogenetic models from phyloglm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phyloglm for details.

c1ade_phyglm detects influential clades based on difference in intercept and/or slope when removing a given clade compared to the full model including all species.

Currently, this function can only implement simple logistic models (i.e. y = a + bx). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

The function intra_clade_phyglm returns a list with the following components:

formula: The formula
full.model.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for the full model without deleted species.
sensi.estimates: A data frame with all simulation estimates. Each row represents a deleted clade. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC)
and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.

null.dist: A data frame with estimates for the null distributions for all clades analysed.
data: Original full dataset.
errors: Clades and/or iterations where deletion resulted in errors.

Author(s)
Gustavo Paterno, Caterina Penone

References

See Also
phyglm, intra_phyglm, clade_phyglm, intra_clade_phyglm, sensi_plot

Examples
## Not run:
set.seed(6987)
phy = rtree(100)
x = rTrait(n=1,phy=phy,parameters=list(ancestral.state=2,optimal.value=2,sigma2=1,alpha=1))
X = cbind(rep(1,100),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7 ,X=X)
z = rnorm(n = length(x),mean = mean(x),sd = 0.1*mean(x))
cla <- rep(c("A","B","C","D"), each = 25)
dat = data.frame(y, x, z, cla)
intra_clade <- intra_clade_phyglm(formula=y ~ x, data = dat, phy = phy, clade.col = "cla", n.sim = 30, n.intra = 3, x.transf = log, Vx = "z", distrib="normal")
sensi_plot(intra_clade)
sensi_plot(intra_clade, clade = "B"); graphs = 2)
## End(Not run)
intra_clade_phylm

Usage

intra_clade_phylm(
  formula,
  data,
  phy,
  clade.col,
  n.species = 5,
  n.sim = 100,
  n.intra = 2,
  Vy = NULL,
  Vx = NULL,
  distrib = "normal",
  y.transf = NULL,
  x.transf = NULL,
  model = "lambda",
  track = TRUE,
  ...
)

Arguments

  formula The model formula
  data Data frame containing species traits with row names matching tips in phy.
  phy A phylogeny (class 'phylo') matching data.
  clade.col The column in the provided data frame which specifies the clades (a character vector with clade names).
  n.species Minimum number of species in a clade for the clade to be included in the leave-one-out deletion analysis. Default is 5.
  n.sim Number of simulations for the randomization test.
  n.intra Number of datasets resimulated taking into account intraspecific variation (see: "intra_phylm")
  Vy Name of the column containing the standard deviation or the standard error of the response variable. When information is not available for one taxon, the value can be 0 or NA.
  Vx Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
  distrib A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function rnorm). Uniform distribution: "uniform" (runif) Warning: we recommend to use normal distribution with Vx or Vy = standard deviation of the mean.
  y.transf Transformation for the response variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).
Details

This function sequentially removes one clade at a time, fits a phylogenetic linear regression model using `phylolm` and stores the results. The impact of a specific clade on model estimates is calculated by the comparison between the full model (with all species) and the model without the species belonging to a clade. This operation is repeated `n.intra` times for simulated values of the dataset, taking into account intraspecific variation. At each iteration, the function generates a random value for each row in the dataset using the standard deviation or errors supplied, and detect the influential species within that iteration.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution expected for the number of species in a given clade. This is done by fitting models without the same number of species in the given clade. The number of simulations to be performed is set by `n.sim`. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using `summary(x)`.

All phylogenetic models from `phylolm` can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See `?phylolm` for details.

`clade_phylm` detects influential clades based on difference in intercept and/or slope when removing a given clade compared to the full model including all species.

Currently, this function can only implement simple linear models (i.e. \( y = a + bx \)). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.

Value

The function `intra_clade_phylm` returns a list with the following components:

- `formula`: The formula
- `full.model.estimates`: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for the full model without deleted species.
- `sensi.estimates`: A data frame with all simulation estimates. Each row represents a deleted clade. Columns report the calculated regression intercept (`intercept`), difference between simulation intercept and full model intercept (`DIFintercept`), the percentage of change in intercept compared to the full model (`intercept.perc`) and intercept p-value (`pval.intercept`). All these parameters are also reported for the regression slope (`DIFestimate` etc.). Additionally, model aic value (`AIC`) and the optimised value (`optpar`) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.
- `null.dist`: A data frame with estimates for the null distributions for all clades analysed.
- `data`: Original full dataset.
- `errors`: Clades and/or iterations where deletion resulted in errors.
Author(s)
Gustavo Paterno, Caterina Penone

References

See Also
phylolm, intra_phylm, clade_phylm, intra_clade_phylm, sensi_plot

Examples
```r
Not run:
load data
data(alien)
 intra_clade <- intra_clade_phylm(gestaLen ~ adultMass, phy = alien$phy[[1]],
data = alien$data, clade.col = "family", n.sim = 30, n.intra = 5,
y.transf = log, x.transf = log, Vy="SD_gesta")
summary(intra_clade)
sensi_plot(intra_clade)
sensi_plot(intra_clade, clade = "Bovidae", graphs = 2)
sensi_plot(intra_clade, clade = "Mustelidae", graphs = 2)
End(Not run)
```

---

**intra_influ_phyglm**

*Interaction between intraspecific variability and influential species - Phylogenetic Logistic Regression*

Description

Performs leave-one-out deletion analysis for phylogenetic logistic regression, and detects influential species, while taking into account potential interactions with intraspecific variability.

Usage

```r
intra_influ_phyglm(
 formula,
 data,
 phy,
 Vx = NULL,
 n.intra = 30,
 x.transf = NULL,
```
Arguments

- **formula**
  The model formula: `response~predictor`.
- **data**
  Data frame containing species traits with row names matching tips in phy.
- **phy**
  A phylogeny (class 'phylo') matching data.
- **Vx**
  Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
- **n.intra**
  Number of datasets resimulated taking into account intraspecific variation (see: "intra_phylgm")
- **x.transf**
  Transformation for the predictor variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).
- **distrib**
  A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function `rnorm`). Uniform distribution: "uniform" (`runif`) Warning: we recommend to use normal distribution with Vx = standard deviation of the mean.
- **cutoff**
  The cutoff value used to identify for influential species (see Details)
- **btol**
  Bound on searching space. For details see `phyloglm`
- **track**
  Print a report tracking function progress (default = TRUE)
- **...**
  Further arguments to be passed to `phyloglm`

Details

This function fits a phylogenetic linear regression model using `phyloglm`, and detects influential species by sequentially deleting one at a time. The regression is repeated `n.intra` times for simulated values of the dataset, taking into account intraspecific variation. At each iteration, the function generates a random value for each row in the dataset using the standard deviation or errors supplied, and detect the influential species within that iteration.

`influ_phylm` detects influential species based on the standardised difference in intercept and/or slope when removing a given species compared to the full model including all species. Species with a standardised difference above the value of `cutoff` are identified as influential. The default value for the cutoff is 2 standardised differences change.

Currently, this function can only implement simple models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`. 

```r
intra_influ_phyglm

 distrib = "normal",
 cutoff = 2,
 btol = 50,
 track = TRUE,
 ...
)
```
The function `intra_influ_phylm` returns a list with the following components:

- `cutoff`: The value selected for cutoff
- `formula`: The formula
- `full.model.estimates`: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for the full model without deleted species.
- `influential_species`: List of influential species, both based on standardised difference in intercept and in the slope of the regression. Species are ordered from most influential to less influential and only include species with a standardised difference > cutoff.
- `sensi.estimates`: A data frame with all simulation estimates. Each row represents a deleted clade for an iteration of resimulated data. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the standardised difference (sDIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.
- `data`: Original full dataset.
- `errors`: Species where deletion resulted in errors.

**Warning**

When Vx exceeds X negative (or null) values can be generated, this might cause problems for data transformation (e.g. log-transformation). In these cases, the function will skip the simulation. This problem can be solved by increasing `n.intra`, changing the transformation type and/or checking the target species in `output$sp.pb`.

Setting `n.intra` at high values can take a long time to execute, since the total number of iterations equals `n.intra * nrow(data)`.

**Author(s)**

Gustavo Paterno, Caterina Penone & Gijsbert D.A. Werner

**References**


**See Also**

`phylolm, intra_phyglm, influ_phyglm,intra_influ_phylm,sensi_plot`
Examples

```r
Not run:
Generate data
set.seed(6987)
phy = rtree(100)
x = rTrait(n=1,phy=phy,parameters=list(ancestral.state=2,optimal.value=2,sigma2=1,alpha=1))
X = cbind(rep(1,100),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7 ,X=X)
z = rnorm(n = length(x),mean = mean(x),sd = 0.1*mean(x))
dat = data.frame(y, x, z)
Run sensitivity analysis:
intra_influ <- intra_influ_phyglm(formula = y ~ x, data = dat, phy = phy,
 Vx = "z", n.intra = 5,track = TRUE,distrib="normal",x.transf=NULL)
To check summary results and most influential species:
summary(intra_influ)
Visual diagnostics for clade removal:
sensi_plot(intra_influ)
```

## End(Not run)

---

**intra_influ_phyglm**

*Interaction between intraspecific variability and influential species - Phylogenetic Linear Regression*

**Description**

Performs leave-one-out deletion analysis for phylogenetic linear regression, and detects influential species, while taking into account potential interactions with intraspecific variability.

**Usage**

```r
intra_influ_phyglm(
 formula, # Required
 data, # Required
 phy, # Required
 Vy = NULL, # Required
 Vx = NULL, # Required
 y.transf = NULL, # Required
 x.transf = NULL, # Required
 n.intra = 10, # Default value: 5
 distrib = "normal", # Default value: "normal"
 model = "lambda", # Default value: "lambda"
 cutoff = 2, # Default value: 2
 track = TRUE, # Default value: TRUE
 ... # Additional arguments
)
```
Arguments

- **formula**: The model formula: response~predictor.
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class 'phylo') matching data.
- **Vy**: Name of the column containing the standard deviation or the standard error of the response variable. When information is not available for one taxon, the value can be 0 or NA.
- **Vx**: Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
- **y.transf**: Transformation for the response variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).
- **x.transf**: Transformation for the predictor variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).
- **n.intra**: Number of datasets resimulated taking into account intraspecific variation (see: "intra_phylm")
- **distrib**: A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function rnorm). Uniform distribution: "uniform" (runif) Warning: we recommend to use normal distribution with Vx or Vy = standard deviation of the mean.
- **model**: The phylogenetic model to use (see Details). Default is lambda.
- **cutoff**: The cutoff value used to identify for influential species (see Details)
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to phylolm

Details

This function fits a phylogenetic linear regression model using phylolm, and detects influential species by sequentially deleting one at a time. The regression is repeated n.intra times for simulated values of the dataset, taking into account intraspecific variation. At each iteration, the function generates a random value for each row in the dataset using the standard deviation or errors supplied, and detect the influential species within that iteration.

All phylogenetic models from phylolm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

influ_phylm detects influential species based on the standardised difference in intercept and/or slope when removing a given species compared to the full model including all species. Species with a standardised difference above the value of cutoff are identified as influential. The default value for the cutoff is 2 standardised differences change.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.
**Value**

The function `intra_influ_phylm` returns a list with the following components:

- **cutoff**: The value selected for cutoff
- **formula**: The formula
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for the full model without deleted species.
- **influential_species**: List of influential species, both based on standardised difference in intercept and in the slope of the regression. Species are ordered from most influential to less influential and only include species with a standardised difference > cutoff.
- **sensi.estimates**: A data frame with all simulation estimates. Each row represents a deleted clade for an iteration of resimulated data. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the standardised difference (sDIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.
- **data**: Original full dataset.
- **errors**: Species where deletion resulted in errors.

**Warning**

When Vy or Vx exceed Y or X, respectively, negative (or null) values can be generated, this might cause problems for data transformation (e.g. log-transformation). In these cases, the function will skip the simulation.

Setting `n.intra` at high values can take a long time to execute, since the total number of iterations equals `n.intra * nrow(data)`.

**Author(s)**

Gustavo Paterno, Caterina Penone & Gijsbert D.A. Werner

**References**


**See Also**

`phylolm, intra_phylm, influ_phylm, intra_influ_phyglm, sensi_plot`. 
Examples

```r
Not run:
Load data:
data(alien)
run analysis:
intra_influ <- intra_influ_phylm(formula = gestaLen ~ adultMass, phy = alien$phy[[1]],
data=alien$data,model="lambda",y.transf = log,x.transf = NULL,Vy="SD_gesta",Vx=NULL,
n.intra=30,distrib = "normal")
summary(intra_influ)
sensi_plot(intra_influ)

End(Not run)
```

### Description

Performs Phylogenetic logistic regression evaluating intraspecific variability in predictor variables.

### Usage

```r
intra_phyglm(
 formula,
 data,
 phy,
 Vx = NULL,
 n.intra = 30,
 x.transf = NULL,
 distrib = "normal",
 btol = 50,
 track = TRUE,
 ...
)
```

### Arguments

- `formula`: The model formula: `response~predictor`.
- `data`: Data frame containing species traits with species as row names.
- `phy`: A phylogeny (class 'phylo', see ?ape).
- `Vx`: Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
- `n.intra`: Number of times to repeat the analysis generating a random value for the predictor variable. If NULL, `n.intra = 2`
x.transf Transformation for the predictor variable (e.g. log or sqrt). Please use this argument instead of transforming data in the formula directly (see also details below).

distrib A character string indicating which distribution to use to generate a random value for the predictor variable. Default is normal distribution: "normal" (function rnorm). Uniform distribution: "uniform" (runif). Warning: we recommend to use normal distribution with Vx = standard deviation of the mean.

btol Bound on searching space. For details see phyloglm

track Print a report tracking function progress (default = TRUE)

Details

This function fits a phylogenetic logistic regression model using phyloglm. The regression is repeated n.intra times. At each iteration the function generates a random value for each row in the dataset using the standard deviation or error supplied and assuming a normal or uniform distribution. To calculate means and se for your raw data, you can use the summarySE function from the package Rmisc.

All phylogenetic models from phyloglm can be used, i.e. BM, OUnfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phyloglm for details.

Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value

The function intra_phyglm returns a list with the following components:

formuila: The formula
data: Original full dataset

sensi.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for each regression.

N.obs: Size of the dataset after matching it with tree tips and removing NA’s.

stats: Main statistics for model parameters. CI_low and CI_high are the lower and upper limits of the 95%

all.stats: Complete statistics for model parameters. sd_intra is the standard deviation due to intraspecific variation. CI_low and CI_high are the lower and upper limits of the 95%

sp.pb: Species that caused problems with data transformation (see details above).

Warning

When Vx exceeds X negative (or null) values can be generated, this might cause problems for data transformation (e.g. log-transformation). In these cases, the function will skip the simulation. This problem can be solved by increasing n.intra, changing the transformation type and/or checking the target species in output$sp.pb.
Author(s)
Caterina Penone & Pablo Ariel Martinez

References


See Also
phyloglm, sensi_plot

Examples

# Simulate Data:
set.seed(6987)
phy = rtree(150)
x = rTrait(n=1,phy=phy)
x_sd = rnorm(150,mean = 0.8,sd=0.2)
X = cbind(rep(1,150),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7 ,X=X)
dat = data.frame(y, x, x_sd)

# Run phylogenetic logistic regression accounting for intraspecific variation:
intra_glm <- intra_phyglm(y~x,Vx = "x_sd",data = dat,phy=phy,distrib = "normal")

#Print summary of sensitivity analysis
summary(intra_glm)
head(intra_glm$sensi.estimates)
#Visual output
sensi_plot(intra_glm)
**intra_phylm**

**Usage**

```r
intra_phylm(
 formula,
 data,
 phy,
 Vy = NULL,
 Vx = NULL,
 y.transf = NULL,
 x.transf = NULL,
 n.intra = 30,
 distrib = "normal",
 model = "lambda",
 track = TRUE,
 ...)
```

**Arguments**

- **formula**: The model formula: `response~predictor`.
- **data**: Data frame containing species traits and species names as row names.
- **phy**: A phylogeny (class 'phylo', see `ape`).
- **Vy**: Name of the column containing the standard deviation or the standard error of the response variable. When information is not available for one taxon, the value can be 0 or NA.
- **Vx**: Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
- **y.transf**: Transformation for the response variable (e.g. log or sqrt). Please use this argument instead of transforming data in the formula directly (see also details below).
- **x.transf**: Transformation for the predictor variable (e.g. log or sqrt). Please use this argument instead of transforming data in the formula directly (see also details below).
- **n.intra**: Number of times to repeat the analysis generating a random value for response and/or predictor variables. If NULL, `n.intra = 30`.
- **distrib**: A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function `rnorm`). Uniform distribution: "uniform" (`runif`) Warning: we recommend to use normal distribution with Vx or Vy = standard deviation of the mean.
- **model**: The phylogenetic model to use (see Details). Default is `lambda`.
- **track**: Print a report tracking function progress (default = TRUE).
- **...**: Further arguments to be passed to `phylolm`
Details
This function fits a phylogenetic linear regression model using `phylolm`. The regression is repeated `n.intra` times. At each iteration the function generates a random value for each row in the dataset using the standard deviation or errors supplied and assuming a normal or uniform distribution. To calculate means and se for your raw data, you can use the `summarySE` function from the package `Rmisc`.

# All phylogenetic models from phylolm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.

Value
The function `intra_phylm` returns a list with the following components:

- `formula`: The formula
- `data`: Original full dataset
- `sensi.estimates`: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for each regression.
- `N.obs`: Size of the dataset after matching it with tree tips and removing NA's.
- `stats`: Main statistics for model parameters. CI_low and CI_high are the lower and upper limits of the 95% confidence intervals.
- `all.stats`: Complete statistics for model parameters. sd_intra is the standard deviation due to intraspecific variation. CI_low and CI_high are the lower and upper limits of the 95% confidence intervals.
- `sp.pb`: Species that caused problems with data transformation (see details above).

Warning
When Vy or Vx exceed Y or X, respectively, negative (or null) values can be generated, this might cause problems for data transformation (e.g. log-transformation). In these cases, the function will skip the simulation. This problem can be solved by increasing `n.intra`, changing the transformation type and/or checking the target species in output$sp.pb.

Author(s)
Caterina Penone & Pablo Ariel Martinez

References


See Also

`phylolm`, `sensi_plot`

Examples

```r
Load data:
data(alien)
run PGLS accounting for intraspecific variation:
intra <- intra_phylm(gestaLen ~ adultMass, y.transf = log, x.transf = log,
phy = alien$phy[[1]], data = alien$data, Vy = "SD_gesta", n.intra = 30)
To check summary results:
summary(intra)
Visual diagnostics
sensi_plot(intra)
```

---

### intra_physig

#### Intraspecific variability - Phylogenetic signal

Description

Performs Phylogenetic signal estimates evaluating trait intraspecific variability

Usage

```r
intra_physig(
 trait.col,
 data,
 phy,
 V = NULL,
 n.intra = 100,
 distrib = "normal",
 method = "K",
 track = TRUE
)
```

Arguments

- **trait.col**: The name of a column in the provided data frame with trait to be analyzed (e.g. "Body_mass").
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class 'phylo', see ?ape).
- **V**: Name of the column containing the standard deviation or the standard error of the trait variable. When information is not available for one taxon, the value can be 0 or NA.
- **n.intra**: Number of times to repeat the analysis generating a random trait value. If NULL, `n.intra = 30`
distrib  A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function \texttt{rnorm}). Uniform distribution: "uniform" (\texttt{runif}) Warning: we recommend to use normal distribution with Vx or Vy = standard deviation of the mean.

method  Method to compute signal: can be "K" or "lambda".

track  Print a report tracking function progress (default = TRUE)

Details

This function estimates phylogenetic signal using \texttt{phylosig}. The analysis is repeated \texttt{n.intra} times. At each iteration the function generates a random value for each row in the dataset using the standard deviation or errors supplied and assuming a normal or uniform distribution. To calculate means and se for your raw data, you can use the \texttt{summarySE} function from the package \texttt{Rmisc}.

Output can be visualised using \texttt{sensi_plot}.

Value

The function \texttt{intraophysig} returns a list with the following components:

- Trait: Column name of the trait analysed
- data: Original full dataset
- intra.physig.estimates: Run number, phylogenetic signal estimate (lambda or K) and the p-value for each run with a different simulated dataset.
- N.obs: Size of the dataset after matching it with tree tips and removing NA’s.
- stats: Main statistics for signal estimate\texttt{CI_low} and \texttt{CI_high} are the lower and upper limits of the 95

Note

The argument "se" from \texttt{phylosig} is not available in this function. Use the argument "V" instead with \texttt{intraophysig} to indicate the name of the column containing the standard deviation or the standard error of the trait variable instead.

Author(s)

Caterina Penone & Pablo Ariel Martinez & Gustavo Paterno

References


See Also

phylosig, sensi_plot

Examples

## Not run:
data(alien)
alien.data<-alien$data
alien.phy<-alien$phy
# Run sensitivity analysis:
intra <- intra_physig(trait.col = "gestaLen", V = "SD_gesta",
data = alien.data, phy = alien.phy[[1]])
summary(intra)
sensi_plot(intra)
sensi_plot(intra, graphs = 1)
sensi_plot(intra, graphs = 2)
## End(Not run)

intra_samp_phyglm

Interaction between intraspecific variability and species sampling -
Phylogenetic Logistic Regression

Description

Performs analyses of sensitivity to species sampling by randomly removing species and detecting
the effects on parameter estimates in a phylogenetic logistic regression, while taking into account
potential interactions with intraspecific variability.

Usage

intra_samp_phyglm(
  formula,
  data,
  phy,
  n.sim = 10,
  n.intra = 3,
  breaks = seq(0.1, 0.5, 0.1),
  btol = 50,
  Vx = NULL,
  distrib = "normal",
)
Arguments

**formula**
The model formula

**data**
Data frame containing species traits with row names matching tips in phy.

**phy**
A phylogeny (class 'phylo') matching data.

**n.sim**
The number of times species are randomly deleted for each break.

**n.intra**
Number of datasets resimulated taking into account intraspecific variation (see: "intra_phyglm")

**breaks**
A vector containing the percentages of species to remove.

**btol**
Bound on searching space. For details see phyglom

**Vx**
Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA

**distrib**
A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function rnorm). Uniform distribution: "uniform" (runif) Warning: we recommend to use normal distribution with Vx = standard deviation of the mean.

**x.transf**
Transformation for the predictor variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).

**track**
Print a report tracking function progress (default = TRUE)

**...**
Further arguments to be passed to phyglom

Details

This function randomly removes a given percentage of species (controlled by breaks) from the full phylogenetic logistic regression, fits a phylogenetic logistic regression model without these species using phylolm, repeats this many times (controlled by n.sim), stores the results and calculates the effects on model parameters. This operation is repeated n.intra times for simulated values of the dataset, taking into account intraspecific variation. At each iteration, the function generates a random value for each row in the dataset using the standard deviation or errors supplied, and evaluates the effects of sampling within that iteration.

All phylogenetic models from phylolm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.
The function `samp_phyglm` returns a list with the following components:

- **formula**: The formula
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda or kappa) for the full model without deleted species.
- **sensi.estimates**: A data frame with all simulation estimates. Each row represents a model run with a given number of species `n.remov` removed, representing `n.percent` of the full dataset. Columns report the calculated regression intercept (`intercept`), difference between simulation intercept and full model intercept (`DIFintercept`), the percentage of change in intercept compared to the full model (`intercept.perc`) and intercept p-value (`pval.intercept`). All these parameters are also reported for the regression slope (`DIFestimate` etc.). Additionally, model aic value (`AIC`) and the optimised value (`optpar`) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported. Lastly we reported the standardised difference in intercept (`sDIFintercept`) and slope (`sDIFestimate`).
- **sign.analysis**: For each break (i.e. each percentage of species removed) this reports the percentage of statistically significant (at p<0.05) intercepts (`perc.sign.intercept`) over all repetitions as well as the percentage of statistically significant (at p<0.05) slopes (`perc.sign.estimate`).
- **data**: Original full dataset.

**Note**

Please be aware that dropping species may reduce power to detect significant slopes/intercepts and may partially be responsible for a potential effect of species removal on p-values. Please also consult standardised differences in the (summary) output.

**Author(s)**

Gustavo Paterno, Gijsbert D.A. Werner & Caterina Penone

**References**


**See Also**

`phylolm, samp_phyglm, intra_phyglm, intra_samp_phylm, sensi_plot`
Examples

```r
set.seed(6987)
phy = rtree(100)
x = rTrait(n=1,phy=phy,parameters=list(ancestral.state=2,optimal.value=2,sigma2=1, alpha=1))
X = cbind(rep(1,100),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7 ,X=X)
z = rnorm(n = length(x),mean = mean(x),sd = 0.1*mean(x))
dat = data.frame(y, x, z)
#Run sensitivity analysis:
intra_samp <- intra_samp_phyglm(formula = y ~ x, data = dat, phy = phy,
 n.sim=10, n.intra = 3,
 breaks=seq(.1,.5,.1),
 Vx = "z", distrib="normal", x.transf=NULL)
summary(intra_samp)
sensi_plot(intra_samp)
```

---

**intra_samp_phylm**

Interaction between intraspecific variability and species sampling - Phylogenetic Linear Regression

**Description**

Performs analyses of sensitivity to species sampling by randomly removing species and detecting the effects on parameter estimates in a phylogenetic linear regression, while taking into account potential interactions with intraspecific variability.

**Usage**

```r
intra_samp_phylm(
 formula,
 data,
 phy,
 n.sim = 10,
 n.intra = 3,
 breaks = seq(0.1, 0.5, 0.1),
 model = "lambda",
 Vy = NULL,
 Vx = NULL,
 distrib = "normal",
 y.transf = NULL,
 x.transf = NULL,
 track = TRUE,
 ...
)
```
Arguments

- **formula**: The model formula.
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class 'phylo') matching data.
- **n.sim**: The number of times species are randomly deleted for each break.
- **n.intra**: Number of datasets resimulated taking into account intraspecific variation (see: "intra_phylm")
- **breaks**: A vector containing the percentages of species to remove.
- **model**: The phylogenetic model to use (see Details). Default is lambda. 
- **Vy**: Name of the column containing the standard deviation or the standard error of the response variable. When information is not available for one taxon, the value can be 0 or NA.
- **Vx**: Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
- **distrib**: A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function \texttt{rnorm}). Uniform distribution: "uniform" (\texttt{runif}). Warning: we recommend to use normal distribution with Vx or Vy = standard deviation of the mean.
- **y.transf**: Transformation for the response variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).
- **x.transf**: Transformation for the predictor variable (e.g. "log" or "sqrt"). Please use this argument instead of transforming data in the formula directly (see also details below).
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to phylolm

Details

This function randomly removes a given percentage of species (controlled by breaks) from the full phylogenetic linear regression, fits a phylogenetic linear regression model without these species using \texttt{phylolm}, repeats this many times (controlled by \texttt{n.sim}), stores the results and calculates the effects on model parameters. This operation is repeated \texttt{n.intra} times for simulated values of the dataset, taking into account intraspecific variation. At each iteration, the function generates a random value for each row in the dataset using the standard deviation or errors supplied, and evaluates the effects of sampling within that iteration.

All phylogenetic models from \texttt{phylolm} can be used, i.e. BM, OUpfixedRoot, OUrrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.
Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

**Value**

The function samp_phylm returns a list with the following components:

- **formula**: The formula
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda or kappa) for the full model without deleted species.
- **sensi.estimates**: A data frame with all simulation estimates. Each row represents a model rerun with a given number of species n.remov removed, representing n.percent of the full dataset. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported. Lastly we reported the standardised difference in intercept (sDIFintercept) and slope (sDIFestimate).
- **sign.analysis**: For each break (i.e. each percentage of species removed) this reports the percentage of statistically significant (at p<0.05) intercepts (perc.sign.intercept) over all repetitions as well as the percentage of statistically significant (at p<0.05) slopes (perc.sign.estimate).
- **data**: Original full dataset.

**Note**

Please be aware that dropping species may reduce power to detect significant slopes/intercepts and may partially be responsible for a potential effect of species removal on p-values. Please also consult standardised differences in the (summary) output.

**Author(s)**

Gustavo Paterno, Gijsbert D.A. Werner & Caterina Penone

**References**


**See Also**

phyolm, samp_phylm, intra_phylm, intra_samp_phyglm, sensi_plot
Examples

```r
Not run:
Load data:
data(alien)
Run analysis:
samp <- intra_samp_phylm(gestaLen ~ adultMass, phy = alien$phy[[1]],
 y.transf = log, x.transf = NULL, Vy = "SD_gesta", Vx = NULL,
 data = alien$data, n.intra = 5, n.sim = 10)
summary(samp)
head(samp$sensi.estimates)
Visual diagnostics
sensi_plot(samp)
You can specify which graph and parameter ("estimate" or "intercept") to print:
sensi_plot(samp, graphs = 1)
sensi_plot(samp, graphs = 2)
End(Not run)
```

match_dataphy

### Match data and phylogeny based on model formula

#### Description

Combines phylogeny and data to ensure that tips in phylogeny match data and that observations with missing values are removed. This function uses variables provided in the ‘formula’ argument to:

- Remove NA’s: Check if there is any row with NA in the variables included in the formula. All rows containing NA will be removed from the data.
- Match data and phy: Check if tips from phylogeny match rownames in data. Tips not present in data and phy will be removed from the phylogeny and data.
- Return matched data and phy: The returned data has no NA in the variables included in ‘formula’ and only rows that match phylogeny tips. Returned phy has only tips that match data.

Used internally in `samp_phylm, samp_phyglm, clade_phylm, clade_phyglm, intra_phylm, intra_phyglm, tree_phylm, tree_phyglm` and all function analysing interactions. Users can also directly use this function to combine a phylogeny and a dataset.

#### Usage

```r
match_dataphy(formula, data, phy, verbose = TRUE, ...)
```

#### Arguments

- **formula**: The model formula
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class ‘phylo’ or ‘multiphylo’)

verbose Print the number of species that match data and phylogeny and warnings. We highly recommend to use the default (verbose = T), but warning and information can be silenced for advanced use.

Further arguments to be passed to match_dataphy

Details

This function uses all variables provided in the ‘formula’ to match data and phylogeny. To avoid cropping the full dataset, ‘match_dataphy‘ searches for NA values only on variables provided by formula. Missing values on other variables, not included in ‘formula’, will not be removed from data. If no species names are provided as row names in the dataset but the number of rows in the dataset is the same as the number of tips in the phylogeny, the function assumes that the dataset and the phylogeny are in the same order.

This ensures consistency between data and phylogeny only for the variables that are being used in the model (set by ‘formula’).

If phy is a ‘multiphylo’ object, all phylogenies will be cropped to match data. But the dataset order will only match the first tree provided. The returned phylogeny will be a ‘multiphylo’ object.

Value

The function match_dataphy returns a list with the following components:

data: Cropped dataset matching phylogeny
phy: Cropped phylogeny matching data
dropped: Species dropped from phylogeny and removed from data.

Note

If tips are removed from the phylogeny and data or if rows containing missing values are removed from data, a message will be printed with the details. Further, the final number of species that match data and phy will always be reported by a message.

Author(s)

Caterina Penone & Gustavo Paterno

References

This function is largely inspired by the function comparative.data in caper package David Orme, Rob Freckleton, Gavin Thomas, Thomas Petzoldt, Susanne Fritz, Nick Isaac and Will Pearse (2013). caper: Comparative Analyses of Phylogenetics and Evolution in R. R package version 0.5.2. http://CRAN.R-project.org/package=caper

Examples

# Load data:
data(alien)
head(alien$data)
# Match data and phy based on model formula:
comp.data <- match_dataphy(gestaLen ~ homeRange, data = alien$data, alien$phy[[1]])
# Check data:
head(comp.data$data)
# Check phy:
comp.data$phy
# See species dropped from phy or data:
comp.data$dropped
# Example2:
# Match data and phy based on model formula:
comp.data2 <- match_dataphy(gestaLen ~ adultMass, data = alien$data, alien$phy)
# Check data (missing data on variables not included in the formula are preserved)
head(comp.data2$data)
# Check phy:
comp.data2$phy
# See species dropped from phy or data:
comp.data2$dropped

---

miss.phylo.d  

**Phylogenetic signal in missing data**

**Description**

Calculates D statistic (Fritz & Purvis 2010), a measure of phylogenetic signal, for missing data. Missingness is recoded into a binary variable (1=missing, 0=non missing). This function is an adaptation of `phylo.d` for missing data.

**Usage**

`miss.phylo.d(data, phy, ...)`

**Arguments**

- `data`  
  Data frame containing species traits with species as row names.

- `phy`  
  A phylogeny (class `phylo`, see `?ape`).

- `...`  
  Further arguments to be passed to `phylo.d`.

**Details**

This function builds on `phylo.d` to calculate a phylogenetic signal in missing data. The variable of interest, usually a trait, is recoded into a binary variable (1=missing data, 0=non missing data). Then the `phylo.d` function tests the estimated D value for significant departure from both random association and the clumping expected under a Brownian evolution threshold model (Fritz & Purvis, 2010).

Output can be visualised using `print()` and `plot()`
Value

The function `miss.phylo.d` returns an object of class "phylo.d" with the following components, for complete list of arguments see `phylo.d`:

- DEstimate: The estimated D value
- Pval1: A p value, giving the result of testing whether D is significantly different from one
- Pval0: A p value, giving the result of testing whether D is significantly different from zero

The function also prints the percentage of missing data per variable in the dataset.

Author(s)

Caterina Penone & Gustavo Paterno

References


Examples

```r
Load caper:
library(caper)
Load data
data(primates)
data<-alien$data
phy=alien$phy[[1]]

Test phylogenetic signal for missing data:
sexNAsig <- miss.phylo.d(data,phy,binvar=homeRange)
print(sexNAsig)
plot(sexNAsig)

massNAsig <- miss.phylo.d(data,phy,binvar=adultMass)
print(massNAsig)
plot(massNAsig)
```

---

`primates`  
*Primates dataset: Example dataset for the package sensiPhy*
Description

A comparative dataset containing traits for 95 Primates species (primates.data) and a multiphylo object with 101 phylogenies matching the data (primates.phy). Tip labels are the binomial species names and match with data rownames. Data was taken from (Jones et al. 2009) and phylogenies from (Fritz et al 2009) and (Kuhn et al 2011).

Usage

data(primates)

Format

A data frame with 95 rows and 3 variables:

- family: Taxonomic family
- adultMass: Mean adult body mass (g)
- sexMaturity: Age when individuals are first physically capable of reproducing (days)
- homeRange: Mean home range (km)

References

Data downloaded from: http://esapubs.org/archive/ecol/E090/184/


Format

A data frame with 95 rows and 3 variables:

- family: Taxonomic family
- adultMass: Mean adult body mass (g)
- sexMaturity: Age when individuals are first physically capable of reproducing (days)
- homeRange: Mean home range (km)

References

Data downloaded from: http://esapubs.org/archive/ecol/E090/184/


Description

A comparative dataset containing traits for 95 Primates species (primates.data) and a multiphylo object with 101 phylogenies matching the data (primates.phy). Tip labels are the binomial species names and match with data rownames. Data was taken from (Jones et al. 2009) and phylogenies from (Fritz et al 2009) and (Kuhn et al 2011).

Usage

data(primates)

Format

A data frame with 95 rows and 3 variables:

- family: Taxonomic family
- adultMass: Mean adult body mass (g)
- sexMaturity: Age when individuals are first physically capable of reproducing (days)
- homeRange: Mean home range (km)
References

Data downloaded from: http://esapubs.org/archive/ecol/E090/184/


samp_continuous  
Species Sampling uncertainty - Trait Evolution Continuous Characters

Description

Fits models for trait evolution of continuous characters, evaluating sampling uncertainty.

Usage

samp_continuous(
  data,  
  phy,  
  n.sim = 30,  
  breaks = seq(0.1, 0.5, 0.1),  
  model,  
  n.cores = NULL,  
  bounds = list(),  
  track = TRUE,  
  ...  
)

Arguments

data Data vector for a single binary trait, with names matching tips in phy.
phy A phylogeny (class 'phylo') matching data.
n.sim The number of times species are randomly deleted for each break.
breaks A vector containing the percentages of species to remove.
model The evolutionary model (see Details).
n.cores number of cores to use. If 'NULL', number of cores is detected.
bounds settings to constrain parameter estimates. See fitContinuous
track Print a report tracking function progress (default = TRUE)
... Further arguments to be passed to fitContinuous
Details

This function randomly removes a given percentage of species (controlled by `breaks`), fits different models of continuous character evolution using `fitContinuous`, repeats this this many times (controlled by `n.sim`), stores the results and calculates the effects on model parameters.

Different evolutionary models from `fitContinuous` can be used, i.e. BM, OU, EB, trend, lambda, kappa, delta and drift.

See `fitContinuous` for more details on character models and tree transformations.

Output can be visualised using `sensi_plot`.

Value

The function `tree_continuous` returns a list with the following components:

call: The function call

data: The original full data vector

optpar: Transformation parameter used (e.g. lambda, kappa etc.)

full.model.estimates: Parameter estimates (rate of evolution sigsq and where applicable optpar), root state z0, AICc for the full model without deleted species.

break.summary.tab: Summary per break of the mean and median effects of species removal on percentage and absolute change parameter estimates.

sensi.estimates: Parameter estimates (sigsq and optpar),(percentual) difference in parameter estimate compared to the full model (DIFsigsq, sigsq.perc,sDIFsigsq, DIFoptpar, optpar.perc,sDIFoptpar), AICc and z0 for each repeat with random species removed.

optpar: Transformation parameter used (e.g. lambda, kappa etc.)

Author(s)

Gijsbert Werner & Gustavo Paterno

References


See Also

`fitContinuous`
samp_discrete

Species Sampling uncertainty - Trait Evolution Discrete Characters

Description

Fits models for trait evolution of discrete (binary) characters, evaluating sampling uncertainty.

Usage

samp_discrete(
  data,
  phy,
  n.sim = 30,
  breaks = seq(0.1, 0.5, 0.1),
  model,
  transform = "none",
  bounds = list(),
  n.cores = NULL,
  track = TRUE,
  ...
)
Arguments

data: Data vector for a single binary trait, with names matching tips in phy.
phy: A phylogeny (class 'phylo') matching data.
n.sim: The number of times species are randomly deleted for each break.
breaks: A vector containing the percentages of species to remove.
model: The Mkn model to use (see Details).
transform: The evolutionary model to transform the tree (see Details). Default is none.
bounds: settings to constrain parameter estimates. See fitDiscrete
n.cores: number of cores to use. If 'NULL', number of cores is detected.
track: Print a report tracking function progress (default = TRUE)
...
Further arguments to be passed to fitDiscrete

Details

This function randomly removes a given percentage of species (controlled by breaks), fits different models of discrete character evolution using fitDiscrete, repeats this this many times (controlled by n.sim), stores the results and calculates the effects on model parameters. Currently, only binary discrete traits are supported.

Different character model from fitDiscrete can be used, including ER (equal-rates), SYM (symmetric), ARD (all-rates-different) and meristic (stepwise fashion).

Transformations to the phylogenetic tree from fitDiscrete can be used, i.e. none, EB, lambda, kappa and delta.

See fitDiscrete for more details on character models and tree transformations.

Output can be visualised using sensi_plot.

Value

The function tree_discrete returns a list with the following components:
call: The function call
data: The original full data vector
optpar: Transformation parameter used (e.g. lambda, kappa etc.)
full.model.estimates: Parameter estimates (transition rates q12 and q21), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for the full model without deleted species.
break.summary.tab: Summary per break of the mean and median effects of species removal on percentage and absolute change in parameters q12 and q21.
sensi.estimates: Parameter estimates (transition rates q12 and q21), (percentual) difference in parameter estimate compared to the full model (DIFq12, sigsq.q12,sDIFq12, DIFq21, optpar.q21,sDIFq21), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for each analysis with a species deleted.
optpar: Transformation parameter used (e.g. lambda, kappa etc.)
Author(s)

Gijsbert Werner & Gustavo Paterno

References


See Also

fitDiscrete

Examples

```r
Not run:
#Load data:
data("primates")
#Create a binary trait factor
daultMass_binary<-ifelse(primates$data$adultMass > 7350, "big", "small")
daultMass_binary<-as.factor(as.factor(adultMass_binary))
names(adultMass_binary)<-rownames(primates$data)
#Model trait evolution accounting for sampling size
tsamp_binary<-samp_discrete(data = adultMass_binary, phy = primates$phy[1],
 n.sim=25,breaks=seq(.1,.3,.1),model = "SYM",transform = "none",n.cores = 2,track = TRUE)
#Print summary statistics
summary(samp_binary)
sensi_plot(samp_binary)
sensi_plot(samp_binary,graphs=1)
sensi_plot(samp_binary,graphs=2)
#Use a different evolutionary model or transformation
tsamp_binary2<-samp_discrete(data = adultMass_binary, phy = primates$phy[1],
 n.sim=25,breaks=seq(.1,.3,.1),model = "ARD",transform = "lambda",n.cores = 2,track = TRUE)
sensi_plot(samp_binary2)
sensi_plot(samp_binary2,graphs=1)
sensi_plot(samp_binary2,graphs=3)
End(Not run)
```
**Description**

Performs analyses of sensitivity to species sampling by randomly removing species and detecting the effects on parameter estimates in phylogenetic logistic regression.

**Usage**

```r
samp_phyglm(
 formula,
 data,
 phy,
 n.sim = 30,
 breaks = seq(0.1, 0.5, 0.1),
 btol = 50,
 track = TRUE,
 ...
)
```

**Arguments**

- `formula`: The model formula
- `data`: Data frame containing species traits with row names matching tips in `phy`.
- `phy`: A phylogeny (class 'phylo') matching `data`.
- `n.sim`: The number of times species are randomly deleted for each break.
- `breaks`: A vector containing the percentages of species to remove.
- `btol`: Bound on searching space. For details see `phyloglm`.
- `track`: Print a report tracking function progress (default = TRUE)
- `...`: Further arguments to be passed to `phyloglm`.

**Details**

This function randomly removes a given percentage of species (controlled by `breaks`) from the full phylogenetic logistic regression, fits a phylogenetic logistic regression model without these species using `phyloglm`, repeats this many times (controlled by `n.sim`), stores the results and calculates the effects on model parameters.

Only logistic regression using the "logistic_MPLE"-method from `phyloglm` is implemented. Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.
The function `samp_phyglm` returns a list with the following components:

- **formula**: The formula
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda or kappa) for the full model without deleted species.
- **sensi.estimates**: A data frame with all simulation estimates. Each row represents a model re-run with a given number of species `n.remov` removed, representing `n.percent` of the full dataset. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported. Lastly we reported the standardised difference in intercept (sDIFintercept) and slope (sDIFestimate).
- **sign.analysis**: For each break (i.e. each percentage of species removed) this reports the percentage of statistically significant (at p<0.05) intercepts (perc.sign.intercept) over all repetitions as well as the percentage of statistically significant (at p<0.05) slopes (perc.sign.estimate).
- **data**: Original full dataset.

Please be aware that dropping species may reduce power to detect significant slopes/intercepts and may partially be responsible for a potential effect of species removal on p-values. Please also consult standardised differences in the (summary) output.

**Author(s)**

Gustavo Paterno & Gijsbert D.A. Werner

**References**


**See Also**

`phyloglm`, `samp_phyglm`, `influ_phyglm`, `sensi_plot`
Examples

```r
Simulate Data:
set.seed(6987)
phy = rtree(100)
x = rTrait(n=1,phy=phy)
X = cbind(rep(1,100),x)
y = rbinTrait(n=1,phy=phy, beta=c(-1,0.5), alpha=.7 ,X=X)
dat = data.frame(y, x)

Run sensitivity analysis:
samp <- samp_phyglm(y ~ x, data = dat, phy = phy, n.sim = 10)
To check summary results and most influential species:
summary(samp)
```

## Not run:

# Visual diagnostics for clade removal:
sensi_plot(samp)

## End(Not run)

---

`samp_phylm` *(Sensitivity Analysis Species Sampling - Phylogenetic Linear Regression)*

### Description

Performs analyses of sensitivity to species sampling by randomly removing species and detecting the effects on parameter estimates in a phylogenetic linear regression.

### Usage

```r
samp_phylm(
 formula, # The model formula
 data, # Data frame containing species traits with row names matching tips in phy.
 phy, # A phylogeny (class 'phylo') matching data.
 n.sim = 30, # The number of times species are randomly deleted for each break.
 breaks = seq(0.1, 0.5, 0.1), # A vector containing the percentages of species to remove.
 model = "lambda", # The model to use.
 track = TRUE, # Whether to track the parameter estimates for each removal.
 ... # Other control parameters.
)
```

### Arguments

- `formula`: The model formula.
- `data`: Data frame containing species traits with row names matching tips in phy.
- `phy`: A phylogeny (class 'phylo') matching data.
- `n.sim`: The number of times species are randomly deleted for each break.
- `breaks`: A vector containing the percentages of species to remove.
The phylogenetic model to use (see Details). Default is lambda.

Print a report tracking function progress (default = TRUE)

Further arguments to be passed to phylolm

Details

This function randomly removes a given percentage of species (controlled by breaks) from the full phylogenetic linear regression, fits a phylogenetic linear regression model without these species using phylolm, repeats this many times (controlled by n.sim), stores the results and calculates the effects on model parameters.

All phylogenetic models from phylolm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value

The function samp_phylm returns a list with the following components:

formula: The formula

full.model.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda or kappa) for the full model without deleted species.

sensi.estimates: A data frame with all simulation estimates. Each row represents a model re-run with a given number of species n.remov removed, representing n.percent of the full dataset. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported. Lastly we reported the standardised difference in intercept (sDIFintercept) and slope (sDIFestimate).

sign.analysis: For each break (i.e. each percentage of species removed) this reports the percentage of statistically significant (at p<0.05) intercepts (perc.sign.intercept) over all repetitions as well as the percentage of statistically significant (at p<0.05) slopes (perc.sign.estimate).

data: Original full dataset. # @note Please be aware that dropping species may reduce power to detect significant slopes/intercepts and may partially be responsible for a potential effect of species removal on p-values. Please also consult standardised differences in the (summary) output.

Author(s)

Gustavo Paterno & Gijsbert D.A. Werner

References


See Also

`phylolm, samp_phyglm, influ_phylm, sensi_plot`

Examples

```r
Load data:
data(alien)
Run analysis:
samp <- samp_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy[[1]],
data = alien$data, n.sim = 10)
summary(samp)
head(samp$sensi.estimates)
Visual diagnostics
Not run:
sensi_plot(samp)
You can specify which graph and parameter ("estimate" or "intercept") to print:
sensi_plot(samp, graphs = 1, param = "estimate")
sensi_plot(samp, graphs = 2, param = "intercept")
End(Not run)
```

---

`samp_physig`  
*Sensitivity Analysis Species Sampling - Phylogenetic signal*

Description

Performs analyses of sensitivity to species sampling by randomly removing species and detecting the effects on phylogenetic signal estimates

Usage

```r
samp_physig(
 trait.col,
data,
 phy,
n.sim = 30,
 breaks = seq(0.1, 0.5, 0.1),
 method = "K",
 track = TRUE,
 ...
)
```
Arguments

trait.col  The name of a column in the provided data frame with trait to be analyzed (e.g. "Body_mass").
data  Data frame containing species traits with row names matching tips in phy.
phy  A phylogeny (class 'phylo') matching data.
n.sim  The number of times to repeat species random removal for each break interval.
breaks  A vector containing the percentages of species to remove.
method  Method to compute signal: can be "K" or "lambda".
track  Print a report tracking function progress (default = TRUE)
...  Further arguments to be passed to phylosig

Details

This function randomly removes a given percentage of species (controlled by breaks) from the full data, estimates phylogenetic signal for a given trait (K or lambda) without these species using phylosig, then repeats the analysis many times (controlled by n.sim), stores the results and calculates the effect of random species removal on phylogenetic signal estimates. Output can be visualised using sensi_plot.

Value

The function samp_phylosig returns a list with the following components:

Trait: Column name of the trait analysed
full.model.estimates: Phylogenetic signal (K or lambda) and p-value using the full dataset (without deleted species). See phylosig for details.
sensi.estimates: A data frame with all simulation estimates. Each row represents a rerun with a given number of species n.remov removed, representing n.percent of the full dataset. Columns report the calculated signal estimate (estimate), difference between reduced data signal estimate and full data signal (DF), the percentage of change in signal compared to the full data estimate (perc) and signal p-value for the reduced data estimate(pval).
sign.analysis For each break (i.e. each percentage of species removed) this reports the percentage of statistically significant (at p<0.05) phylogenetic signal over all repetitions with reduced data sets.
data: Original full dataset used in the analysis. #" @note Please be aware that dropping species may reduce power to detect significant signal and may partially be responsible for a potential effect of species removal on p-values. Please also consult standardised differences in the (summary) output.

Note

The argument "se" from phylosig is not available in this function. Use the argument "V" instead with intra_physig to indicate the name of the column containing the standard deviation or the standard error of the trait variable instead.

Author(s)

Gustavo Paterno & Gijsbert D.A. Werner
References


See Also

phylosig, samp_phylm, sensi_plot

Examples

```r
Not run:
data(alien)
alien.data<-alien$data
alien.phy<-alien$phy
Logtransform data
alien.data$logMass <- log(alien.data$adultMass)
Run sensitivity analysis:
samp <- samp_physig(trait.col = "logMass", data = alien.data, n.sim = 30,
phy = alien.phy[[1]])
summary(samp)
sensi_plot(samp)
sensi_plot(samp, graphs = 1)
sensi_plot(samp, graphs = 2)
End(Not run)
```

sensiPhy

Sensitivity Analysis for Comparative Methods

Description

An implementation of sensitivity analysis for phylogenetic comparative methods. The package is an umbrella of statistical and graphical methods that estimate and report different types of uncertainty in PCM: (i) Species Sampling uncertainty (sample size; influential species and clades). (ii) Phylogenetic uncertainty (different topologies and/or branch lengths). (iii) Data uncertainty (intraspecific variation and measurement error).
Bug reports


How to contribute?

You can find instructions on how to contribute to sensiPhy at this link: https://github.com/paternogbc/sensiPhy/wiki/How-to-support-sensiPhy

A quick tutorial is available at this link: https://github.com/paternogbc/sensiPhy/wiki

Author(s)

Gustavo Paterno; Caterina Penone & Gijsbert D.A. Werner

References


sensi_plot

Graphical sensitivity analysis for comparative methods

Description

Generic function for plotting results from any sensitivity analysis performed with 'sensiPhy'

Usage

sensi_plot(x, ...)

Arguments

x any output from the sensiPhy package.
... further arguments to methods

Details

sensi_plot recognize and print different sets of graphs depending on the function that generated 'x'. See the links below for details about the graphs generated for each sensiPhy function:

PGLS regressions (single uncertainty):
• clade_phylm: sensi_plot.sensiClade
• influ_phylm: sensi_plot.sensiInflu
• samp_phylm: sensi_plot.sensiSamp
• intra_phylm: sensi_plot.sensiIntra
• tree_phylm: sensi_plot.sensiTree

PGLS regressions (interacting uncertainties):


Phylogenetic signal:

- clade_physig: sensi_plot.clade.physig
- influ_physig: sensi_plot.influ.physig
- samp_physig: sensi_plot.samp.physig
- tree_physig: sensi_plot.tree.physig
- intra_physig: sensi_plot.intra.physig

Trait evolution (continuous & discrete characters):

- clade_continuous & _discrete sensi_plot.sensiClade.TraitEvol
- influ_continuous & _discrete sensi_plot.sensiInflu.TraitEvol
- tree_continuous & _discrete sensi_plot.sensiTree.TraitEvol
- samp_continuous & _discrete sensi_plot.sensiSamp.TraitEvol

Author(s)

Gustavo Paterno

References

The function 'multiplot', developed by Winston Chang, is used inside sensi_plot to print multiple graphs in one frame. The source code is available here: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
sensi_plot.influ.physig

Arguments

x  output from influ.physig
clade  The name of the clade to be evaluated (see details)
...  further arguments to methods.

Details

For 'x' from clade_physig:

Graph 1: Distribution of the simulated signal estimates (Null distribution for a given clade sample size). The red dashed line represents the estimated signal for the reduced data (without the focal clade) and the black line represents the signal estimate for the full data.

Author(s)

Gustavo Paterno

See Also

ggplot, phylosig

Description

sensi_plot.influ.physig  Graphical diagnostics for class 'influ.physig'

Usage

## S3 method for class 'influ.physig'
sensi_plot(x, graphs = "all", ...)

Arguments

x  output from influ.physig
graphs  choose which graph should be printed on the output ("all", 1, 2)
...  further arguments to methods.

Details

For 'x' from influ.physig:

Graph 1: Distribution of estimated phylogenetic signal (K or lambda) for each simulation (leave-one-out deletion). Dashed red vertical line represents the original estimate of phylogenetic signal with the full data (with all species).

Graph 2: Distribution of P values for the phylogenetic signal (K or lambda) for each simulation (leave-one-out deletion). Red vertical line represents the alpha significance level = 0.05.
sensi_plot.intra.physig

Author(s)
Gustavo Paterno

See Also
ggplot.phylosig

---

sensi_plot.intra.physig

*Graphical diagnostics for class 'intra.physig'*

Description

`sensi_plot_intra.physig` Plot results from `intra_physig`.

Usage

```r
S3 method for class 'intra.physig'
sensi_plot(x, graphs = "all", ...)
```

Arguments

- `x` output from `intra_physig`
- `graphs` choose which graph should be printed in the output ("all", 1 or 2)
- `...` further arguments to methods

Details

For `x` from `intra_physig`

Graphs 1: Distribution of estimated phylogenetic signal (lambda or K) for each simulation Red vertical line represents the average signal among all estimates.

Graph 2: Distribution of p-values for the phylogenetic signal (K or lambda) for each simulation. Red vertical line represents the alpha significance level = 0.05.

Author(s)
Caterina Penone and Gustavo Paterno

See Also
ggplot.intra.phylmintra_phylm
Graphical diagnostics for class 'samp.physig'

Description

plot_samp.phylm Plot results from samp.physig

Usage

## S3 method for class 'samp.physig'
sensi_plot(x, graphs = "all", ...)

Arguments

x output from samp.physig
graphs choose which graph should be printed on the output ("all", 1,2 and 3)
... further arguments to methods

Details

For 'x' from samp.physig:

Graph 1: Estimated phylogenetic signal for each simulation across percentages of species removed. Colours represent percentage of change in comparison with the full data estimate (blue = lower than 5, orange = between 5 and 10 and red = higher than 10). The red horizontal line represents the original phylogenetic signal estimated from the full model (with all species).

Graph 2: The proportion of estimated signal in each category across the percentage of species removed.

Graph 3: The percentage of significant signal estimates across the percentage of species removed.

Author(s)

Gustavo Paterno

See Also

ggplot, samp.phylm samp.physig
Description

Plot results from clade_phylm and clade_phyglm

Usage

## S3 method for class 'sensiClade'
sensi_plot(x, clade = NULL, ...)

Arguments

x  
output from clade_phylm or clade_phyglm  

clade  
The name of the clade to be evaluated (see details)  

...  
further arguments to methods.

Details

For 'x' from clade_phylm or clade_phyglm:

**Graph 1:** The original scatterplot $y = a + bx$ (with the full dataset) and a comparison between the regression lines of the full dataset and the rerun without the selected clade (set by clade). For further details about this method, see clade_phylm.

Species from the selected clade are represented in red (removed species), black solid line represents the regression with the full model and red dashed line represents the regression of the model without the species from the selected clade. To check the available clades to plot, see x$sensi.estimates$clade in the object returned from clade_phylm or clade_phyglm.

**Graph 2:** Distribution of the simulated slopes (Null distribution for a given clade sample size). The red dashed line represents the estimated slope for the reduced model (without the focal clade) and the black line represents the slope for the full model.

Author(s)

Gustavo Paterno

See Also

clade_phylm
sensi_plot.sensiClade.TraitEvol

Graphical diagnostics for class 'sensiClade.TraitEvol'

Description

Plot results from clade_discrete and clade_continuous

Usage

## S3 method for class 'sensiClade.TraitEvol'
sensi_plot(x, clade = NULL, graph = "all", ...)

Arguments

x               output from clade_discrete or clade_continuous
clade           The name of the clade to be evaluated (see details)
graph           The graph to be printed. Default all, or for clade_continuous set sigsq or optpar and for clade_discrete set q12 or q21.
...             further arguments to methods.

Details

For 'x' from clade_discrete or clade_continuous:

Graph 1: Distribution of the simulated parameter estimates (Null distribution for a given clade sample size). The red dashed line represents the estimated signal for the reduced data (without the focal clade) and the black line represents the signal estimate for the full data.

Author(s)

Gustavo Paterno & Gijsbert Werner

See Also

clace_continuous or clade_discrete
sensi_plot.sensiInflu  Graphical diagnostics for class 'sensiInflu'

Description

plot_influ_phylm Plot results from influ_phylm and influ_phyglm

Usage

## S3 method for class 'sensiInflu'
sensi_plot(x, graphs = "all", param = "estimate", ...)

Arguments

x output from influ_phylm
graphs choose which graph should be printed on the output ("all", 1,2,3 or 4)
param choose which parameter ("intercept" or "estimate" should be printed)
... further arguments to methods

Details

For 'x' from influ_phylm or influ_phyglm:

Graph 1: Distribution of estimated slopes (estimates) or intercepts for each simulation (leave-one-out deletion). Red vertical line represents the original slope or intercept from the full model (with all species).

Graph 2: Original regression plot (trait predictor). Standardized difference in slope or intercept is represented by a continuous size scale. The names of the most influential species (sDF > cutoff) are plotted in the graph.

Graph 3: Distribution of standardized difference in slope or intercept. Red colour indicates influential species (with a standardised difference above the value of cutoff).

Graph 4: Distribution of the percentage of change in slope or intercept.

Author(s)

Gustavo Paterno

See Also

ggplot
Description

sensi_plot.sensiTree.TraitEvol Plot results from influ_discrete and influ_continuous.

Usage

## S3 method for class 'sensiInflu.TraitEvol'
sensi_plot(x, graphs = "all", ...)

Arguments

x output from influ_discrete or influ_continuous
graphs choose which graph should be printed in the output ("all", "q12", "q21", "aic" or "optpar")
... further arguments to methods

Author(s)

Gijsbert Werner

See Also

ggplot, influ_discrete influ_continuous

The following graphs are printed.

**Graph aicc**: Distribution of estimated AICc-values across all single-species deletions. Red vertical line represents the mean signal among all estimates. Blue vertical line represents the median signal among all estimates.

**Graph optpar**: Distribution of estimated values for optimisation parameter specified using 'transform' (if applicable) Red vertical line represents the mean signal among all estimates. Blue vertical line represents the median signal among all estimates.

Additionally, only for tree_discrete the function creates the following graphs.

**Graph q12**: Distribution of estimated parameter values for transition rates q12 across all single-species deletions. Red vertical line represents the mean signal among all estimates. Blue vertical line represents the median signal among all estimates.

**Graph q21**: Distribution of estimated parameter values for transition rates q21. Red vertical line represents the mean signal among all estimates. Blue vertical line represents the median signal among all estimates.

While only for tree_continuous the function creates the following graphs.

**Graph sigsq**: Distribution of estimated parameter values for rate of evolution sigsq across all single-species deletions. Red vertical line represents the mean signal among all estimates. Blue vertical line represents the median signal among all estimates.
Graph z0: Distribution of estimated parameter values for z0. Red vertical line represents the mean signal among all estimates. Blue vertical line represents the median signal among all estimates.

---

**sensi_plot.sensiIntra**  
*Graphical diagnostics for class 'sensiIntra'*

**Description**

plot_tree.intra_phylm Plot results from tree_phylm, intra_phylm and intra_phyglm

**Usage**

```r
S3 method for class 'sensiIntra'
sensi_plot(x, graphs = "all", ...)
```

**Arguments**

- `x` output from tree_phylm, tree_phyglm, intra_phylm or intra_phyglm
- `graphs` choose which graph should be printed in the output ("all", 1, 2 or 3)
- `...` further arguments to methods

**Details**

For `x` from tree_phylm, tree_phyglm, intra_phylm or intra_phyglm:

- **Graphs 1 and 2:** Distribution of estimated slopes (estimates) and intercepts for each tree (for tree_phylm) or value generated within a given interval (intra_phylm) Red vertical line represents the mean estimate or intercept for all models.
- **Graph 3:** Scatterplot with mean regression (black line) and standard deviation of the regression (red dotted lines).

**Author(s)**

Caterina Penone and Gustavo Paterno

**See Also**

ggplot, tree_phylm intra_phylm
sensi_plot.sensiIntra_Clade

Graphical diagnostics for class 'sensiIntra_Clade'

Description

Plot results from intra_clade_phylm and intra_clade_phyglm

Usage

## S3 method for class 'sensiIntra_Clade'
sensi_plot(x, clade = NULL, graphs = "all", ...)

Arguments

x output from intra_clade_phylm or intra_clade_phyglm
clade The name of the clade to be evaluated (see details)
graphs Choose which graph should be printed on the output ("all", 1 or 2). Defaults to "all".
... further arguments to methods.

Details

For `x` from intra_clade_phylm or intra_clade_phyglm:

Graph 1: Estimated slopes after clade removal (reduced data) across multiple simulations. Small dots represent estimates reruns between simulations while larger dots represents the average estimate between all simulations for each clade. The solid black line represents the average slope estimate among trees using the full dataset.

Graph 2: The effect of clade removal on slope estimate across all individual simulations for each clade analyzed. The black line indicates estimates with the full dataset while the red line represent estimates without the focal clade (reduced data) across different simulation The blue dots represent null expectation estimates after removing the same number of species of the focal clade, with dots falling outside the red line area indicating a larger than expected absolute effect.

Author(s)

Gustavo Paterno, Caterina Penone

See Also

intra_clade_phylm
sensi_plot.sensiIntra_Influ

Graphical diagnostics for class 'sensiIntra_Influ'

Description

sensi_plot.intra_influ Plot results from intra_influ_phylm and intra_influ_phyglm

Usage

## S3 method for class 'sensiIntra_Influ'
sensi_plot(x, graphs = "all", ...)

Arguments

x output from influ_phylm or intra_influ_phyglm
graphs choose which graph should be printed on the output ("all", 1, 2, 3 or 4)
... further arguments to methods

Details

For 'x' from intra_influ_phylm or intra_influ_phyglm:

Graph 1: Most common influential species on model estimates. Percentage of iterations (n.tree or n.intra) where the removal of individual species caused significant change in model estimate (sDIFestimate > cutoff).

Graph 2: Shift on model estimate after species removal for most influential species. Small red dots represent individual reruns between different trees or simulations while large red dots represent the average DIFestimate among all iterations.

Author(s)

Gustavo Paterno, Caterina Penone

See Also

intra_influ_phylm; intra_influ_phyglm
sensi_plot.sensiIntra_Samp

Graphical diagnostics for class 'sensiIntra_Samp' and 'sensiTree_samp'

Description

sensi_plot.sensiIntra_Samp Plot results from sensiIntra_Samp_phylm and sensiIntra_Samp_phyglm

Usage

## S3 method for class 'sensiIntra_Samp'
sensi_plot(x, graphs = "all", ...)

Arguments

x output from sensiIntra_Samp_phylm or sensiIntra_Samp_phyglm

graphs choose which graph should be printed on the output ("all", 1,2,3 or 4)

... further arguments to methods

Details

For 'x' from sensiIntra_Samp_phylm or sensiIntra_Samp_phyglm:

**Graph 1**: Estimated estimates for each simulation across percentages of species removed. Small red dots represent individual estimates for each iteration (tree or intra) across percentages of removed species. Large dots represent the average among these estimates within each iteration and percentage of species removal. Different estimates within the same percentage interval represent different iterations (tree or intra).

**Graph 2**: The percentage of significant estimates (p < 0.05) across the percentage of species removed. Small red dots represent individual iterations (tree or intra) while large dots represent the average among these iterations.

Author(s)

Gustavo Paterno

See Also

ggplot, samp_phylm samp_phyglm
sensi_plot.sensiSamp

Graphical diagnostics for class 'sensiSamp'

Description

plot_samp_phylm Plot results from samp_phylm and influ_phyloglm

Usage

## S3 method for class 'sensiSamp'
sensi_plot(x, graphs = "all", param = "estimate", ...)

Arguments

x output from samp_phylm
graphs choose which graph should be printed on the output ("all", 1,2,3 or 4)
param choose which model parameter should be plotted ("intercept" or "estimate")
... further arguments to methods

Details

For 'x' from samp_phylm or samp_phyglm:

**Graph 1:** Estimated slopes or intercepts for each simulation across percentages of species removed. Colours represent percentage of change in comparison with the full model (blue = lower than 5, orange = between 5 and 10 and red = higher than 10). The red horizontal line represents the original slope or intercept from the full model (with all species).

**Graph 2:** The proportion of estimated slopes and intercepts in each category across the percentage of species removed.

**Graph 3:** Estimated phylogenetic model parameter for each simulation across the percentage of species removed.

**Graph 4:** The percentage of significant slopes or intercepts across the percentage of species removed.

Note

If model = "BM", only plots 1, 2 and 4 are printed. Plot 3, phylogenetic model parameter is not available for model = "BM"

Author(s)

Gustavo Paterno

See Also

ggplot, samp_phylm samp_phyglm
Graphical diagnostics for class 'sensiSamp.TraitEvol'

Description

`sensi_plot.sensiSamp.TraitEvol` plots results from `samp_continuous` and `samp_discrete`

Usage

```r
S3 method for class 'sensiSamp.TraitEvol'
sensi_plot(x, graphs = "all", ...)
```

Arguments

- `x`: output from `samp_continuous` or `samp_discrete`
- `graphs`: choose which graph should be printed on the output ("all", 1, 2, 3 or 4)
- `...`: further arguments to methods

Details

For 'x' from `samp_continuous` or `samp_discrete`:

**Graph 1:** Estimated q12 (discrete) or sigsq (discrete) for each simulation across percentages of species removed. Colours represent percentage of change in comparison with the full model (blue = lower than 5, orange = between 5 and 10 and red = higher than 10). The red horizontal line represents the original value from the full model (with all species).

**Graph 2:** The proportion of estimated q12 (discrete) or sigsq (discrete) in each category across the percentage of species removed.

**Graph 3:** Estimated q21 for each simulation across the percentage of species removed (only for `samp_discrete`).

**Graph 4:** The percentage of significant q21 across the percentage of species removed (only for `samp_discrete`).

Author(s)

Gustavo Paterno & Gijsbert Werner

See Also

`ggplot, samp_continuous, samp_discrete`
Graphical diagnostics for class 'sensiTree'

Description

plot_tree.intra_phylm Plot results from tree_phylm, intra_phylm and intra_phyglm

Usage

## S3 method for class 'sensiTree'
sensi_plot(x, graphs = "all", ...)

Arguments

x output from tree_phylm, tree_phyglm, intra_phylm or intra_phyglm
graphs choose which graph should be printed in the output ("all", 1, 2 or 3)
... further arguments to methods

Details

For 'x' from tree_phylm, tree_phyglm, intra_phylm or intra_phyglm:

**Graphs 1 and 2:** Distribution of estimated estimates and intercepts for each tree (for tree_phylm) or value generated within a given interval (intra_phylm) Red vertical line represents the mean estimate or intercept for all models.

**Graph 3:** Scatterplot with mean regression (black line) and standard deviation of the regression (blue dotted lines).

Author(s)

Caterina Penone and Gustavo Paterno

See Also

ggplot, tree_phylm intra_phylm
Description

`sensi_plot.sensiTree.TraitEvol` Plots results from `tree_discrete` and `tree_continuous`.

Usage

```r
S3 method for class 'sensiTree.TraitEvol'
sensi_plot(x, graphs = "all", ...)
```

Arguments

- `x` output from `tree_fitDiscrete` or `tree_fitContinuous`
- `graphs` choose which graph should be printed in the output ("all", "q12", "q21", "aic" or "optpar")
- `...` further arguments to methods

Author(s)

Gijsbert Werner

See Also

`ggplot`, `tree_discrete`, `tree_continuous`

The following graphs are printed.

**Graph aicc**: Distribution of estimated AICc-values across each tree. Red vertical line represents the mean value among all estimates. Blue vertical line represents the median value among all estimates.

**Graph optpar**: Distribution of estimated values for optimisation parameter specified using 'transform' (if applicable) Red vertical line represents the mean value among all estimates. Blue vertical line represents the median value among all estimates.

Additionally, only for `tree_discrete` the function creates the following graphs.

**Graph q12**: Distribution of estimated parameter values for transition rates q12 for each tree. Red vertical line represents the mean value among all estimates. Blue vertical line represents the median value among all estimates.

**Graph q21**: Distribution of estimated parameter values for transition rates q21 for each tree. Red vertical line represents the mean value among all estimates. Blue vertical line represents the median value among all estimates.

While only for `tree_continuous` the function creates the following graphs.

**Graph sigsq**: Distribution of estimated parameter values for rate of evolution sigsq for each tree. Red vertical line represents the mean value among all estimates. Blue vertical line represents the median value among all estimates.
**Graph z0:** Distribution of estimated parameter values for z0 for each tree. Red vertical line represents the mean value among all estimates. Blue vertical line represents the median value among all estimates.

---

**sensi_plot.sensiTree_Clade**

*Graphical diagnostics for class 'sensiTree_Clade'*

---

**Description**

Plot results from `tree_clade_phylm` and `tree_clade_phyglm`

**Usage**

```r
S3 method for class 'sensiTree_Clade'
sensi_plot(x, clade = NULL, graphs = "all", ...)
```

**Arguments**

- `x` output from `tree_clade_phylm` or `tree_clade_phyglm`
- `clade` The name of the clade to be evaluated (see details)
- `graphs` Choose which graph should be printed on the output ("all", 1 or 2). Defaults to "all".
- `...` further arguments to methods.

**Details**

For `x` from `tree_clade_phylm` or `tree_clade_phyglm`:

**Graph 1:** Estimated slopes after clade removal (reduced data) across multiple trees. Small dots represent estimates reruns between phylogenetic trees while larger dots represents the average estimate between all trees for each clade. The solid black line represents the average slope estimate among trees using the full dataset.

**Graph 2:** The effect of clade removal on slope estimate across all individual phylogenetic trees for each clade analyzed. The black line indicates estimates with the full dataset while the red line represent estimates without the focal clade (reduced data) across different trees. The blue dots represent null expectation estimates after removing the same number of species of the focal clade, with dots falling outside the red line area indicating a larger than expected absolute effect.

**Author(s)**

Gustavo Paterno, Caterina Penone

**See Also**

`tree_clade_phylm`
sensi_plot.sensiTree_Influ

*Graphical diagnostics for class 'sensiTree_Influ'*

Description

`sensi_plot.sensiTree_Influ` Plot results from `tree_influ_phylm` and `tree_influ_phyglm`

Usage

```r
S3 method for class 'sensiTree_Influ'
sensi_plot(x, graphs = "all", ...)
```

Arguments

- `x` output from `tree_influ_phylm` or `tree_influ_phyglm`
- `graphs` choose which graph should be printed on the output ("all", 1,2,3 or 4)
- `...` further arguments to methods

Details

For `x` from `sensiTree_Influ_phylm` or `sensiTree_Influ_phyglm`:

**Graph 1:** Most common influential species on model estimates. Percentage of iterations (n.tree or n.intra) where the removal of individual species caused significant change in model estimate (sDIFestimate > cutoff).

**Graph 2:** Shift on model estimate after species removal for most influential species. Small red dots represent individual reruns between different trees or simulations while large red dots represent the average DIFestimate among all iterations.

Author(s)

Gustavo Paterno, Caterina Penone

See Also

`ggplot`
sensi_plot.sensiTree_Intra

*Graphical diagnostics for class 'sensiIntra_Tree'*

## Description

plot_tree.intra_phylm: Plot results from tree_intra_phylm, tree_intra_phyglm and tree_intra_phyglm

## Usage

```r
S3 method for class 'sensiTree_Intra'
sensi_plot(x, graphs = "all", uncer.type = "all", ...)
```

## Arguments

- **x**: output from `tree_intra_phylm`, `tree_intra_phyglm`
- **graphs**: choose which graph should be printed in the output ("all", 1, 2 or 3)
- **uncer.type**: choose which uncertainty type should be printed ("all", "intra", "tree")
- **...**: further arguments to methods

## Details

For `x` from `tree_intra_phylm` or `tree_intra Phyglm`:

**Graphs 1 and 2**: Distribution of estimated estimates and intercepts for each tree (for `tree_phylm`) or value generated within a given interval (`interaction_intra_tree_phylm`) Red vertical line represents the mean estimate or intercept for all models.

**Graph 3**: Scatterplot with mean regression (black line) and standard deviation of the regression (blue dotted lines).

## Author(s)

Caterina Penone and Gustavo Paterno

## See Also

`ggplot`, `tree_phylm`, `intra_phylm`
sensi_plot.sensiTree_Samp

Graphical diagnostics for class 'sensiTree_samp'

Description
sensi_plot.sensiTree_Samp Plot results from sensiTree_Samp_phylm and sensiTree_Samp_phyglm

Usage
## S3 method for class 'sensiTree_Samp'
sensi_plot(x, graphs = "all", ...)

Arguments
x output from sensiTree_Samp_phylm or sensiTree_Samp_phyglm
graphs choose which graph should be printed on the output ("all", 1,2,3 or 4)
... further arguments to methods

Details
For 'x' from sensiTree_Samp_phylm or sensiTree_Samp_phyglm:

**Graph 1:** Estimated estimates for each simulation across percentages of species removed. Small red dots represent individual estimates for each iteration (tree or intra) across percentages of removed species. Large dots represent the average among these estimates within each iteration and percentage of species removal. Different estimates within the same percentage interval represent different iterations (tree or intra).

**Graph 2:** The percentage of significant estimates (p < 0.05) across the percentage of species removed. Small red dots represent individual iterations (tree or intra) while large dots represent the average among these iterations.

Note
If model = "BM", only plots 1, 2 and 4 are printed. Plot 3, phylogenetic model parameter is not available for model = "BM"

Author(s)
Gustavo Paterno

See Also
ggplot, samp_phylm samp_phyglm
sensi_plot.tree.bd  

Graphical diagnostics for class 'tree.bd'

Description

sensi_plot_tree.bd Plot results from tree_bd.

Usage

```r
S3 method for class 'tree.bd'
sensi_plot(x, graphs = "all", ...)
```

Arguments

- `x`: output from tree_bd
- `graphs`: choose which graph should be printed in the output ("all", 1 or 2)
- `...`: further arguments to methods

Details

For `x` from tree_bd

**Graphs 1:** Distribution of estimated diversification or speciation rate for each tree. Red vertical line represents the average signal among all estimates.

**Graphs 2:** Estimates across each phylogenetic tree.

Author(s)

Caterina Penone and Gustavo Paterno

See Also

`ggplot.tree.phylm`, `intra_phylm`

sensi_plot.tree.physig  

Graphical diagnostics for class 'tree.physig'

Description

sensi_plot_tree.physig Plot results from tree_physig.

Usage

```r
S3 method for class 'tree.physig'
sensi_plot(x, graphs = "all", ...)
```
Arguments
  x       output from tree_physig
graphs   choose which graph should be printed in the output ("all", 1 or 2)
...      further arguments to methods

Details
For 'x' from tree_physig

  **Graphs 1:** Distribution of estimated phylogenetic signal (lambda or K) for each tree. Red vertical line represents the average signal among all estimates.

  **Graph 2:** Distribution of p-values for the phylogenetic signal (K or lambda) for each tree. Red vertical line represents the alpha significance level = 0.05.

Author(s)
Caterina Penone and Gustavo Paterno

See Also
ggplot, tree_phylm, intra_phylm

tree_bd: Phylogenetic uncertainty - net diversification rate

Description
Performs estimates of diversification rate evaluating uncertainty in trees topology.

Usage
  tree_bd(phy, n.tree = "all", method = "ms", track = F, ...)

Arguments
  phy       A phylogeny (class 'multiPhylo', see ?ape).
  n.tree   Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. (If n.tree = "all", diversification will be estimated among the set of trees provided in phy)
  method   the method for estimating diversification rate ("ms" or "km") (see Details).
  track    Print a report tracking function progress (default = TRUE)
  ...      Further arguments to be passed to phylosig
Details

This function estimates net diversification rate using `bd.ms` (Magallon and Sanderson (2000) method) or speciation rate using `bd.km` (Kendall-Moran method) for n trees, randomly picked from a multi-Phylo file.

Output can be visualised using `sensi_plot`.

Value

The function `tree_bd` returns a list with the following components:

- `tree.bd.estimates`: Three number, diversification/speciation rate estimate ("Magallon and Sanderson" or "Kendall-Moran") for each run with a different phylogenetic tree.
- `stats`: Main statistics for estimates across trees. CI_low and CI_high are the lower and upper limits of the 95

Author(s)

Gustavo Paterno

References


See Also

- `bd.ms, tree_phylm, sensi_plot`

Examples

data("primates")
# To estimate diversification rate with Magallon and Sanderson method:
fit <- tree_bd(phy = primates.phy, n.tree = 30, method = "ms")
summary(fit)
sensi_plot(fit)
# To estimate speciation rate Kendall-Moran method
fit <- tree_bd(phy = primates.phy, n.tree = 30, method = "km")
summary(fit)
sensi_plot(fit)
Interaction between phylogenetic uncertainty and influential clade detection - Phylogenetic Logistic Regression

Description

Estimate the impact on model estimates of phylogenetic logistic regression after removing clades from the analysis and evaluating uncertainty in trees topology.

Usage

```r
tree_clade_phyglm(
 formula,
 data,
 phy,
 clade.col,
 n.species = 5,
 n.sim = 100,
 n.tree = 2,
 btol = 50,
 track = TRUE,
 ...
)
```

Arguments

- **formula**: The model formula.
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class 'multiPhylo', see ?ape).
- **clade.col**: The column in the provided data frame which specifies the clades (a character vector with clade names).
- **n.species**: Minimum number of species in a clade for the clade to be included in the leave-one-out deletion analysis. Default is 5.
- **n.sim**: Number of simulations for the randomization test.
- **n.tree**: Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. If NULL, n.tree = 2
- **btol**: Bound on searching space. For details see phyloglm
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to phyloglm
Details

Currently only logistic regression using the "logistic_MPLE"-method from phyloglm is implemented.

This function sequentially removes one clade at a time, fits a phylogenetic logistic regression model using phyloglm and stores the results. The impact of a specific clade on model estimates is calculated by the comparison between the full model (with all species) and the model without the species belonging to a clade. It repeats this operation using n trees, randomly picked in a multiPhylo file.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimates a null distribution of slopes expected for the number of species in a given clade. This is done by fitting models without the same number of species in the given clade. The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.

c1ade_phyglm detects influential clades based on difference in intercept and/or slope when removing a given clade compared to the full model including all species. This is done for n trees in the multiphylo file.

Currently, this function can only implements simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value

The function c1ade_phyglm returns a list with the following components:

formula: The formula

full.model.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for the full model without deleted species.

sensi.estimates: A data frame with all simulation estimates. Each row represents a deleted clade for a tree iteration. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.

null.dist: A data frame with estimates for the null distributions for all clades analysed.

data: Original full dataset.

errors: Clades and/or trees where deletion resulted in errors.

Author(s)

Gustavo Paterno, Caterina Penone & Gijsbert D.A. Werner
Interaction between phylogenetic uncertainty and influential clade detection - Phylogenetic Linear Regression

Description

Estimate the impact on model estimates of phylogenetic linear regression after removing clades from the analysis and evaluating uncertainty in trees topology.
Usage

```
tree_clade_phylm(
 formula,
 data,
 phy,
 clade.col,
 n.species = 5,
 n.sim = 100,
 n.tree = 2,
 model = "lambda",
 track = TRUE,
 ...
)
```

Arguments

- **formula**: The model formula
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class 'multiPhylo', see ?ape).
- **clade.col**: The column in the provided data frame which specifies the clades (a character vector with clade names).
- **n.species**: Minimum number of species in a clade for the clade to be included in the leave-one-out deletion analysis. Default is 5.
- **n.sim**: Number of simulations for the randomization test.
- **n.tree**: Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. If NULL, n.tree = 2
- **model**: The phylogenetic model to use (see Details). Default is lambda.
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to phylolm

Details

This function sequentially removes one clade at a time, fits a phylogenetic linear regression model using phylolm and stores the results. The impact of of a specific clade on model estimates is calculated by the comparison between the full model (with all species) and the model without the species belonging to a clade. It repeats this operation using n trees, randomly picked in a multiPhylo file.

Additionally, to account for the influence of the number of species on each clade (clade sample size), this function also estimate a null distribution of slopes expected for the number of species in a given clade. This is done by fitting models without the same number of species in the given clade. The number of simulations to be performed is set by 'n.sim'. To test if the clade influence differs from the null expectation for a clade of that size, a randomization test can be performed using 'summary(x)'.

All phylogenetic models from phylolm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.
clade_phylm detects influential clades based on difference in intercept and/or slope when removing a given clade compared to the full model including all species. This is done for n trees in the multiphylo file.

Currently, this function can only implement simple linear models (i.e. $y = a + bx$). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value

The function clade_phylm returns a list with the following components:

- **formula**: The formula
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for the full model without deleted species.
- **sensi.estimates**: A data frame with all simulation estimates. Each row represents a deleted clade for a tree iteration. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.
- **null.dist**: A data frame with estimates for the null distributions for all clades analysed.
- **data**: Original full dataset.
- **errors**: Clades and/or trees where deletion resulted in errors.

Author(s)

Gustavo Paterno, Caterina Penone & Gijsbert D.A. Werner

References


See Also

phylolm, tree_phylm, clade_phylm, tree_clade_phyglm, sensi_plot

Examples

```r
Not run:
Load data:
data(primates)
run analysis:
clade_tree <- tree_clade_phylm(log(sexMaturity) ~ log(adultMass),
phy = primates$phy, data = primates$data, clade.col = "family", n.sim = 50, n.tree = 5)
```

# To check summary results and most influential clades:
summary(clade_tree)
# Visual diagnostics for clade removal:
sensi_plot(clade_tree)
# Specify which clade removal to plot:
sensi_plot(clade_tree)
sensi_plot(clade_tree, "Cercopithecidae")
sensi_plot(clade_tree, clade = "Cebidae", graphs = 2)

## End(Not run)

---

**tree_continuous**  
*Phylogenetic uncertainty - Trait Evolution Continuous Characters*

**Description**

Fits models for trait evolution of continuous characters, evaluating phylogenetic uncertainty.

**Usage**

```r
tree_continuous(
 data,
 phy,
 n.tree = 10,
 model,
 bounds = list(),
 n.cores = NULL,
 track = TRUE,
 ...
)
```

**Arguments**

- **data**: Data vector for a single continuous trait, with names matching tips in `phy`.
- **phy**: Phylogenies (class 'multiPhylo', see ?ape).
- **n.tree**: Number of times to repeat the analysis with `n` different trees picked randomly in the multiPhylo file. If NULL, `n.tree = 10`
- **model**: The evolutionary model (see Details).
- **bounds**: settings to constrain parameter estimates. See `fitContinuous`
- **n.cores**: number of cores to use. If 'NULL', number of cores is detected.
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to `fitContinuous`
Details

This function fits different models of continuous character evolution using `fitContinuous` to n trees, randomly picked in a multiPhylo file.

Different evolutionary models from `fitContinuous` can be used, i.e. BM, OU, EB, trend, lambda, kappa, delta and drift.

See `fitContinuous` for more details on character models and tree transformations.

Output can be visualised using `sensi_plot`.

Value

The function `tree_continuous` returns a list with the following components:

call: The function call
data: The original full data vector
sensi.estimates: (rate of evolution sigsq, root state z0 and where applicable optpar), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for each analysis with a different phylogenetic tree.
N.tree: Number of trees n.tree analysed
stats: Main statistics for model parameters, i.e. minimum, maximum, mean, median and sd-values
optpar: Evolutionary model used (e.g. lambda, kappa etc.)

Author(s)

Gijsbert Werner & Caterina Penone

References


See Also

`fitContinuous`

Examples

```r
Not run:
Load data:
data("primates")
Model trait evolution accounting for phylogenetic uncertainty adultMass<-primates$data$adultMass
names(adultMass)<-rownames(primates$data)
tree_cont<-tree_continuous(data = adultMass, phy = primates$phy,
```
```r
model = "OU", n.tree=30, n.cores = 2, track = TRUE)
#Print summary statistics
summary(tree_cont)
sensi_plot(tree_cont)
sensi_plot(tree_cont, graphs="sigsq")
sensi_plot(tree_cont, graphs="optpar")
#Use a different evolutionary model
tree_cont2<-tree_continuous(data = adultMass, phy = primates$phy,
model = "delta", n.tree=30, n.cores = 2, track = TRUE)
summary(tree_cont2)
sensi_plot(tree_cont2)

End(Not run)
```

---

**tree_discrete**  
*Phylogenetic uncertainty - Trait Evolution Discrete Characters*

**Description**

Fits models for trait evolution of discrete (binary) characters, evaluating phylogenetic uncertainty.

**Usage**

```r
tree_discrete(
data,
phy,
n.tree = 10,
model,
transform = "none",
bounds = list(),
n.cores = NULL,
track = TRUE,
...)
```

**Arguments**

- **data**  
  Data vector for a single binary trait, with names matching tips in phy.
- **phy**  
  Phylogenies (class `multiPhylo`, see `?ape`).
- **n.tree**  
  Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. If NULL, `n.tree = 10`
- **model**  
  The Mkn model to use (see Details).
- **transform**  
  The evolutionary model to transform the tree (see Details). Default is none.
- **bounds**  
  settings to constrain parameter estimates. See `fitDiscrete`
- **n.cores**  
  number of cores to use. If 'NULL', number of cores is detected.
- **track**  
  Print a report tracking function progress (default = TRUE)
- **...**  
  Further arguments to be passed to `fitDiscrete`
Details

This function fits different models of discrete character evolution using `fitDiscrete` to n trees, randomly picked in a multiPhylo file. Currently, only binary discrete traits are supported.

Different character model from `fitDiscrete` can be used, including ER (equal-rates), SYM (symmetric), ARD (all-rates-different) and meristic (stepwise fashion).

All transformations to the phylogenetic tree from `fitDiscrete` can be used, i.e. none, EB, lambda, kappa and delta.

See `fitDiscrete` for more details on character models and tree transformations.

Output can be visualised using `sensi_plot`.

Value

The function `tree_discrete` returns a list with the following components:

- `call`: The function call
- `data`: The original full data vector
- `sensi.estimates`: Parameter estimates (transition rates q12 and q21), AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda) for each analysis with a different phylogenetic tree.
- `N.tree`: Number of trees n.tree analysed
- `stats`: Main statistics for model parameters, i.e. minimum, maximum, mean, median and sd-values
- `optpar`: Transformation parameter used (e.g. lambda, kappa etc.)

Author(s)

Gijsbert Werner & Caterina Penone

References


See Also

`fitDiscrete`

Examples

```r
Not run:
#Load data:
data("primates")
#Create a binary trait factor
adultMass_binary<-ifelse(primates$data$adultMass > 7350, "big", "small")
adultMass_binary<-as.factor(as.factor(adultMass_binary))
```

```r
```
tree_influ_phyglm

Interaction between phylogenetic uncertainty and influential species detection - Phylogenetic Logistic Regression

Description
Performs leave-one-out deletion analysis for phylogenetic logistic regression, and detects influential species while evaluating uncertainty in trees topology.

Usage

```r
tree_influ_phyglm(
 formula,
 data,
 phy,
 n.tree = 2,
 cutoff = 2,
 btol = 50,
 track = TRUE,
 ...
)
```

Arguments

- **formula** The model formula
- **data** Data frame containing species traits with row names matching tips in phy.
A phylogeny (class ‘phylo’) matching data.

Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file.

The cutoff value used to identify for influential species (see Details)

Bound on searching space. For details see phyloglm

Print a report tracking function progress (default = TRUE)

Further arguments to be passed to phyloglm

This function sequentially removes one species at a time, fits a phylogenetic logistic regression model using phyloglm, stores the results and detects influential species. It repeats this operation using n trees, randomly picked in a multiPhylo file.

Currently only logistic regression using the "logistic_MPLE"-method from phyloglm is implemented.

influ_phyglm detects influential species based on the standardised difference in intercept and/or slope when removing a given species compared to the full model including all species. Species with a standardised difference above the value of cutoff are identified as influential. The default value for the cutoff is 2 standardised differences change.

Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

The function influ_phyglm returns a list with the following components:

cutoff: The value selected for cutoff

formula: The formula

full.model.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (i.e. alpha) for the full model without deleted species.

influential_species: List of influential species, both based on standardised difference in intercept and in the slope of the regression. Species are ordered from most influential to less influential and only include species with a standardised difference > cutoff.

sensi.estimates: A data frame with all simulation estimates. Each row represents a deleted clade for a given random tree. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the standardised difference (sDIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (i.e. alpha) are reported.

data: Original full dataset.

errors: Species where deletion resulted in errors.
Interaction between phylogenetic uncertainty and influential species detection - Phylogenetic Linear Regression

Description

Performs leave-one-out deletion analysis for phylogenetic linear regression, and detects influential species while evaluating uncertainty in trees topology.

Usage

```r
tree_influ_phyglm(formula, data, phy,
```
n.tree = 2,
cutoff = 2,
model = "lambda",
track = TRUE,
...
)

**Arguments**

- **formula**: The model formula
- **data**: Data frame containing species traits with row names matching tips in phy.
- **phy**: A phylogeny (class 'phylo') matching data.
- **n.tree**: Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file.
- **cutoff**: The cutoff value used to identify for influential species (see Details)
- **model**: The phylogenetic model to use (see Details). Default is lambda.
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to phylolm

**Details**

This function sequentially removes one species at a time, fits a phylogenetic linear regression model using phylolm, stores the results and detects influential species. It repeats this operation using n trees, randomly picked in a multiPhylo file.

All phylogenetic models from phylolm can be used, i.e. BM, OUnfixedRoot, OUrrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

influ_phylm detects influential species based on the standardised difference in intercept and/or slope when removing a given species compared to the full model including all species. Species with a standardised difference above the value of cutoff are identified as influential. The default value for the cutoff is 2 standardised differences change.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

**Value**

The function influ_phylm returns a list with the following components:

- **cutoff**: The value selected for cutoff
- **formula**: The formula
- **full.model.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for the full model without deleted species.
- **influential_species**: List of influential species, both based on standardised difference in intercept and in the slope of the regression. Species are ordered from most influential to less influential and only include species with a standardised difference > cutoff.
sensi.estimates: A data frame with all simulation estimates. Each row represents a deleted clade for a given random tree. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the standardised difference (sDIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported.

data: Original full dataset.
errors: Species where deletion resulted in errors.

Author(s)
Gustavo Paterno, Caterina Penone & Gijsbert D.A. Werner

References

See Also
phylolm, tree_phylm, influ_phylm, tree_influ_phyglm, sensi_plot

Examples
```r
Not run:
Load data:
data(alien)
run analysis:
tree_influ <- tree_influ_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy,
data = alien$data, n.tree = 5)
To check summary results:
summary(tree_influ)
Visual diagnostics
sensi_plot(tree_influ)
sensi_plot(tree_influ, graphs = 1)
sensi_plot(tree_influ, graphs = 2)

data(alien)
tree_influ <- tree_influ_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy,
data = alien$data[1:25,], n.tree = 2)
summary(tree_influ)

End(Not run)
```
**tree_intra_phyglm**

Interaction between phylogenetic uncertainty and intraspecific variability - Phylogenetic logistic Regression

**Description**

Performs Phylogenetic logistic regression evaluating intraspecific variability in response and/or predictor variables and uncertainty in trees topology.

**Usage**

```r
tree_intra_phyglm(
 formula,
 data,
 phy,
 Vx = NULL,
 x.transf = NULL,
 n.intra = 10,
 n.tree = 2,
 distrib = "normal",
 track = TRUE,
 btol = 50,
 ...
)
```

**Arguments**

- `formula`: The model formula: `response~predictor`.
- `data`: Data frame containing species traits and species names as row names.
- `phy`: A phylogeny (class 'phylo', see ?ape).
- `Vx`: Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
- `x.transf`: Transformation for the predictor variable (e.g. log or sqrt). Please use this argument instead of transforming data in the formula directly (see also details below).
- `n.intra`: Number of times to repeat the analysis generating a random value for response and/or predictor variables. If NULL, `n.intra = 30`.
- `n.tree`: Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. If NULL, `n.tree = 2`.
- `distrib`: A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function `rnorm`). Uniform distribution: "uniform" (runif) Warning: we recommend to use normal distribution with Vx or Vy = standard deviation of the mean.
track: Print a report tracking function progress (default = TRUE)
btol: Bound on searching space. For details see phyloglm
...: Further arguments to be passed to phyloglm

Details
This function fits a phylogenetic logistic regression model using phyloglm to n trees (n.tree), randomly picked in a multiPhylo file. The regression is also repeated n.intra times. At each iteration the function generates a random value for each row in the dataset using the standard deviation or errors supplied and assuming a normal or uniform distribution. To calculate means and se for your raw data, you can use the summarySE function from the package Rmisc.

All phylogenetic models from phyloglm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phyloglm for details.

Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value
The function tree_intra_phyglm returns a list with the following components:

formula: The formula
data: Original full dataset
sensi.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for each regression using a value in the interval of variation and a different phylogenetic tree.
N.obs: Size of the dataset after matching it with tree tips and removing NA's.
stats: Main statistics for model parameters. CI_low and CI_high are the lower and upper limits of the 95
all.stats: Complete statistics for model parameters. Fields coded using all describe statistics due to both intraspecific variation and phylogenetic uncertainty. Fields coded using intra describe statistics due to intraspecific variation only. Fields coded using tree describe statistics due to phylogenetic uncertainty only. sd is the standard deviation. CI_low and CI_high are the lower and upper limits of the 95
sp.pb: Species that caused problems with data transformation (see details above).

Warning
When Vy or Vx exceed Y or X, respectively, negative (or null) values can be generated, this might cause problems for data transformation (e.g. log-transformation). In these cases, the function will skip the simulation. This problem can be solved by increasing times, changing the transformation type and/or checking the target species in output$sp.pb.

Author(s)
Caterina Penone & Pablo Ariel Martinez
References


See Also

phyloglm, tree_phyglm, intra_phyglm, tree_intra_phyglm, sensi_plot

Examples

# Simulate data
set.seed(6987)
mphy = ape::rmtree(150, N = 30)
x = phylolm::rTrait(n=1,phy=mphy[[1]])
x_sd = rnorm(150,mean = 0.8,sd=0.2)
X = cbind(rep(1,150),x)
y = rbinTrait(n=1,phy=mphy[[1]], beta=c(-1,0.5), alpha=.7 ,X=X)
dat = data.frame(y, x, x_sd)
 intra.tree <- tree_intra_phyglm(y ~ x, data = dat, phy = mphy, n.intra = 3,
                               n.tree = 3, Vx = "x_sd")

# summary results:
summary(intra.tree)

# Visual diagnostics for phylogenetic uncertainty:
sensi_plot(intra.tree, uncer.type = "all") # or uncer.type = "tree", uncer.type = "intra"

---

tree_intra_phyglm

Interaction between phylogenetic uncertainty and intraspecific variability - Phylogenetic Linear Regression

Description

Performs Phylogenetic linear regression evaluating intraspecific variability in response and/or predictor variables and uncertainty in trees topology.

Usage

```r

tree_intra_phyglm(
 formula,
 data,
 phy,
 Vy = NULL,
 Vx = NULL,
)```
```r
y.transf = NULL,
x.transf = NULL,
n.intra = 10,
n.tree = 2,
distrib = "normal",
model = "lambda",
track = TRUE,
```

Arguments

- **formula**: The model formula: `response~predictor`.
- **data**: Data frame containing species traits and species names as row names.
- **phy**: A phylogeny (class 'phylo', see ?ape).
- **Vy**: Name of the column containing the standard deviation or the standard error of the response variable. When information is not available for one taxon, the value can be 0 or NA.
- **Vx**: Name of the column containing the standard deviation or the standard error of the predictor variable. When information is not available for one taxon, the value can be 0 or NA.
- **y.transf**: Transformation for the response variable (e.g. log or sqrt). Please use this argument instead of transforming data in the formula directly (see also details below).
- **x.transf**: Transformation for the predictor variable (e.g. log or sqrt). Please use this argument instead of transforming data in the formula directly (see also details below).
- **n.intra**: Number of times to repeat the analysis generating a random value for response and/or predictor variables. If NULL, `n.intra = 30`.
- **n.tree**: Number of times to repeat the analysis with `n` different trees picked randomly in the multiPhylo file. If NULL, `n.tree = 2`.
- **distrib**: A character string indicating which distribution to use to generate a random value for the response and/or predictor variables. Default is normal distribution: "normal" (function `rnorm`). Uniform distribution: "uniform" (runif). Warning: we recommend to use normal distribution with Vy or Vy = standard deviation of the mean.
- **model**: The phylogenetic model to use (see Details). Default is lambda.
- **track**: Print a report tracking function progress (default = TRUE)
- **...**: Further arguments to be passed to `phylolm`.

Details

This function fits a phylogenetic linear regression model using `phylolm` to `n` trees (`n.tree`), randomly picked in a multiPhylo file. The regression is also repeated `n.intra` times. At each iteration, the function generates a random value for each row in the dataset using the standard deviation or
errors supplied and assuming a normal or uniform distribution. To calculate means and se for your raw data, you can use the summarySE function from the package Rmisc.

" All phylogenetic models from phylolm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value

The function tree_intra_phylm returns a list with the following components:

formula: The formula
data: Original full dataset
sensi.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for each regression using a value in the interval of variation and a different phylogenetic tree.
N.obs: Size of the dataset after matching it with tree tips and removing NA’s.
stats: Main statistics for model parameters.CI_low and CI_high are the lower and upper limits of the 95
all.stats: Complete statistics for model parameters. Fields coded using all describe statistics due to both intraspecific variation and phylogenetic uncertainty. Fields coded using intra describe statistics due to intraspecific variation only. Fields coded using tree describe statistics due to phylogenetic uncertainty only. sd is the standard deviation. CI_low and CI_high are the lower and upper limits of the 95
sp.pb: Species that caused problems with data transformation (see details above).

Warning

When VY or VX exceed Y or X, respectively, negative (or null) values can be generated, this might cause problems for data transformation (e.g. log-transformation). In these cases, the function will skip the simulation. This problem can be solved by increasing times, changing the transformation type and/or checking the target species in output$sp.pb.

Author(s)

Caterina Penone & Pablo Ariel Martinez

References

See Also

phyolmlm, tree.phylm, intra.phylm, tree_intra_phyglm, sensi.plot

Examples

Load data:
data(alien)
run PGLS accounting for intraspecific and phylogenetic variation:
intra.tree <- tree_intra_phyglm(gestaLen ~ adultMass, data = alien$data, phy = alien$phy, Vy = "SD_gesta", n.intra = 3, n.tree = 3, y.transf = log, x.transf = log)
To check summary results:
summary(intra.tree)
Visual diagnostics
sensi_plot(intra.tree, uncer.type = "all") # or uncer.type = "tree", uncer.type = "intra"

tree_phyglm

Phylogenetic uncertainty - Phylogenetic Logistic Regression

Description

Performs Phylogenetic logistic regression evaluating uncertainty in trees topology.

Usage

tree_phyglm(formula, data, phy, n.tree = 2, btol = 50, track = TRUE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>The model formula</td>
</tr>
<tr>
<td>data</td>
<td>Data frame containing species traits with species as row names.</td>
</tr>
<tr>
<td>phy</td>
<td>A phylogeny (class 'multiPhylo', see ?ape).</td>
</tr>
<tr>
<td>n.tree</td>
<td>Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. If NULL, n.tree = 2</td>
</tr>
<tr>
<td>btol</td>
<td>Bound on searching space. For details see phyglm.</td>
</tr>
<tr>
<td>track</td>
<td>Print a report tracking function progress (default = TRUE)</td>
</tr>
<tr>
<td>...</td>
<td>Further arguments to be passed to phyglm</td>
</tr>
</tbody>
</table>

Details

This function fits a phylogenetic logistic regression model using phyglm to n trees, randomly picked in a multiPhylo file.

Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi.plot.
The function `tree_phyglm` returns a list with the following components:

- **formula**: The formula
- **data**: Original full dataset
- **sensi.estimates**: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for each regression with a different phylogenetic tree.
- **N.obs**: Size of the dataset after matching it with tree tips and removing NA’s.
- **stats**: Main statistics for model parameters. CI_low and CI_high are the lower and upper limits of the 95
- **all.stats**: Complete statistics for model parameters. sd_intra is the standard deviation due to intraspecific variation. CI_low and CI_high are the lower and upper limits of the 95

Author(s)

Caterina Penone & Pablo Ariel Martinez

References

See Also

`phyloglm`, `sensi_plot.tree_phylm`

Examples

```r
### Simulating Data:
set.seed(6987)
mp = rmTree(150, N = 30)
x = rTrait(n=1,phy=mp[[1]])
X = cbind(rep(1,150),x)
y = rbinTrait(n=1,phy=mp[[1]], beta=c(-1,0.5), alpha=.7 ,X=X)
dat = data.frame(y, x)
# Run sensitivity analysis:
tree <- tree_phyglm(y ~ x, data = dat, phy = mp, n.tree = 30)
# summary results:
summary(tree)
# Visual diagnostics for phylogenetic uncertainty:
sensi_plot(tree)
```
`tree_phylm`

Phylogenetic uncertainty - Phylogenetic Linear Regression

Description

Performs Phylogenetic linear regression evaluating uncertainty in trees topology.

Usage

```r
tree_phylm(formula, data, phy, n.tree = 2, model = "lambda", track = TRUE, ...)
```

Arguments

- `formula`: The model formula
- `data`: Data frame containing species traits with species as row names.
- `phy`: A phylogeny (class 'multiPhylo', see ?ape).
- `n.tree`: Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. If NULL, n.tree = 2
- `model`: The phylogenetic model to use (see Details). Default is lambda.
- `track`: Print a report tracking function progress (default = TRUE)
- `...`: Further arguments to be passed to phylolm

Details

This function fits a phylogenetic linear regression model using `phylolm` to n trees, randomly picked in a multiPhylo file.

All phylogenetic models from `phylolm` can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using `sensi_plot`.

Value

The function `tree_phylm` returns a list with the following components:

- `formula`: The formula
- `data`: Original full dataset
- `sensi.estimates`: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda) for each regression with a different phylogenetic tree.
- `N.obs`: Size of the dataset after matching it with tree tips and removing NA’s.
- `stats`: Main statistics for model parameters. CI_low and CI_high are the lower and upper limits of the 95
- `all.stats`: Complete statistics for model parameters. sd_intra is the standard deviation due to intraspecific variation. CI_low and CI_high are the lower and upper limits of the 95
Author(s)

Caterina Penone & Pablo Ariel Martinez

References

See Also

phylolm, sensi_plot, tree_phyglm

Examples

Load data:
data(alien)
This analysis needs a multiphylo file:
class(alien$phy)
alien$phy
run PGLS accounting for phylogenetic uncertain:
tree <- tree_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy,
data = alien$data, n.tree = 30)
To check summary results:
summary(tree)
Visual diagnostics
sensi_plot(tree)
You can specify which graph to print:
sensi_plot(tree, graphs = 3)
Arguments

- **trait.col** The name of a column in the provided data frame with trait to be analyzed (e.g. "Body_mass").
- **data** Data frame containing species traits with row names matching tips in phy.
- **phy** A phylogeny (class 'phylo') matching data.
- **n.tree** Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file. (If n.tree = "all", phylogenetic signal will be estimated among the all set of trees provided in phy)
- **method** Method to compute signal: can be "K" or "lambda".
- **track** Print a report tracking function progress (default = TRUE)
- **...** Further arguments to be passed to phylosig

Details

This function estimates phylogenetic signal using phylosig to n trees, randomly picked in a multiPhylo file. Output can be visualised using sensi_plot.

Value

The function tree_physig returns a list with the following components:

- **trait**: Column name of the trait analysed
- **data**: Original full dataset
- **tree.physig.estimates**: Three number, phylogenetic signal estimate (lambda or K) and the p-value for each run with a different phylogenetic tree.
- **N.obs**: Size of the dataset after matching it with tree tips and removing NA’s.
- **stats**: Main statistics for phylogenetic estimates.CI_low and CI_high are the lower and upper limits of the 95

Note

The argument "se" from phylosig is not available in this function. Use the argument "V" instead with intra_physig to indicate the name of the column containing the standard deviation or the standard error of the trait variable instead.

Author(s)

Caterina Penone & Gustavo Paterno
References

See Also

phylosig, tree.phylm, sensi_plot

Examples

Load data:
data(alien)
alien.data<-alien$data
alien.phy<-alien$phy
Logtransform data
alien.data$logMass <- log(alien.data$adultMass)
Run sensitivity analysis:
tree <- tree_physig(trait.col = "logMass", data = alien.data, phy = alien.phy, n.tree = 10)
summary(tree)
sensi_plot(tree)
sensi_plot(tree, graphs = 1)
sensi_plot(tree, graphs = 2)

Interaction between phylogenetic uncertainty and sensitivity to species sampling - Phylogenetic Logistic Regression

Description

Performs analyses of sensitivity to species sampling by randomly removing species and detecting the effects on parameter estimates in phylogenetic logistic regression, while evaluating uncertainty in trees topology.

Usage

tree_samp_phyglm(
 formula,
 data,
 phy,
)
n.sim = 30,
n.tree = 2,
breaks = seq(0.1, 0.5, 0.1),
btol = 50,
track = TRUE,
...)

Arguments

formula The model formula
data Data frame containing species traits with row names matching tips in phy.
phy A phylogeny (class 'phylo') matching data.
n.sim The number of times species are randomly deleted for each break.
n.tree Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file.
brakes A vector containing the percentages of species to remove.
btol Bound on searching space. For details see phyloglm
track Print a report tracking function progress (default = TRUE)
... Further arguments to be passed to phyloglm

Details

This function randomly removes a given percentage of species (controlled by breaks) from the full phylogenetic logistic regression, fits a phylogenetic logistic regression model without these species using phyloglm, repeats this many times (controlled by times), stores the results and calculates the effects on model parameters. It repeats this operation using n trees, randomly picked in a multiPhylo file.

Only logistic regression using the "logistic_MPLE"-method from phyloglm is implemented.

Currently, this function can only implement simple logistic models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value

The function samp_phyln returns a list with the following components:

formula: The formula
full.model.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda or kappa) for the full model without deleted species.
sensi.estimates: A data frame with all simulation estimates. Each row represents a model re-run with a given number of species n.remov removed, representing n.percent of the full dataset. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC)
and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported. Lastly we reported the standardised difference in intercept (sdif_intercept) and slope (sdif_estimate).

sign.analysis For each break (i.e. each percentage of species removed) this reports the percentage of statistically significant (at p<0.05) intercepts (perc_sign_intercept) over all repetitions as well as the percentage of statistically significant (at p<0.05) slopes (perc_sign_estimate).

data: Original full dataset.

Note

Please be aware that dropping species may reduce power to detect significant slopes/intercepts and may partially be responsible for a potential effect of species removal on p-values. Please also consult standardised differences in the (summary) output.

Author(s)

Gustavo Paterno, Gijsbert D.A. Werner & Caterina Penone

References

See Also

phyloglm, samp_phyglm, tree_phyglm, tree_samp_phylm, sensi_plot

Examples

```r
## Not run:
# Simulate Data:
set.seed(6987)
mphy = rmtree(100, N = 30)
x = rTrait(n=1,phy=mphy[[1]])
X = cbind(rep(1,100),x)
y = rbinTrait(n=1,phy=mphy[[1]], beta=c(-1,0.5), alpha=.7 ,X=X)
dat = data.frame(y, x)
# Run sensitivity analysis:
tree_samp <- tree_samp_phyglm(y ~ x, data = dat, phy = mphy, n.tree = 3, n.sim=10)
summary(tree_samp)
sensi_plot(tree_samp)
sensi_plot(tree_samp, graphs = 1)
sensi_plot(tree_samp, graphs = 2)
## End(Not run)
```
Description

Performs analyses of sensitivity to species sampling by randomly removing species and detecting the effects on parameter estimates in a phylogenetic linear regression, while evaluating uncertainty in trees topology.

Usage

tree_samp_phylm(
 formula, # The model formula
 data, # Data frame containing species traits with row names matching tips in phy.
 phy, # A phylogeny (class 'phylo') matching data.
 n.sim = 30, # The number of times species are randomly deleted for each break.
 n.tree = 2, # Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file.
 breaks = seq(0.1, 0.5, 0.1), # A vector containing the percentages of species to remove.
 model = "lambda", # The phylogenetic model to use (see Details). Default is lambda.
 track = TRUE, # Print a report tracking function progress (default = TRUE)
 ... # Further arguments to be passed to phylolm
)

Arguments

- `formula`: The model formula
- `data`: Data frame containing species traits with row names matching tips in phy.
- `phy`: A phylogeny (class 'phylo') matching data.
- `n.sim`: The number of times species are randomly deleted for each break.
- `n.tree`: Number of times to repeat the analysis with n different trees picked randomly in the multiPhylo file.
- `breaks`: A vector containing the percentages of species to remove.
- `model`: The phylogenetic model to use (see Details). Default is lambda.
- `track`: Print a report tracking function progress (default = TRUE)
- `...`: Further arguments to be passed to phylolm

Details

This function randomly removes a given percentage of species (controlled by `breaks`) from the full phylogenetic linear regression, fits a phylogenetic linear regression model without these species using `phylolm`, repeats this many times (controlled by `n.sim`), stores the results and calculates the effects on model parameters. It repeats this operation using `n.tree` randomly picked in a multiPhylo file.
All phylogenetic models from phylolm can be used, i.e. BM, OUfixedRoot, OUrandomRoot, lambda, kappa, delta, EB and trend. See ?phylolm for details.

Currently, this function can only implement simple linear models (i.e. trait predictor). In the future we will implement more complex models.

Output can be visualised using sensi_plot.

Value

The function samp_phylm returns a list with the following components:

formula: The formula

full.model.estimates: Coefficients, aic and the optimised value of the phylogenetic parameter (e.g. lambda or kappa) for the full model without deleted species.

sensi.estimates: A data frame with all simulation estimates. Each row represents a model re-run with a given number of species n.remov removed, representing n.percent of the full dataset. Columns report the calculated regression intercept (intercept), difference between simulation intercept and full model intercept (DIFintercept), the percentage of change in intercept compared to the full model (intercept.perc) and intercept p-value (pval.intercept). All these parameters are also reported for the regression slope (DIFestimate etc.). Additionally, model aic value (AIC) and the optimised value (optpar) of the phylogenetic parameter (e.g. kappa or lambda, depending on the phylogenetic model used) are reported. Lastly we reported the standardised difference in intercept (sDIFintercept) and slope (sDIFestimate).

sign.analysis: For each break (i.e. each percentage of species removed) this reports the percentage of statistically significant (at p<0.05) intercepts (perc.sign.intercept) over all repetitions as well as the percentage of statistically significant (at p<0.05) slopes (perc.sign.estimate).

data: Original full dataset. # * @note Please be aware that dropping species may reduce power to detect significant slopes/intercepts and may partially be responsible for a potential effect of species removal on p-values. Please also consult standardised differences in the (summary) output.

Author(s)

Gustavo Paterno, Gijsbert D.A. Werner & Caterina Penone

References

See Also

phylolm, samp_phylm, tree_phylm, tree_samp_phyglm, sensi_plot
Examples

```r
## Not run:
# Load data:
data(alien)
# Run analysis:
samp <- tree_samp_phylm(log(gestaLen) ~ log(adultMass), phy = alien$phy,
                          data = alien$data, n.tree = 5, n.sim=10)
sample(samp)
head(samp$sensi.estimates)
# Visual diagnostics
sensi_plot(samp)
sensi_plot(samp, graphs = 1)
sensi_plot(samp, graphs = 2)

## End(Not run)
```
Index

*Topic datasets
 alien, 3
 alien.data, 4
 alien.phy, 5
 primates, 56
 primates.data, 57
 primates.phy, 58

alien, 3
alien.data, 4
alien.phy, 5

bd.ms, 94
bd.km, 94

clade_continuous, 6, 77
clade_discrete, 8, 77
clade_phyglm, 11, 15, 31, 53, 97
clade_phylm, 13, 13, 18, 34, 53, 76, 99
clade_physig, 16

fitContinuous, 7, 8, 18, 19, 59, 60, 100, 101
fitDiscrete, 9, 10, 21, 22, 62, 63, 102, 103

ggplot, 73–75, 78–80, 83–87, 89–93

influ_continuous, 18, 79
influ_discrete, 20, 79
influ_phyglm, 13, 22, 26, 36, 65, 106
influ_phylm, 15, 24, 24, 28, 39, 68, 108
influ_physig, 27
intra_clade_phyglm, 29, 34
intra_clade_phylm, 31, 31, 81
intra_influ_phyglm, 34, 39, 82
intra_influ_phylm, 36, 37, 82
intra_phyglm, 31, 36, 40, 49, 53, 111
intra_phylm, 34, 39, 42, 52, 53, 74, 80, 86, 90, 92, 93, 114
intra_physig, 17, 28, 45, 46, 69, 118
intra_samp_phyglm, 47, 52
intra_samp_phylm, 49, 50

match_dataphy, 53
miss.phylo.d, 55

phylo.d, 55, 56
phyloglm, 12, 13, 23, 24, 30, 31, 41, 42, 64, 65, 96, 97, 105, 106, 110, 111, 114, 115, 120, 121
primates, 56
primates.data, 57
primates.phy, 58

rnorm, 30, 32, 35, 38, 41, 43, 46, 48, 51, 109, 112
runif, 30, 32, 35, 38, 41, 43, 46, 48, 51, 109, 112

samp_continuous, 59, 85
samp_discrete, 61, 85
samp_phyglm, 24, 49, 53, 64, 68, 83, 84, 91, 121
samp_phylm, 15, 26, 52, 53, 65, 66, 70, 75, 83, 84, 91, 123
samp_physig, 68, 75
sensi_plot.clade.physig, 72, 72
sensi_plot.influ.physig, 72, 73
sensi_plot.intra.physig, 72, 74
sensi_plot.samp.physig, 72, 75
sensi_plot.sensiClade, 71, 76
sensi_plot.sensiClade.TraitEvol, 72, 77
sensi_plot.sensiInflu, 71, 78
sensi_plot.sensiInflu.TraitEvol, 72, 79
sensi_plot.sensiIntra, 71, 80
sensi_plot.sensiIntra_Clade, 72, 81
sensi_plot.sensiIntra_Influ, 72, 82
sensi_plot.sensiIntra_Samp, 72, 83
sensi_plot.sensiSamp, 71, 84
sensi_plot.sensiSamp.TraitEvol, 72, 85
sensi_plot.sensiTree, 71, 86
sensi_plot.sensiTree.TraitEvol, 72, 87
sensi_plot.sensiTree_Clade, 72, 88
sensi_plot.sensiTree_Influ, 72, 89
sensi_plot.sensiTree_Intra, 72, 90
sensi_plot.sensiTree_Samp, 72, 91
sensi_plot.tree.bd, 92
sensi_plot.tree.physig, 72, 92
sensiPhy, 70

tree_bd, 93
tree_clade.phylm, 95, 99
tree_clade.phylm, 88, 97, 97
tree_continuous, 87, 100
tree_discrete, 87, 102
tree_influ.phylm, 104, 106, 108
tree_influ.phylm, 106
tree_intra.phylm, 109, 114
tree_intra.phylm, 111, 111
tree.phylm, 53, 97, 106, 111, 114, 117, 121
tree_physig, 117
tree_samp.phylm, 119, 123
tree_samp.phylm, 121, 122