Package ‘shapr’

October 14, 2022

Version 0.2.0

Title Prediction Explanation with Dependence-Aware Shapley Values

Description Complex machine learning models are often hard to interpret. However, in many situations it is crucial to understand and explain why a model made a specific prediction. Shapley values is the only method for such prediction explanation framework with a solid theoretical foundation. Previously known methods for estimating the Shapley values do, however, assume feature independence. This package implements the method described in Aas, Jullum and Løland (2019) <arXiv:1903.10464>, which accounts for any feature dependence, and thereby produces more accurate estimates of the true Shapley values.

URL https://norskregnesentral.github.io/shapr/,
 https://github.com/NorskRegnesentral/shapr

BugReports https://github.com/NorskRegnesentral/shapr/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData true

ByteCompile true

Language en-US

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Imports stats, data.table, Rcpp (>= 0.12.15), condMVNorm, mvnfast, Matrix

Suggests ranger, xgboost, mgcv, testthat, knitr, rmarkdown, roxygen2, MASS, ggplot2, caret, gbm, party, partykit

LinkingTo RcppArmadillo, Rcpp

VignetteBuilder knitr

NeedsCompilation yes

Author Nikolai Sellereite [aut] (<https://orcid.org/0000-0002-4671-0337>),
 Martin Jullum [cre, aut] (<https://orcid.org/0000-0003-3908-5155>),
 Annabelle Redelmeier [aut],
 Anders Løland [ctb],
Explain the output of machine learning models with more accurately estimated Shapley values

Description

Explain the output of machine learning models with more accurately estimated Shapley values

Usage

```r
explain(x, explainer, approach, prediction_zero, ...)  
## S3 method for class 'empirical'
explain(
  x, explainer, approach, prediction_zero, type = "fixed_sigma",  
  fixed_sigma_vec = 0.1, n_samples_aicc = 1000, eval_max_aicc = 20,  
  start_aicc = 0.1, w_threshold = 0.95, ...
)

## S3 method for class 'gaussian'
explain(
```
explain(x, explainer, approach, prediction_zero, mu = NULL, cov_mat = NULL, ...)

S3 method for class 'copula'
explain(x, explainer, approach, prediction_zero, ...)

S3 method for class 'ctree'
explain(
 x, explainer, approach, prediction_zero, mincriterion = 0.95, minsplit = 20, minbucket = 7, sample = TRUE, ...)

S3 method for class 'combined'
explain(
 x, explainer, approach, prediction_zero, mu = NULL, cov_mat = NULL, ...)

S3 method for class 'ctree_comb_mincrit'
explain(x, explainer, approach, prediction_zero, mincriterion, ...)

Arguments

x A matrix or data.frame. Contains the the features, whose predictions ought to be explained (test data).
explainer An explainer object to use for explaining the observations. See shapr.
approach Character vector of length 1 or n_features. n_features equals the total number of features in the model. All elements should either be "gaussian", "copula", "empirical", or "ctree". See details for more information.
prediction_zero

Numeric. The prediction value for unseen data, typically equal to the mean of the response.

... Additional arguments passed to prepare_data

type

Character. Should be equal to either "independence", "fixed_sigma", "AICc_each_k" or "AICc_full".

fixed_sigma_vec

Numeric. Represents the kernel bandwidth. Note that this argument is only applicable when approach = "empirical", and type = "fixed_sigma"

n_samples_aicc

Positive integer. Number of samples to consider in AICc optimization. Note that this argument is only applicable when approach = "empirical", and type is either equal to "AICc_each_k" or "AICc_full"

eval_max_aicc

Positive integer. Maximum number of iterations when optimizing the AICc. Note that this argument is only applicable when approach = "empirical", and type is either equal to "AICc_each_k" or "AICc_full"

start_aicc

Numeric. Start value of sigma when optimizing the AICc. Note that this argument is only applicable when approach = "empirical", and type is either equal to "AICc_each_k" or "AICc_full"

w_threshold

Positive integer between 0 and 1.

mu

Numeric vector. (Optional) Containing the mean of the data generating distribution. If NULL the expected values are estimated from the data. Note that this is only used when approach = "gaussian".

cov_mat

Numeric matrix. (Optional) Containing the covariance matrix of the data generating distribution. NULL means it is estimated from the data if needed (in the Gaussian approach).

mincriterion

Numeric value or vector where length of vector is the number of features in model. Value is equal to 1 - alpha where alpha is the nominal level of the conditional independence tests. If it is a vector, this indicates which mincriterion to use when conditioning on various numbers of features.

minsplits

Numeric value. Equal to the value that the sum of the left and right daughter nodes need to exceed.

minbucket

Numeric value. Equal to the minimum sum of weights in a terminal node.

sample

Boolean. If TRUE, then the method always samples n_samples from the leaf (with replacement). If FALSE and the number of obs in the leaf is less than n_samples, the method will take all observations in the leaf. If FALSE and the number of obs in the leaf is more than n_samples, the method will sample n_samples (with replacement). This means that there will always be sampling in the leaf unless sample = FALSE AND the number of obs in the node is less than n_samples.

Details

The most important thing to notice is that shapr has implemented four different approaches for estimating the conditional distributions of the data, namely "empirical", "gaussian", "copula" and "ctree".
In addition, the user also has the option of combining the four approaches. E.g. if you're in a situation where you have trained a model that consists of 10 features, and you'd like to use the "gaussian" approach when you condition on a single feature, the "empirical" approach if you condition on 2-5 features, and "copula" version if you condition on more than 5 features this can be done by simply passing `approach = c("gaussian", rep("empirical", 4), rep("copula", 5))`. If "approach[i]" = "gaussian" it means that you'd like to use the "gaussian" approach when conditioning on i features.

Value

Object of class `c("shapr", "list")`. Contains the following items:

- **dt** `data.table`
- **model** Model object
- **p** Numeric vector
- **x_test** `data.table`

Note that the returned items model, p and x_test are mostly added due to the implementation of plot.shapr. If you only want to look at the numerical results it is sufficient to focus on dt. dt is a data.table where the number of rows equals the number of observations you'd like to explain, and the number of columns equals m + 1, where m equals the total number of features in your model.

If dt[i, j + 1] > 0 it indicates that the j-th feature increased the prediction for the i-th observation. Likewise, if dt[i, j + 1] < 0 it indicates that the j-th feature decreased the prediction for the i-th observation. The magnitude of the value is also important to notice. E.g. if dt[i, k + 1] and dt[i, j + 1] are greater than 0, where j != k, and dt[i, k + 1] > dt[i, j + 1] this indicates that feature j and k both increased the value of the prediction, but that the effect of the k-th feature was larger than the j-th feature.

The first column in dt, called 'none', is the prediction value not assigned to any of the features (ϕ_0). It's equal for all observations and set by the user through the argument prediction_zero. In theory this value should be the expected prediction without conditioning on any features. Typically we set this value equal to the mean of the response variable in our training data, but other choices such as the mean of the predictions in the training data are also reasonable.

Author(s)

Camilla Lingjaerde, Nikolai Sellereite, Martin Jullum, Annabelle Redelmeier

Examples

```r
if (requireNamespace("MASS", quietly = TRUE)) {
  # Load example data
data("Boston", package = "MASS")

  # Split data into test- and training data
  x_train <- head(Boston, -3)
x_test <- tail(Boston, 3)

  # Fit a linear model
model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)
```
Create an explainer object
explainer <- shapr(x_train, model)

Explain predictions
p <- mean(x_train$medv)

Empirical approach
explain1 <- explain(x_test, explainer,
 approach = "empirical",
 prediction_zero = p, n_samples = 1e2
)

Gaussian approach
explain2 <- explain(x_test, explainer,
 approach = "gaussian",
 prediction_zero = p, n_samples = 1e2
)

Gaussian copula approach
explain3 <- explain(x_test, explainer,
 approach = "copula",
 prediction_zero = p, n_samples = 1e2
)

ctree approach
explain4 <- explain(x_test, explainer,
 approach = "ctree",
 prediction_zero = p
)

Combined approach
approach <- c("gaussian", "gaussian", "empirical", "empirical")
explain5 <- explain(x_test, explainer,
 approach = approach,
 prediction_zero = p, n_samples = 1e2
)

Print the Shapley values
print(explain1$dt)

Plot the results
if (requireNamespace("ggplot2", quietly = TRUE)) {
 plot(explain1)
}

feature_combinations

Define feature combinations, and fetch additional information about each unique combination
Description

Define feature combinations, and fetch additional information about each unique combination.

Usage

```r
feature_combinations(
  m,
  exact = TRUE,
  n_combinations = 200,
  weight_zero_m = 10^6
)
```

Arguments

- `m` Positive integer. Total number of features.
- `exact` Logical. If `TRUE` all 2^m combinations are generated, otherwise a subsample of the combinations is used.
- `n_combinations` Positive integer. Note that if `exact = TRUE`, `n_combinations` is ignored. However, if $m > 12$ you’ll need to add a positive integer value for `n_combinations`.
- `weight_zero_m` Numeric. The value to use as a replacement for infinite combination weights when doing numerical operations.

Value

A data.table that contains the following columns:

- `id_combination` Positive integer. Represents a unique key for each combination. Note that the table is sorted by `id_combination`, so that always equal to `x["id_combination"] = 1:nrow(x)`.
- `features` List. Each item of the list is an integer vector where `features[[i]]` represents the indices of the features included in combination `i`. Note that all the items are sorted such that `features[[i]] == sort(features[[i]])` is always true.
- `n_features` Vector of positive integers. `n_features[i]` equals the number of features in combination `i`, i.e. `n_features[i] = length(features[[i]])`.
- `N` Positive integer. The number of unique ways to sample `n_features[i]` features from `m` different features, without replacement.

Author(s)

Nikolai Sellereite, Martin Jullum

Examples

```r
# All combinations
x <- feature_combinations(m = 3)
nrow(x) # Equals 2^3 = 8

# Subsample of combinations
x <- feature_combinations(exact = FALSE, m = 10, n_combinations = 1e2)
```
make_dummies

Initiate the making of dummy variables

Description

Initiate the making of dummy variables

Usage

make_dummies(traindata, testdata)

Arguments

traindata
data.table or data.frame.

testdata
data.table or data.frame. New data that has the same feature names, types, and levels as traindata.

Value

A list that contains the following entries:

feature_list
List. Output from check_features

train_dummies
A data.frame containing all of the factors in traindata as one-hot encoded variables.

test_dummies
A data.frame containing all of the factors in testdata as one-hot encoded variables.

traindata_new
Original traindata with correct column ordering and factor levels. To be passed to shapr.

testdata_new
Original testdata with correct column ordering and factor levels. To be passed to explain.

Author(s)

Annabelle Redelmeier, Martin Jullum

Examples

if (requireNamespace("MASS", quietly = TRUE)) {
 data("Boston", package = "MASS")
 x_var <- c("lstat", "rm", "dis", "indus")
 y_var <- "medv"
 x_train <- as.data.frame(Boston[401:411, x_var])
 y_train <- Boston[401:408, y_var]
 x_test <- as.data.frame(Boston[1:4, x_var])

 # convert to factors for illustrational purpose
 x_train$rm <- factor(round(x_train$rm))
 x_test$rm <- factor(round(x_test$rm), levels = levels(x_train$rm))
dummylist <- make_dummies(traindata = x_train, testdata = x_test)
Author(s)

Martin Jullum

Examples

```r
if (requireNamespace("MASS", quietly = TRUE)) {
  # Load example data
data("Boston", package = "MASS")

  # Split data into test- and training data
  x_train <- head(Boston, -3)
x_test <- tail(Boston, 3)

  # Fit a linear model
  model <- lm(medv ~ lstat + rm + dis + indus, data = x_train)

  # Create an explainer object
  explainer <- shapr(x_train, model)

  # Explain predictions
  p <- mean(x_train$medv)

  # Empirical approach
  explanation <- explain(x_test, explainer,
                         approach = "empirical",
                         prediction_zero = p,
                         n_samples = 1e2)

  if (requireNamespace("ggplot2", quietly = TRUE)) {
    # Plot the explanation (this function)
    plot(explanation)
  }
}
```

shapr

Create an explainer object with Shapley weights for test data.

Description

Create an explainer object with Shapley weights for test data.

Usage

`shapr(x, model, n_combinations = NULL)`
Arguments

x
Numeric matrix or data.frame/data.table. Contains the data used to estimate the (conditional) distributions for the features needed to properly estimate the conditional expectations in the Shapley formula.

model
The model whose predictions we want to explain. Run `shapr:::get_supported_models()` for a table of which models shapr supports natively.

n_combinations
Integer. The number of feature combinations to sample. If `NULL`, the exact method is used and all combinations are considered. The maximum number of combinations equals \(2^{\text{ncol}(x)}\).

Value

Named list that contains the following items:

- **exact**
 Boolean. Equals `TRUE` if `n_combinations = NULL` or `n_combinations < 2^{\text{ncol}(x)}`, otherwise `FALSE`.

- **n_features**
 Positive integer. The number of columns in `x`

- **S**
 Binary matrix. The number of rows equals the number of unique combinations, and the number of columns equals the total number of features. I.e. let's say we have a case with three features. In that case we have \(2^3 = 8\) unique combinations. If the j-th observation for the i-th row equals 1 it indicates that the j-th feature is present in the i-th combination. Otherwise it equals 0.

- **W**
 Second item

- **X**
 data.table. Returned object from `feature_combinations`

- **x_train**
 data.table. Transformed x into a data.table.

- **feature_list**
 List. The `updated_feature_list` output from `preprocess_data`

In addition to the items above, `model` and `n_combinations` are also present in the returned object.

Author(s)

Nikolai Sellereite

Examples

```r
if (requireNamespace("MASS", quietly = TRUE)) {
  # Load example data
data("Boston", package = "MASS")
df <- Boston

  # Example using the exact method
x_var <- c("lstat", "rm", "dis", "indus")
y_var <- "medv"
df1 <- df[, x_var]
model <- lm(medv ~ lstat + rm + dis + indus, data = df)
explainer <- shapr(df1, model)

  print(nrow(explainer$X))
}
```
Example using approximation
y_var <- "medv"
x_var <- setdiff(colnames(df), y_var)
model <- lm(medv ~ ., data = df)
df2 <- df[, x_var]
explainer <- shapr(df2, model, n_combinations = 1e3)
print(nrow(explainer$X))

Example using approximation where n_combinations > 2^m
x_var <- c("lstat", "rm", "dis", "indus")
y_var <- "medv"
df3 <- df[, x_var]
model <- lm(medv ~ lstat + rm + dis + indus, data = df)
explainer <- shapr(df3, model, n_combinations = 1e3)
print(nrow(explainer$X))
16 (which equals 2^4)
Index

explain, 2, 8, 9

feature_combinations, 6, 11

make_dummies, 8

plot.shapr, 9
prepare_data, 4
preprocess_data, 11

shapr, 3, 8, 10
shapr:::get_supported_models(), 11