Package ‘shapr’

September 4, 2020

Version 0.1.3

Title Prediction Explanation with Dependence-Aware Shapley Values

Description Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements the method described in Aas, Jullum and Løland (2019) <arXiv:1903.10464>, which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values.

BugReports https://github.com/NorskRegnesentral/shapr/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

ByteCompile true

Language en-US

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Imports stats, data.table, Rcpp (>= 0.12.15), condMVNorm, mvnfast, Matrix

Suggests ranger, xgboost, mgcv, testthat, knitr, rmarkdown, roxygen2, MASS, ggplot2, gbm

LinkingTo RcppArmadillo, Rcpp

VignetteBuilder knitr

NeedsCompilation yes

Author Nikolai Sellereite [aut] (https://orcid.org/0000-0002-4671-0337), Martin Jullum [cre, aut] (https://orcid.org/0000-0003-3908-5155), Anders Løland [ctb], Jens Christian Wahl [ctb],
R topics documented:

explain ... 2
feature_combinations ... 5
plot.shapr ... 7
shapr ... 8

Index 11

explain Explain the output of machine learning models with more accurately estimated Shapley values

Description

Explain the output of machine learning models with more accurately estimated Shapley values

Usage

explain(x, explainer, approach, prediction_zero, ...)

S3 method for class 'empirical'
explain(
 x,
 explainer,
 approach,
 prediction_zero,
 type = "fixed_sigma",
 fixed_sigma_vec = 0.1,
 n_samples_aicc = 1000,
 eval_max_aicc = 20,
 start_aicc = 0.1,
 w_threshold = 0.95,
 ...)

S3 method for class 'gaussian'
explain(
 x,
 explainer,
explain

 approach,
 prediction_zero,
 mu = NULL,
 cov_mat = NULL,
 ...
)

S3 method for class 'copula'
explain(x, explainer, approach, prediction_zero, ...)

S3 method for class 'combined'
explain(
 x,
 explainer,
 approach,
 prediction_zero,
 mu = NULL,
 cov_mat = NULL,
 ...
)

Arguments

 x
 A matrix or data.frame. Contains the features, whose predictions ought to
 be explained (test data).

 explainer
 An explainer object to use for explaining the observations. See shapr.

 approach
 Character vector of length 1 or n_features. n_features equals the total num-
 ber of features in the model. All elements should either be "gaussian", "copula"
 or "empirical". See details for more information.

 prediction_zero
 Numeric. The prediction value for unseen data, typically equal to the mean of
 the response.

... Additional arguments passed to prepare_data

 type
 Character. Should be equal to either "independence", "fixed_sigma", "AICc_each_k"
 or "AICc_full".

 fixed_sigma_vec
 Numeric. Represents the kernel bandwidth. Note that this argument is only
 applicable when approach = "empirical", and type = "fixed_sigma"

 n_samples_aicc
 Positive integer. Number of samples to consider in AICC optimization. Note
 that this argument is only applicable when approach = "empirical", and type
 is either equal to "AICc_each_k" or "AICc_full"

 eval_max_aicc
 Positive integer. Maximum number of iterations when optimizing the AICc.
 Note that this argument is only applicable when approach = "empirical", and
 type is either equal to "AICc_each_k" or "AICc_full"

 start_aicc
 Numeric. Start value of sigma when optimizing the AICc. Note that this argu-
 ment is only applicable when approach = "empirical", and type is either
 equal to "AICc_each_k" or "AICc_full"
explain

w_threshold Positive integer between 0 and 1.
mu Numeric vector. (Optional) Containing the mean of the data generating distribution. If NULL the expected values are estimated from the data. Note that this is only used when approach = "gaussian".
cov_mat Numeric matrix. (Optional) Containing the covariance matrix of the data generating distribution. NULL means it is estimated from the data if needed (in the Gaussian approach).

Details

The most important thing to notice is that shapr has implemented three different approaches for estimating the conditional distributions of the data, namely "empirical", "gaussian" and "copula".

In addition to this the user will also have the option of combining the three approaches. E.g. if you’re in a situation where you have trained a model the consists of 10 features, and you’d like to use the "gaussian" approach when you condition on a single feature, the "empirical" approach if you condition on 2-5 features, and "copula" version if you condition on more than 5 features this can be done by simply passing approach = c("gaussian",rep("empirical",4),rep("copula",5)). If "approach[i]" = "gaussian" it means that you’d like to use the "gaussian" approach when conditioning on i features.

Value

Object of class c("shapr", "list"). Contains the following items:

dt data.table
model Model object
p Numeric vector
x_test data.table

Note that the returned items model, p and x_test are mostly added due to the implementation of plot.shapr. If you only want to look at the numerical results it is sufficient to focus on dt. dt is a data.table where the number of rows equals the number of observations you’d like to explain, and the number of columns equals m +1, where m equals the total number of features in your model.

If dt[i,j + 1] > 0 it indicates that the j-th feature increased the prediction for the i-th observation. Likewise, if dt[i,j + 1] < 0 it indicates that the j-th feature decreased the prediction for the i-th observation. The magnitude of the value is also important to notice. E.g. if dt[i,k + 1] and dt[i,j + 1] are greater than 0, where j != k, and dt[i,k + 1] > dt[i,j + 1] this indicates that feature j and k both increased the value of the prediction, but that the effect of the k-th feature was larger than the j-th feature.

The first column in dt, called ‘none’, is the prediction value not assigned to any of the features (\(\phi_0\)). It’s equal for all observations and set by the user through the argument prediction_zero. In theory this value should be the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.

Author(s)

Camilla Lingjaerde, Nikolai Sellereite
Examples

Load example data
data("Boston", package = "MASS")

Split data into test- and training data
x_train <- head(Boston, -3)
x_test <- tail(Boston, 3)

Fit a linear model
model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)

Create an explainer object
explainer <- shapr(x_train, model)

Explain predictions
p <- mean(x_train$medv)

Empirical approach
explain1 <- explain(x_test, explainer, approach = "empirical", prediction_zero = p, n_samples = 1e2)

Gaussian approach
explain2 <- explain(x_test, explainer, approach = "gaussian", prediction_zero = p, n_samples = 1e2)

Gaussian copula approach
explain3 <- explain(x_test, explainer, approach = "copula", prediction_zero = p, n_samples = 1e2)

Combined approach
approach <- c("gaussian", "gaussian", "empirical", "empirical")
explain4 <- explain(x_test, explainer, approach = approach, prediction_zero = p, n_samples = 1e2)

Print the Shapley values
print(explain1$dt)

Plot the results
plot(explain1)

feature_combinations
Define feature combinations, and fetch additional information about each unique combination

Description

Define feature combinations, and fetch additional information about each unique combination

Usage

```r
feature_combinations(
m,
  exact = TRUE,
```

```r
```
n_combinations = 200,
weight_zero_m = 10^6
)

Arguments

m
Positive integer. Total number of features.

exact
Logical. If TRUE all \(2^m\) combinations are generated, otherwise a subsample of the combinations is used.

n_combinations
Positive integer. Note that if exact = TRUE, n_combinations is ignored. However, if \(m > 12\) you’ll need to add a positive integer value for n_combinations.

weight_zero_m
Numeric. The value to use as a replacement for infinite combination weights when doing numerical operations.

Value

A data.table that contains the following columns:

id_combination
Positive integer. Represents a unique key for each combination. Note that the table is sorted by id_combination, so that is always equal to \(x["id_combination"] = 1:nrow(x)\).

features
List. Each item of the list is an integer vector where features[[i]] represents the indices of the features included in combination i. Note that all the items are sorted such that features[[i]] == sort(features[[i]]) is always true.

n_features
Vector of positive integers. n_features[i] equals the number of features in combination i, i.e. n_features[i] = length(features[[i]])..

N
Positive integer. The number of unique ways to sample \(n\) features from \(m\) different features, without replacement.

Author(s)

Nikolai Sellereite, Martin Jullum

Examples

All combinations
x <- feature_combinations(m = 3)
nrow(x) # Equals 2^3 = 8

Subsample of combinations
x <- feature_combinations(exact = FALSE, m = 10, n_combinations = 1e2)
Description

Plots the individual prediction explanations.

Usage

```r
## S3 method for class 'shapr'
plot(
x, digits = 3, plot_phi0 = TRUE, index_x_test = NULL, top_k_features = NULL, ...
)
```

Arguments

- `x` An shapr object. See `explain`.
- `digits` Integer. Number of significant digits to use in the feature description
- `plot_phi0` Logical. Whether to include \(\phi_0 \) in the plot
- `index_x_test` Integer vector. Which of the test observations to plot. E.g. if you have explained 10 observations using `explain`, you can generate a plot for the first 5 observations by setting `index_x_test = 1:5`.
- `top_k_features` Integer. How many features to include in the plot. E.g. if you have 15 features in your model you can plot the 5 most important features, for each explanation, by setting `top_k_features = 1:5`.
- `...` Currently not used.

Details

See vignette("understanding_shapr",package = "shapr") for an example of how you should use the function.

Value

A ggplot object with plots of the Shapley value explanations

Author(s)

Martin Jullum
Examples

```r
# Load example data
data("Boston", package = "MASS")

# Split data into test- and training data
x_train <- head(Boston, -3)
x_test <- tail(Boston, 3)

# Fit a linear model
model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)

# Create an explainer object
explainer <- shapr(x_train, model)

# Explain predictions
p <- mean(x_train$medv)

# Empirical approach
explanation <- explain(x_test,
  explainer,
  approach = "empirical",
  prediction_zero = p,
  n_samples = 1e2)

# Plot the explanation (this function)
plot(explanation)
```

shapr

Create an explainer object with Shapley weights for test data.

Description

Create an explainer object with Shapley weights for test data.

Usage

`shapr(x, model, n_combinations = NULL, feature_labels = NULL)`

Arguments

- `x` : Numeric matrix or data.frame. Contains the data used for training the model.
- `model` : The model whose predictions we want to explain. See predict_model for more information about which models shapr supports natively.
- `n_combinations` : Integer. The number of feature combinations to sample. If NULL, the exact method is used and all combinations are considered. The maximum number of combinations equals $2^{\text{ncol}(x)}$.
- `feature_labels` : Character vector. The labels/names of the features used for training the model. Only applicable if you are using a custom model. Otherwise the features in use are extracted from model.
Value

Named list that contains the following items:

- **exact** Boolean. Equals TRUE if \(n_{\text{combinations}} = \text{NULL} \) or \(n_{\text{combinations}} < 2^{\text{ncol}(x)} \), otherwise FALSE.

- **n_features** Positive integer. The number of columns in \(x \)

- **model_type** Character. Returned value after calling `model_type(model)`

- **S** Binary matrix. The number of rows equals the number of unique combinations, and the number of columns equals the total number of features. I.e. let's say we have a case with three features. In that case we have \(2^3 = 8 \) unique combinations. If the j-th observation for the i-th row equals 1 it indicates that the j-th feature is present in the i-th combination. Otherwise it equals 0.

- **W** Second item

- **X** data.table. Returned object from `feature_combinations`

- **x_train** data.table. Transformed \(x \) into a data.table.

In addition to the items above `model`, `feature_labels` (updated with the names actually used by the model) and `n_combinations` is also present in the returned object.

Author(s)

Nikolai Sellereite

Examples

```r
# Load example data
data("Boston", package = "MASS")
df <- Boston

# Example using the exact method
x_var <- c("lstat", "rm", "dis", "indus")
y_var <- "medv"
df1 <- df[, x_var]
model <- lm(medv ~ lstat + rm + dis + indus, data = df)
explainer <- shapr(df1, model)
print(nrow(explainer$X))
# 16 (which equals 2^4)

# Example using approximation
y_var <- "medv"
x_var <- setdiff(colnames(df), y_var)
model <- lm(medv ~ ., data = df)
df2 <- df[, x_var]
explainer <- shapr(df2, model, n_combinations = 1e3)
print(nrow(explainer$X))
# Example using approximation where n_combinations > 2^m
```
x_var <- c("lstat", "rm", "dis", "indus")
y_var <- "medv"
df3 <- df[, x_var]
model <- lm(medv ~ lstat + rm + dis + indus, data = df)
explainer <- shapr(df1, model, n_combinations = 1e3)

print(nrow(explainer$X))
16 (which equals 2^4)
Index

explain, 2, 7
feature_combinations, 5, 9
plot.shapr, 7
predict_model, 8
prepare_data, 3
shapr, 3, 8