Package ‘sgd’

July 13, 2019

Type Package
Title Stochastic Gradient Descent for Scalable Estimation
Version 1.1.1
Maintainer Junhyung Lyle Kim <lylejkim@gmail.com>
Description A fast and flexible set of tools for large scale estimation. It features many stochastic gradient methods, built-in models, visualization tools, automated hyperparameter tuning, model checking, interval estimation, and convergence diagnostics.

URL https://github.com/airoldilab/sgd
BugReports https://github.com/airoldilab/sgd/issues
License GPL-2
Imports ggplot2, MASS, methods, Rcpp (>= 0.11.3), stats
Suggests bigmemory, glmnet, gridExtra, R.rsp, testthat
LinkingTo BH, bigmemory, Rcpp, RcppArmadillo
LazyData yes
VignetteBuilder R.rsp
RoxygenNote 6.1.1
NeedsCompilation yes
Author Junhyung Lyle Kim [cre, aut],
Dustin Tran [aut],
Panos Toulis [aut],
Tian Lian [ctb],
Ye Kuang [ctb],
Edoardo Airoldi [ctb]
Repository CRAN
Date/Publication 2019-07-12 22:11:28 UTC
R topics documented:

- coef.sgd
- fitted.sgd
- plot.sgd
- predict.sgd
- print.sgd
- residuals.sgd
- sgd
- winequality

Index

| coef.sgd | Extract Model Coefficients |

Description

Extract model coefficients from sgd objects. coefficients is an alias for it.

Usage

```r
## S3 method for class 'sgd'
coef(object, ...)
```

Arguments

- `object`: object of class sgd.
- `...`: some methods for this generic require additional arguments. None are used in this method.

Value

Coefficients extracted from the model object `object`.

| fitted.sgd | Extract Model Fitted Values |

Description

Extract fitted values from sgd objects. fitted.values is an alias for it.

Usage

```r
## S3 method for class 'sgd'
fitted(object, ...)
```
Arguments

 object object of class sgd.
 ... some methods for this generic require additional arguments. None are used in
 this method.

Value

Fitted values extracted from the object object.

Description

Plot objects of class sgd.

Usage

S3 method for class 'sgd'
plot(x, ..., type = "mse", xaxis = "iteration")

S3 method for class 'list'
plot(x, ..., type = "mse", xaxis = "iteration")

Arguments

 x object of class sgd.
 ... additional arguments used for each type of plot. See ‘Details’.
 type character specifying the type of plot: "mse", "clf", "mse-param". See ‘De-
 tails’. Default is "mse".
 xaxis character specifying the x-axis of plot: "iteration" plots the y values over
 the log-iteration of the algorithm; "runtime" plots the y values over the
time in seconds to reach them. Default is "iteration".

Details

Types of plots available:

 mse Mean squared error in predictions, which takes the following arguments:
 x_test test set
 y_test test responses to compare predictions to
 clf Classification error in predictions, which takes the following arguments:
 x_test test set
 y_test test responses to compare predictions to
 mse-param Mean squared error in parameters, which takes the following arguments:
 true_param true vector of parameters to compare to
predict.sgd

Model Predictions

Description
Form predictions using the estimated model parameters from stochastic gradient descent.

Usage

S3 method for class 'sgd'
predict(object, newdata, type = "link", ...)
predict_all(object, newdata, ...)

Arguments

- object: object of class sgd.
- newdata: design matrix to form predictions on
- type: the type of prediction required. The default "link" is on the scale of the linear predictors; the alternative "response" is on the scale of the response variable. Thus for a default binomial model the default predictions are of log-odds (probabilities on logit scale) and 'type = "response"' gives the predicted probabilities. The "terms" option returns a matrix giving the fitted values of each term in the model formula on the linear predictor scale.
- ... further arguments passed to or from other methods.

Details
A column of 1’s must be included to newdata if the parameters include a bias (intercept) term.

print.sgd

Print objects of class sgd.

Description
Print objects of class sgd.

Usage

S3 method for class 'sgd'
print(x, ...)

Arguments

- x: object of class sgd.
- ... further arguments passed to or from other methods.
residuals.sgd

Extract Model Residuals

Description

Extract model residuals from sgd objects. resid is an alias for it.

Usage

S3 method for class 'sgd'
residuals(object, ...)

Arguments

- object: object of class sgd.
- ...: some methods for this generic require additional arguments. None are used in this method.

Value

Residuals extracted from the object object.

sgd

Stochastic gradient descent

Description

Run stochastic gradient descent in order to optimize the induced loss function given a model and data.

Usage

sgd(x, ...)

S3 method for class 'formula'
sgd(formula, data, model, model.control = list(),
 sgd.control = list(...), ...)

S3 method for class 'matrix'
sgd(x, y, model, model.control = list(),
 sgd.control = list(...), ...)

S3 method for class 'big.matrix'
sgd(x, y, model, model.control = list(),
 sgd.control = list(...), ...)
Arguments

- **x, y**: a design matrix and the respective vector of outcomes.
- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details can be found in "glm".
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which glm is called.
- **model**: character specifying the model to be used: "lm" (linear model), "glm" (generalized linear model), "cox" (Cox proportional hazards model), "gmm" (generalized method of moments), "m" (M-estimation). See ‘Details’.
- **model.control**: a list of parameters for controlling the model.
 - **family** ("glm") a description of the error distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.)
 - **rank** ("glm") logical. Should the rank of the design matrix be checked?
 - **fn** ("gmm") a function \(g(\theta, x) \) which returns a \(k \)-vector corresponding to the \(k \) moment conditions. It is a required argument if \(gr \) not specified.
 - **gr** ("gmm") a function to return the gradient. If unspecified, a finite-difference approximation will be used.
 - **nparams** ("gmm") number of model parameters. This is automatically determined for other models.
 - **type** ("gmm") character specifying the generalized method of moments procedure: "twostep" (Hansen, 1982), "iterative" (Hansen et al., 1996). Defaults to "iterative".
 - **wmatrix** ("gmm") weighting matrix to be used in the loss function. Defaults to the identity matrix.
 - **loss** ("m") character specifying the loss function to be used in the estimating equation. Default is the Huber loss.
- **lambda1**: L1 regularization parameter. Default is 0.
- **lambda2**: L2 regularization parameter. Default is 0.

- **sgd.control**: an optional list of parameters for controlling the estimation.
 - **method**: character specifying the method to be used: "sgd", "implicit", "asgd", "ai-sgd", "momentum", "nesterov". Default is "ai-sgd". See ‘Details’.
 - **lr**: character specifying the learning rate to be used: "one-dim", "one-dim-eigen", "d-dim", "adagrad", "rmsprop". Default is "one-dim". See ‘Details’.
 - **lr.control**: vector of scalar hyperparameters one can set dependent on the learning rate. For hyperparameters aimed to be left as default, specify NA in the corresponding entries. See ‘Details’.
 - **start**: starting values for the parameter estimates. Default is random initialization around zero.
size number of SGD estimates to store for diagnostic purposes (distributed log-uniformly over total number of iterations)

reltol relative convergence tolerance. The algorithm stops if it is unable to change the relative mean squared difference in the parameters by more than the amount. Default is 1e-05.

nnpasses the maximum number of passes over the data. Default is 3.

pass logical. Should tol be ignored and run the algorithm for all of npasses?

shuffle logical. Should the algorithm shuffle the data set including for each pass?

verbose logical. Should the algorithm print progress?

Details

Models: The Cox model assumes that the survival data is ordered when passed in, i.e., such that the risk set of an observation i is all data points after it.

Methods:

sgd stochastic gradient descent (Robbins and Monro, 1951)

implicit implicit stochastic gradient descent (Toulis et al., 2014)

asgd stochastic gradient with averaging (Polyak and Juditsky, 1992)

ai-sgd implicit stochastic gradient with averaging (Toulis et al., 2015)

momentum "classical" momentum (Polyak, 1964)

nesterov Nesterov’s accelerated gradient (Nesterov, 1983)

Learning rates and hyperparameters:

one-dim scalar value prescribed in Xu (2011) as

$$a_n = scale \cdot gamma/(1 + alpha \cdot gamma \cdot n)^{(c)}$$

where the defaults are lr.control = (scale=1, gamma=1, alpha=1, c) where c is 1 if implemented without averaging, 2/3 if with averaging

one-dim-eigen diagonal matrix lr.control = NULL

d-dim diagonal matrix lr.control = (epsilon=1e-6)

adagrad diagonal matrix prescribed in Duchi et al. (2011) as lr.control = (eta=1, epsilon=1e-6)

rmsprop diagonal matrix prescribed in Tieleman and Hinton (2012) as lr.control = (eta=1, gamma=0.9, epsilon=1e-6)

Value

An object of class "sgd", which is a list containing the following components:

- model name of the model
- coefficients a named vector of coefficients
- converged logical. Was the algorithm judged to have converged?
- estimates estimates from algorithm stored at each iteration specified in pos
- fitted.values the fitted mean values
pos vector of indices specifying the iteration number each estimate was stored for
residuals the residuals, that is response minus fitted values
times vector of times in seconds it took to complete the number of iterations specified in pos
model.out a list of model-specific output attributes

Author(s)
Dustin Tran, Tian Lan, Panos Toulis, Ye Kuang, Edoardo Airoldi

References

Dimensions

Examples
```r
## Linear regression
set.seed(42)
N <- 1e4
d <- 5
X <- matrix(rnorm(N*d), ncol=d)
theta <- rep(5, d+1)
eps <- rnorm(N)
y <- cbind(1, X) %*% theta + eps
data <- data.frame(y=y, x=X)
sgd.theta <- sgd(y ~ ., data=data, model="lm")
sprintf("Mean squared error: %0.3f", mean((theta - as.numeric(sgd.theta$coefficients))^2))
```
winequality

Wine quality data of white wine samples from Portugal

Description

This dataset is a collection of white "Vinho Verde" wine samples from the north of Portugal. Due to privacy and logistic issues, only physicochemical (inputs) and sensory (the output) variables are available (e.g. there is no data about grape types, wine brand, wine selling price, etc.).

Usage

winequality

Format

A data frame with 4898 rows and 12 variables

• fixed acidity.
• volatile acidity.
• citric acid.
• residual sugar.
• chlorides.
• free sulfur dioxide.
• total sulfur dioxide.
• density.
• pH.
• sulphates.
• alcohol.
• quality (score between 0 and 10).

Source

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
Index

*Topic **datasets**
 winequality, 9

as.data.frame, 6

coef.sgd, 2

family, 6
fitted.sgd, 2
formula, 6

glm, 6

plot.list(plot.sgd), 3
plot.sgd, 3
predict.sgd, 4
predict_all(predict.sgd), 4
print.sgd, 4

residuals.sgd, 5

sgd, 5

winequality, 9